Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville
Abstract
:1. Introduction
1.1. Limiting the Use of Conventional Methodologies
1.2. Alternative Methodologies: Adaptive Thermal Comfort Models
1.3. Literature Reviews
2. Methodology
2.1. Seville, Spain: Climatic Conditions
2.2. The Museum: Description of the Case Study
2.3. Data Acquisition
2.4. Conservation Conditions: UNE-EN 15757:2011
2.5. Thermal Comfort
- -
- Category I: High. High level of expectation; this is recommended for spaces occupied by individuals with special requirements, such as people with disabilities, sick people, children, or the elderly.
- -
- Category II: Medium. Normal level of expectation; this should be used for new and renovated buildings.
- -
- Category III: Moderate. Acceptable and moderate level of expectation; this can be used in existing buildings
- -
- Category IV: Low. Values not included in the criteria from the previous categories. This category should only be accepted during a limited period of the year. There is no health risk, but comfort could be reduced.
- -
- 90% acceptability. Greater comfort requirement.
- -
- 80% acceptability. Limit of acceptability under typical conditions.
3. Results
3.1. UNE-EN 16798-1:2020–UNE-EN 15757:2011
3.2. ASHRAE 55-2020–UNE-EN 15757:2011
3.3. Setpoint Strategy
4. Discussion
5. Conclusions
- -
- The implementation of the ATC model, which was set by UNE-EN 16798-1:2020 in museum exhibition spaces of the Museum of Popular Arts and Customs of Seville, shows its appropriateness under slightly less hot climate conditions. As temperatures drop, visitors will see an increase in the percentage of comfortable time.
- -
- The adaptive thermal comfort standards set by ASHRAE 55-2020 were better adapted to the proposed environment compared to the European standard. Despite presenting a more reduced climate diversity bias than the European standard, visitors were comfortable most of the time during the period monitored while in the museum exhibition spaces of the Museum of Popular Arts and Customs of Seville.
- -
- Implementing adaptive control strategies could significantly reduce energy consumption. ATC models allow for greater flexibility in managing HVAC systems than current regulations. By allowing controlled fluctuations —T and RH —the use of mechanical HVAC systems can be minimized, activating them only when temperatures exceed the limits.
- -
- The basement is the exhibition space with the greatest microclimatic stability in the museum, ensuring the best thermal comfort conditions for visitors in accordance with both international standards, as well as the best preventive conditions for conservation. For these reasons, it is suggested that the basement of the Mudejar Pavilion could be the most suitable space for the conservation of sensitive objects in the museum.
- -
- This article determines that, due to the fact that the data were collected in a single museum as a case study, and given the cultural diversity of the visitors it receives as well as their ages and physical conditions, further research in other museums would be necessary to reach precise results and conclusions that can be extrapolated to other case studies that use similar methodologies, combining preventive conservation parameters and the thermal comfort of visitors under the same climatic conditions.
6. Limits of Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parlamento Europeo. Ahorro de Energía: Medidas de la UE Para Reducir el Consumo Energético. Available online: https://www.europarl.europa.eu/news/es/headlines/society/20221128STO58002/ahorro-de-energia-medidas-de-la-ue-para-reducir-el-consumo-energetico (accessed on 4 November 2023).
- Gravagnuolo, A.; Angrisano, M.; Bosone, M.; Buglione, F.; De Toro, P.; Girard, L.F. Participatory evaluation of cultural heritage adaptive reuse interventions in the circular economy perspective: A case study of historic buildings in Salerno (Italy). J. Urban Manag. 2024, 13, 107–139. [Google Scholar] [CrossRef]
- Zinzi, M.; Pagliaro, F.; Agnoli, S.; Bisegna, F.; Iatauro, D. Assessing the overheating risks in Italian existing school buildings renovated with nZEB targets. Energy Procedia 2017, 142, 2517–2524. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- ASHRAE 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2020.
- UNE-EN 16798-1; Eficiencia Energética de los Edificios. Ventilación de los Edificios. Parte 1: Parámetros del Ambiente Interior a Considerar para el Diseño y la Evaluación de la Eficiencia Energética de Edificios Incluyendo la Calidad del Aire Interior, Condiciones Térmicas, Iluminación y Ruido. Módulo 1–6. UNE: Madrid, Spain, 2020.
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Mcgraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Pérez-Fargallo, A.; Rubio-Bellido, C.; Gallego-Maya, I. Influence of Adaptive Comfort Models in Execution Cost Improvements for Housing Thermal Environment in Concepción, Chile. Sustainability 2018, 10, 2368. [Google Scholar] [CrossRef]
- Flett, G.; Kelly, N. A disaggregated, probabilistic, high resolution method for assessment of domestic occupancy and electrical demand. Energy Build. 2017, 140, 171–187. [Google Scholar] [CrossRef]
- Gunay, H.B.; O’Brien, W.; Beausoleil-Morrison, I.; Gilani, S. Development and implementation of an adaptive lighting and blinds control algorithm. Build. Environ. 2017, 113, 185–199. [Google Scholar] [CrossRef]
- Motuziene, V.; Vilutiene, T. Modelling the Effect of the Domestic Occupancy Profiles on Predicted Energy Demand of the Energy Efficient House. Procedia Eng. 2013, 57, 798–807. [Google Scholar] [CrossRef]
- O’Brien, W.; Gunay, H.B. The contextual factors contributing to occupants’ adaptive comfort behaviors in offices—A review and proposed modeling framework. Build. Environ. 2014, 77, 77–87. [Google Scholar] [CrossRef]
- Rijal, H.; Tuohy, P.; Humphreys, M.; Nicol, J.; Samuel, A.; Clarke, J. Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy Build. 2007, 39, 823–836. [Google Scholar] [CrossRef]
- He, D.; Isa, M.H.M. Investigation of indoor thermal comfort of heritage buildings in hot summer and cold winter zone of China: A case study. Case Stud. Therm. Eng. 2023, 53, 103820. [Google Scholar] [CrossRef]
- Malama, A.; Sharples, S. Thermal performance of traditional and contemporary housing in the cool season of Zambia. Build. Environ. 1997, 32, 69–78. [Google Scholar] [CrossRef]
- Bassoud, A.; Khelafi, H.; Mokhtari, A.M.; Bada, A. Evaluation of summer thermal comfort in arid desert areas. Case study: Old adobe building in Adrar (South of Algeria). Build. Environ. 2021, 205, 108140. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Rubio-Bellido, C. Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings. Energy 2020, 190, 116448. [Google Scholar] [CrossRef]
- Sánchez-García, D.; Bienvenido-Huertas, D.; Martínez-Crespo, J.; de Dear, R. Using setpoint temperatures based on adaptive thermal comfort models: The case of an Australian model considering climate change. Build. Environ. 2024, 258, 111647. [Google Scholar] [CrossRef]
- Lee, S.; Karava, P.; Tzempelikos, A.; Bilionis, I. Inference of Thermal Preference Profiles for Personalized Thermal Environments. In Proceedings of the ASHRAE Winter Conference 2018, Chicago, IL, USA, 20–24 January 2018. [Google Scholar]
- Gentile, N.; Dubois, M.-C. Field data and simulations to estimate the role of standby energy use of lighting control systems in individual offices. Energy Build. 2017, 155, 390–403. [Google Scholar] [CrossRef]
- Nagy, Z.; Yong, F.Y.; Schlueter, A. Occupant centered lighting control: A user study on balancing comfort, acceptance, and energy consumption. Energy Build. 2016, 126, 310–322. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, D. Modelling study of the impact of thermal comfort criteria on housing energy use in Australia. Appl. Energy 2018, 210, 152–166. [Google Scholar] [CrossRef]
- Cardinale, T.; Colapietro, D.; Cardinale, N.; Fatiguso, F. Evaluation of the Efficacy of Traditional Recovery Interventions in Historical Buildings. A New Selection Methodology. Energy Procedia 2013, 40, 515–524. [Google Scholar] [CrossRef]
- Moschella, A.; Salemi, A.; La Faro, A.; Sanfilippo, G.; Detommaso, M.; Privitera, A. Historic Buildings in Mediterranean Area and Solar Thermal Technologies: Architectural Integration vs. Preservation Criteria. Energy Procedia 2013, 42, 416–425. [Google Scholar] [CrossRef]
- Fabbri, K.; Pretelli, M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014, 76, 15–31. [Google Scholar] [CrossRef]
- Stazi, F.; Vegliò, A.; Di Perna, C.; Munafò, P. Experimental comparison between 3 different traditional wall constructions and dynamic simulations to identify optimal thermal insulation strategies. Energy Build. 2013, 60, 429–441. [Google Scholar] [CrossRef]
- Maahsen-Milan, A.; Simonetti, M. Auditoria and Public Halls. The preserved Architectonic Heritage, in the Perspective of Sustainability. Procedia Eng. 2011, 21, 711–720. [Google Scholar] [CrossRef]
- Fabbri, K.; Tronchin, L.; Tarabusi, V. Energy Retrofit and Economic Evaluation Priorities Applied at an Italian Case Study. Energy Procedia 2014, 45, 379–384. [Google Scholar] [CrossRef]
- Lucchi, E.; Becherini, F.; Di Tuccio, M.C.; Troi, A.; Frick, J.; Roberti, F.; Hermann, C.; Fairnington, I.; Mezzasalma, G.; Pockelé, L.; et al. Thermal performance evaluation and comfort assessment of advanced aerogel as blown-in insulation for historic buildings. Build. Environ. 2017, 122, 258–268. [Google Scholar] [CrossRef]
- Varas-Muriel, M.; Martínez-Garrido, M.; Fort, R. Monitoring the thermal–hygrometric conditions induced by traditional heating systems in a historic Spanish church (12th–16th C). Energy Build. 2014, 75, 119–132. [Google Scholar] [CrossRef]
- Gálvez, F.P.; de Hita, P.R.; Martín, M.O.; Conde, M.M.; Liñán, C.R. Sustainable restoration of traditional building systems in the historical centre of Sevilla (Spain). Energy Build. 2013, 62, 648–659. [Google Scholar] [CrossRef]
- Martínez-Garrido, M.; Aparicio, S.; Fort, R.; Anaya, J.; Izquierdo, M. Effect of solar radiation and humidity on the inner core of walls in historic buildings. Constr. Build. Mater. 2014, 51, 383–394. [Google Scholar] [CrossRef]
- Farreny, R.; Oliver-Solà, J.; Escuder-Bonilla, S.; Roca-Martí, M.; Sevigné, E.; Gabarrell, X.; Rieradevall, J. The metabolism of cultural services. Energy and water flows in museums. Energy Build. 2012, 47, 98–106. [Google Scholar] [CrossRef]
- Zannis, G.; Santamouris, M.; Geros, V.; Karatasou, S.; Pavlou, K.; Assimakopoulos, M.N. Energy efficiency in retrofitted and new museum buildings in Europe. Int. J. Sustain. Energy 2006, 25, 199–213. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J. Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Mishra, A.; Kramer, R.; Loomans, M.; Schellen, H. Development of thermal discernment among visitors: Results from a field study in the Hermitage Amsterdam. Build. Environ. 2016, 105, 40–49. [Google Scholar] [CrossRef]
- Yau, Y.H.; Chew, B.T.; Saifullah, A.Z.A. A Field Study on Thermal Comfort of Occupants and Acceptable Neutral Temperature at the National Museum in Malaysia. Indoor Built Environ. 2011, 22, 433–444. [Google Scholar] [CrossRef]
- Kramer, R.; Maas, M.; Martens, M.; van Schijndel, A.; Schellen, H. Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations. Appl. Energy 2015, 158, 446–458. [Google Scholar] [CrossRef]
- Kramer, R.; van Schijndel, J.; Schellen, H. Dynamic setpoint control for museum indoor climate conditioning integrating collection and comfort requirements: Development and energy impact for Europe. Build. Environ. 2017, 118, 14–31. [Google Scholar] [CrossRef]
- Ismail, M.M.R.; Nessim, A.A.; Fathy, F. Factors affecting museum buildings and heritage spaces in terms of energy optimization and comfort. Ain Shams Eng. J. 2024; 103069, in press. [Google Scholar] [CrossRef]
- Martinez-Molina, A.; Boarin, P.; Tort-Ausina, I.; Vivancos, J.-L. Assessing visitors’ thermal comfort in historic museum buildings: Results from a Post-Occupancy Evaluation on a case study. Build. Environ. 2018, 132, 291–302. [Google Scholar] [CrossRef]
- Pochwała, S.; Anweiler, S.; Tańczuk, M.; Klementowski, I.; Przysiężniuk, D.; Adrian, Ł.; McNamara, G.; Stevanović, Ž. Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system. Energy 2023, 278, 128037. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chang, B.; Feng, Z.; Gu, Z.; Luo, X. Independent local environment control for visitor and relics area within site museums by displacement ventilation. Appl. Therm. Eng. 2024, 257, 124459. [Google Scholar] [CrossRef]
- Kang, Y.; Yuk, H.; Jo, H.H.; Kim, S. Indoor thermal environment assessment of a historic building for a thermal and energy retrofit scenario using a CFD model. Case Stud. Therm. Eng. 2024, 63, 105330. [Google Scholar] [CrossRef]
- Cho, H.M.; Yun, B.Y.; Yang, S.; Wi, S.; Chang, S.J.; Kim, S. Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building. Appl. Energy 2020, 275, 115313. [Google Scholar] [CrossRef]
- Cho, H.M.; Yang, S.; Wi, S.; Chang, S.J.; Kim, S. Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study. Energy 2020, 201, 117607. [Google Scholar] [CrossRef]
- Jo, H.H.; Yuk, H.; Kang, Y.; Kim, S. Conservation of architectural heritage: Innovative approaches to enhance thermal comfort and promote sustainable usage in historic buildings. Case Stud. Therm. Eng. 2023, 51, 103500. [Google Scholar] [CrossRef]
- Ministerio de Educación. Museo de Artes y Costumbres Populares de Sevilla—Arquitectura de los Museos. Available online: https://www.cultura.gob.es/cultura/areas/museos/mc/arquitectura-museos/museos-gestion-transferida/andalucia/sevilla/sevilla-aycp.html (accessed on 6 August 2024).
- de Dear, R.J.; Brager, G.S. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- UNE-EN 15757:2011; Conservación del Patrimonio Cultural—Especificaciones de Temperatura y Humedad Relativa para Limitar los daños por el Clima Inducido Mecánicamente en Materiales Orgánicos Higroscópicos. AENOR: Madrid, Spain, 2011.
- Michalski, S. Double the Life for Each Five-Degree Drop, More Than Double the Life for Each Halving of Relative Humidity. In Proceedings of the Thirteenth Triennial Meeting ICOM-CC, Rio de Janeiro, Brazil, 22–27 September 2002; Vontobel, R., Ed.; James & James: London, UK, 2002; Volume 1, p. 6672. [Google Scholar]
- de Tapol, B. El diálogo entre el conservador y el arquitecto sobre las exigencias climáticas de las colecciones y la aplicación de consignas. Rev. Subdirección Gen. Mus. Estatales 2005, 1, 66–79. [Google Scholar]
- Kramer, R.; Schellen, H.; van Schijndel, A. Impact of ASHRAE’s museum climate classes on energy consumption and indoor climate fluctuations: Full-scale measurements in museum Hermitage Amsterdam. Energy Build. 2016, 130, 286–294. [Google Scholar] [CrossRef]
- Pallubinsky, H.; Kramer, R.P.; van Marken Lichtenbelt, W.D. Establishing resilience in times of climate change—A perspective on humans and buildings. Clim. Change 2023, 176, 135. [Google Scholar] [CrossRef]
- Jiang, T.; Li, Z.; Jin, X.; Chen, H.; Li, X.; Mu, Y. Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems. Appl. Energy 2018, 226, 181–196. [Google Scholar] [CrossRef]
Type of Building/Zone | Category | Set Temperature Minimum for Heating in Winter, °C |
---|---|---|
Offices and enclosures with similar activities (individual offices, open offices, conference halls, auditoria, coffee shops, restaurants, classrooms, and so on). | I | 21 |
II | 20 | |
III | 19 |
Type of Building/Enclosure | Category | RH of Dehumidification Design, % | RH of Humidification Design, % |
---|---|---|---|
Enclosures where humidity criteria are established by human occupancy. | I | 50 | 30 |
II | 60 | 25 | |
III | 70 | 20 |
Winter | Summer | Spring & Autumn | |||||
---|---|---|---|---|---|---|---|
T, °C | RH, % | T, °C | RH, % | T, °C | RH, % | ||
UNE-EN 16798-1:2020 | Exhibition Hall 1 | 19.1 | 62 | 27.1 | 50 | 21.4 | 57 |
Exhibition Hall 2 | 22.6 | 40 | 26.3 | 53 | 24.4 | 48 | |
Tour Basement | 19.0 | 64 | 26.8 | 59 | 21.5 | 62 | |
ASHRAE 55-2020 | Exhibition Hall 1 | 16.9 | 62 | 28.6 | 50 | 21.4 | 57 |
Exhibition Hall 2 | 24.5 | 41 | 26.3 | 53 | 24.5 | 48 | |
Tour Basement | 18.5 | 64 | 26.9 | 59 | 21.5 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego-Maya, I.; Rubio-Bellido, C. Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville. Energies 2024, 17, 5480. https://doi.org/10.3390/en17215480
Gallego-Maya I, Rubio-Bellido C. Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville. Energies. 2024; 17(21):5480. https://doi.org/10.3390/en17215480
Chicago/Turabian StyleGallego-Maya, Inmaculada, and Carlos Rubio-Bellido. 2024. "Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville" Energies 17, no. 21: 5480. https://doi.org/10.3390/en17215480
APA StyleGallego-Maya, I., & Rubio-Bellido, C. (2024). Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville. Energies, 17(21), 5480. https://doi.org/10.3390/en17215480