Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers
Abstract
:1. Introduction
2. Test Objects and Method
2.1. Test Airfoils
2.2. Test Rig
2.3. Force Measurement
2.4. Tuft Visualization
3. Results and Discussion
3.1. Aerodynamic Performance
3.2. Flow Visualization
3.2.1. Performance Verification
3.2.2. Flow Regimes on the Baseline Airfoil
3.2.3. Flow Regimes on the Modified Airfoil
3.3. Judging Criterion of Different Flow Regimes
3.3.1. Criterion for the Baseline Airfoil
3.3.2. Criterion for the Modified Airfoil
3.4. Discussions
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aftab, S.M.A.; Razak, N.A.; Rafie, A.S.M.; Ahmad, K.A. Mimicking the humpback whale: An aerodynamic perspective. Prog. Aerosp. Sci. 2016, 84, 48–69. [Google Scholar] [CrossRef]
- Bolzon, M.D.; Kelso, R.M.; Arjomandi, M. Tubercles and their applications. J. Aerosp. Eng. 2015, 29, 04015013. [Google Scholar] [CrossRef]
- Fish, F.E.; Battle, J.M. Hydrodynamic design of the humpback whale flipper. J. Morphol. 1995, 225, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Fish, F.E.; Howle, L.E.; Murray, M.M. Hydrodynamic flow control in marine mammals. Integr. Comp. Biol. 2008, 48, 788–800. [Google Scholar] [CrossRef]
- Fish, F.E.; Weber, P.W.; Murray, M.M.; Howle, L.E. The tubercles on humpback whales’ flippers: Application of bio-inspired technology. Integr. Comp. Biol. 2011, 51, 203–213. [Google Scholar] [CrossRef]
- Miklosovic, D.S.; Murray, M.M.; Howle, L.E.; Fish, F.E. Leading edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 2004, 16, L39–L42. [Google Scholar] [CrossRef]
- Downer, L.; Dockrill, P. WhalePower Tubercle Blade Power Performance Test Report; 61827278; Wind Energy Institute of Canada: Tignish, PE, Canada, 2008. [Google Scholar]
- Zhang, R.K.; Wu, J.Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge. Wind Energy 2012, 15, 407–424. [Google Scholar] [CrossRef]
- Huang, C.C.; Bai, C.J.; Shiah, Y.C.; Chen, Y.J. Optimal design of protuberant blades for small variable-speed horizontal axis wind turbine-experiments and simulations. Energy 2016, 115, 1156–1167. [Google Scholar] [CrossRef]
- Wang, Z.; Zhuang, M. Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Appl. Energy 2017, 208, 1184–1197. [Google Scholar] [CrossRef]
- Shi, W.; Rosli, R.; Atlar, M.; Norman, R.; Yang, W. Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles. Ocean. Eng. 2016, 117, 246–253. [Google Scholar] [CrossRef]
- Shi, W.; Atlar, M.; Norman, R.; Aktas, B.; Turkmen, S. Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. Renew. Energy 2016, 96, 42–55. [Google Scholar] [CrossRef]
- Fan, M.; Sun, Z.; Yu, R.; Dong, X.; Li, Z.; Bai, Y. Effect of leading-edge tubercles on the hydrodynamic characteristics and wake development of tidal turbines. J. Fluids Struct. 2023, 119, 103873. [Google Scholar] [CrossRef]
- Shi, W.; Atlar, M.; Norman, R. Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles. Renew. Energy 2017, 111, 688–707. [Google Scholar] [CrossRef]
- Butt, F.R.; Talha, T. Numerical investigation of the effect of leading-edge tubercles on propeller performance. J. Aircr. 2019, 56, 1014–1028. [Google Scholar] [CrossRef]
- Asghar, A.; Perez, R.E.; Jansen, P.W.; Allan, W.D.E. Application of leading-edge tubercles to enhance propeller performance. AIAA J. 2020, 58, 4659–4671. [Google Scholar] [CrossRef]
- Stark, C.; Shi, W.; Atlar, M. A numerical investigation into the influence of bio-inspired leading-edge tubercles on the hydrodynamic performance of a benchmark ducted propeller. Ocean. Eng. 2021, 237, 109593. [Google Scholar] [CrossRef]
- Johari, H.; Henoch, C.W.; Custodio, D.; Levshin, A. Effects of leading-edge protuberances on airfoil performance. AIAA J. 2007, 45, 2634–2642. [Google Scholar] [CrossRef]
- Hansen, K.L.; Kelso, R.M.; Dally, B.B. Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA J. 2011, 49, 185–194. [Google Scholar] [CrossRef]
- Wei, Z.; New, T.H.; Cui, Y.D. An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number. Ocean Eng. 2015, 108, 336–349. [Google Scholar] [CrossRef]
- Serson, D.; Meneghini, J.R.; Sherwin, S.J. Direct numerical simulations of the flow around wings with spanwise waviness. J. Fluid Mech. 2017, 826, 714–731. [Google Scholar] [CrossRef]
- Arai, H.; Doi, Y.; Nakashima, T.; Mutsuda, H. A study on stall delay by various wavy leading edges. J. Aero Aqua Bio-Mech. 2010, 1, 18–23. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.; Morimoto, M.; Maeda, T.; Kamada, Y.; Liu, S. Two-step stall characteristic of an airfoil with a single leading-edge protuberance. AIAA J. 2017, 56, 64–77. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.; Maeda, T.; Kamada, Y.; Li, Q.; Shimamoto, K.; Liu, S. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Phys. Fluids 2017, 29, 115110. [Google Scholar] [CrossRef]
- Gawad, A.F.A. Utilization of whale-inspired tubercles as a control technique to improve airfoil performance. Trans. Control Mech. Syst. 2013, 2, 212–218. [Google Scholar]
- Stalnov, O.; Chong, T.P. Scaling of Lift Coefficient of an Airfoil with Leading-Edge Serrations. AIAA J. 2019, 57, 3615–3619. [Google Scholar] [CrossRef]
- Sudhakar, S.; Karthikeyan, N.; Suriyanarayanan, P. Experimental studies on the effect of leading edge tubercles on laminar separation bubble. AIAA J. 2019, 57, 5197–5207. [Google Scholar] [CrossRef]
- Wei, Z.; Zang, B.; New, T.H.; Cui, Y.D. A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles. Ocean Eng. 2016, 121, 356–368. [Google Scholar] [CrossRef]
- Dropkin, A.; Custodio, D.; Henoch, C.W.; Johari, H. Computation of flow field around an airfoil with leading-edge protuberances. J. Aircr. 2012, 49, 1345–1355. [Google Scholar] [CrossRef]
- Gross, A.; Fasel, H.F. Numerical investigation of passive separation control for an airfoil at low-Reynolds-number conditions. AIAA J. 2013, 51, 1553–1565. [Google Scholar] [CrossRef]
- Cai, C.; Zuo, Z.; Liu, S.; Wu, Y. Numerical investigations of hydrodynamic performance of hydrofoils with leading-edge protuberances. Adv. Mech. Eng. 2015, 7, 1687814015592088. [Google Scholar] [CrossRef]
- Custodio, D. The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance. Master Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2007. [Google Scholar]
- Hansen, K.L.; Rostamzadeh, N.; Kelso, R.M.; Dally, B.B. Evolution of the streamwise vortices generated between leading edge tubercles. J. Fluid Mech. 2016, 788, 730–766. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Hansen, K.L.; Kelso, R.M.; Dally, B.B. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Phys. Fluids 2014, 26, 107101. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, M.M.; Xu, J.Z. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances. Eng. Appl. Comput. Fluid Mech. 2017, 11, 193–209. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Kelso, R.M.; Dally, B. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge. Theor. Comput. Fluid Dyn. 2017, 31, 1–32. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Y.; Liu, Z.; Du, J. Proper orthogonal decomposition analysis of flow characteristics of an airfoil with leading edge protuberances. AIAA J. 2019, 57, 2710–2721. [Google Scholar] [CrossRef]
- Pérez-Torró, R.; Kim, J.W. A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge. J. Fluid Mech. 2017, 813, 23–52. [Google Scholar] [CrossRef]
- Seyhan, M.; Sarioglu, M.; Akansu, Y.E. Influence of Leading-Edge Tubercle with Amplitude Modulation on NACA 0015 Airfoil. AIAA J. 2021, 59, 3965–3978. [Google Scholar] [CrossRef]
- van Nierop, E.A.; Alben, S.; Brenner, M.P. How bumps on whale flippers delay stall: An aerodynamic model. Phys. Rev. Lett. 2008, 100, 054502. [Google Scholar] [CrossRef]
- Ni, Z.; Su, T.; Dhanak, M. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles. AIP Adv. 2018, 8, 045123. [Google Scholar] [CrossRef]
- Weber, P.W.; Howle, L.E.; Murray, M.M.; Miklosovic, D.S. Computational evaluation of the performance of lifting surfaces with leading-edge protuberances. J. Aircr. 2011, 48, 591–600. [Google Scholar] [CrossRef]
- Watts, P.; Fish, F.E. The influence of passive, leading edge tubercles on wing performance. In Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 27–29 August 2001. [Google Scholar]
- Pedro, H.T.; Kobayashi, M.H. Numerical study of stall delay on humpback whale flippers. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. AIAA 2008-584. [Google Scholar]
- Cai, C.; Liu, S.; Zuo, Z.; Maeda, T.; Kamada, Y.; Li, Q.; Sato, R. Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Phys. Fluids 2019, 31, 027103. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, T.; Liu, S.; Zuo, Z.; Zhang, Y.; Li, Q. Modeling of the compartmentalization effect induced by leading-edge tubercles. Phys. Fluids 2022, 34, 087104. [Google Scholar] [CrossRef]
- Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing; John Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- AGARD (Advisory Group for Aerospace Research and Development). Wind Tunnel Wall Corrections; AGARD-AR-304; NATO Research and Technology Organization (RTO): Brussels, Belgium, 1994. [Google Scholar]
- Mccullough, G.B.; Gault, D.E. Examples of Three Representative Types of Airfoil-Section Stall at Low Speed; NACA TN 2502; NASA: Washington, DC, USA, 1951. [Google Scholar]
Re | k/2π | αB1 | αB2 | CL, max |
---|---|---|---|---|
2.7 × 105 | 1.030 | 8° | 20° | 1.1121 |
4.5 × 105 | 1.060 | 7° | 23° | 1.1254 |
6.3 × 105 | 1.083 | 7° | 24° | 1.1426 |
Re/105 | k1/2π | αM1 | k2/2π | αM2 | αM3 | CL, max |
---|---|---|---|---|---|---|
2.7 | 1.027 | 5° | 0.699 | 11° | 11° | 1.0264 |
4.5 | 1.064 | 5° | 0.767 | 11° | 13° | 1.1076 |
6.3 | 1.081 | 5° | 0.805 | 11° | 15° | 1.1570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Cai, C.; Zha, R.; Peng, C.; Feng, X.; Liang, P.; Meng, K.; Kou, J.; Maeda, T.; Li, Q. Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers. Energies 2024, 17, 5518. https://doi.org/10.3390/en17215518
Wang D, Cai C, Zha R, Peng C, Feng X, Liang P, Meng K, Kou J, Maeda T, Li Q. Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers. Energies. 2024; 17(21):5518. https://doi.org/10.3390/en17215518
Chicago/Turabian StyleWang, Dian, Chang Cai, Rongyu Zha, Chaoyi Peng, Xuebin Feng, Pengcheng Liang, Keqilao Meng, Jianyu Kou, Takao Maeda, and Qing’an Li. 2024. "Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers" Energies 17, no. 21: 5518. https://doi.org/10.3390/en17215518
APA StyleWang, D., Cai, C., Zha, R., Peng, C., Feng, X., Liang, P., Meng, K., Kou, J., Maeda, T., & Li, Q. (2024). Impact of Leading-Edge Tubercles on Airfoil Aerodynamic Performance and Flow Patterns at Different Reynolds Numbers. Energies, 17(21), 5518. https://doi.org/10.3390/en17215518