Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays
Abstract
:1. Introduction
1.1. Inspiration and Motivation
1.2. Literature Review
1.3. Contribution and Paper Organization
2. DOCR Problem Formulation
2.1. Coordination Criteria
2.2. Relay Setting Bounds
3. War Strategy Optimization Algorithm (WSO)
3.1. The Following Is a Discussion of the Different Military Strategy Steps
3.1.1. Random Attack
3.1.2. Attack Strategy
3.1.3. Signaling Using Drums
3.1.4. Defense Strategy
3.2. Mathematical Modeling of the War Strategy
3.3. Characteristics of the Suggested Algorithm
Algorithm 1: Pseudocode of WSO for DOCR Coordination. |
Step 1: Initialize parameters. Set the population size, maximum number of iterations MaxIter, and convergence tolerance ϵ. Define the parameter bounds for relay settings. Initialize battle field dimensions representing the search space. Step 2: Define the objective function—DOCR objective. Minimize relay operating time for fault conditions. Ensure coordination with other relays and penalize miscoordination to avoid malfunctions. Step 3: Generate an initial population of warriors (solutions). Randomly initialize warriors within the specified bounds for TMS. Each warrior represents a potential solution for DOR settings. Step 4: Evaluate the fitness of each warrior. Calculate each warrior’s fitness using the DOCR objective function. Fitness measures the effectiveness of relay settings for accurate fault detection and coordination. Step 5: Identify the best warrior, Best Warrior, with the highest fitness score. Step 6: Set iteration counter. Step 7: Begin optimization loop. While iteration < MaxIter and convergence criterion is not met: For each warrior in the population:
If the warrior is close to Best Warrior, fine-tune the position. If far, approach rapidly toward Best Warrior to explore new potential solutions.
Recalculate the fitness of each warrior using the DOCR objective function. Update Best Warrior if a warrior with a higher fitness is found. Increment iteration counter. Step 8: End the loop when the maximum number of iterations is reached or convergence is achieved. Step 9: Output the results. Return the DOCR settings (position of Best Warrior) for TMS. Report DOCR coordination characteristics and expected operating times for different fault scenarios. |
4. Results
5. Multi-Loop Parallel Distribution Power System
5.1. Case 1
5.2. Case 2
5.3. Case 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarwagya, K.; Nayak, P.K. An Extensive Review on the State-of Art on Microgrid Protection. In Proceedings of the IEEE Power, Communication and Information Technology Conference (PCITC-2015), S.O.A University, Bhubaneswar, India, 15–17 October 2015. [Google Scholar]
- Girgis, A.; Brahma, S. Effect of distributed generation on protective device coordination in distribution system. In Proceedings of the LESCOPE01. 2001 Large Engineering Systems Conference on Power Engineering; Conference Proceedings; Theme: Powering Beyond 2001 (Cat. No. 01ex490), Halifax, NS, Canada, 11–13 July 2001; pp. 115–119. [Google Scholar]
- Abyaneh, H.A.; Al-Dabbagh, M.; Karegar, H.K.; Sadeghi, S.H.H.; Khan, R.A. J A new optimal approach for coordination of overcurrent relays in interconnected power systems. IEEE Trans. Power Deliv. 2003, 18, 430–435. [Google Scholar] [CrossRef]
- Sorrentino, E.; Gupta, N. Summary of useful concepts about the coordination of directional overcurrent protections. CSEE J. Power Energy Syst. 2019, 5, 533–536. [Google Scholar] [CrossRef]
- Damborg, M.J.; Ramaswami, R.; Venkata, S.S.; Postforoosh, J.M. Computer aided transmission protection system design. IEEE Trans. Power Appar. Syst. 1984, 103, 51–59. [Google Scholar] [CrossRef]
- Chung, J.; Lu, Y.; Kao, W.; Chou, C. Study of solving the coordination curve intersection of inverse-time overcurrent relays in sub transmission systems. IEEE Trans. Power Deliv. 2008, 23, 1780–1788. [Google Scholar] [CrossRef]
- Dwarakanath, M.H.; Nowitz, L. An Application of Linear Graph Theory for Coordination of Directional Overcurrent Relays; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Giannelos, S.; Borozan, S.; Strbac, G. A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies 2022, 15, 3334. [Google Scholar] [CrossRef]
- Urdaneta, A.J.; Nadira, R.; Perez Jimenez, L.G. Optimal coordination of directional overcurrent relays in interconnected power systems. IEEE Trans. Power Deliv. 1988, 3, 903911. [Google Scholar] [CrossRef]
- Urdaneta, A.J.; Restrepo, H.; Marquez, S.; Sanchez, J. Coordination of directional relay timing using linear programming. IEEE Trans. Power Deliv. 1996, 11, 122–129. [Google Scholar] [CrossRef]
- Elrefaie, H.B.; Irving, M.R.; Zitouni, S. A parallel processing algorithm for co-ordination of directional overcurrent relays in interconnected power systems. IEEE Proc. Gener. Transm. Distrib. 1994, 141, 514–520. [Google Scholar] [CrossRef]
- Birla, D.; Maheshwari, R.P.; Gupta, H.O. A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach. IEEE Trans. Power Deliv. 2006, 21, 1176–1182. [Google Scholar] [CrossRef]
- Bedekar, P.P.; Bhide, S.R. Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Tran. Power Deliv. 2010, 26, 109–119. [Google Scholar] [CrossRef]
- Yu, J.; Kim, C.; Rhee, S. Oppositional JAYA algorithm with distance-adaptive coefficient in solving directional over current relays coordination problem. IEEE Access 2019, 7, 150729–150742. [Google Scholar] [CrossRef]
- Amraee, T. Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans. Power Deliv. 2012, 27, 1415–1422. [Google Scholar] [CrossRef]
- Singh, M.; Panigrahi, B.K.; Abhyankar, A.R. Optimal coordination of directional over-current relays using teaching learning-based optimization (TLBO) algorithm. Int. J. Electr. Power Energy Syst. 2013, 50, 33–41. [Google Scholar] [CrossRef]
- Khurshaid, T.; Wadood, A.; Gholami Farkoush, S.; Kim, C.; Yu, J.; Rhee, S. Improved firefly algorithm for the optimal coordination of directional overcurrent relays. IEEE Access 2019, 7, 78503–78514. [Google Scholar] [CrossRef]
- Chelliah, T.R.; Thangaraj, R.; Allamsetty, S.; Pant, M. Coordination of directional overcurrent relays using opposition-based chaotic differential evolution algorithm. Int. J. Electr. Power Energy Syst. 2014, 55, 341–350. [Google Scholar] [CrossRef]
- Mansour, M.M.; Mekhamer, S.F.; El-Kharbawe, N. A modified particle swarm optimizer for the coordination of directional overcurrent relays. IEEE Trans. Power Deliv. 2007, 22, 1400–1410. [Google Scholar] [CrossRef]
- Hussain, M.H.; Musirin, I.; Abidin, A.F.; Rahim, S.R. A Solving directional overcurrent relay coordination problem using artificial bees colony. Int. J. Electr. Electron. Sci. Eng. 2014, 8, 705–710. [Google Scholar]
- Albasri, F.A.; Alroomi, A.R.; Talaq, J.H. Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans. Power Deliv. 2015, 30, 1810–1820. [Google Scholar] [CrossRef]
- Khurshaid, T.; Wadood, A.; Gholami Farkoush, S.; Yu, J.; Kim, C.; Rhee, S. An improved optimal solution for the directional overcurrent relays coordination using hybridized whale optimization algorithm in complex power systems. IEEE Access 2019, 7, 90418–90435. [Google Scholar] [CrossRef]
- Saha, D.; Datta, A.; Das, P. Optimal coordination of directional overcurrent relays in power systems using symbiotic organism search optimization technique. IET Gener. Transm. Distrib. 2016, 10, 2681–2688. [Google Scholar] [CrossRef]
- Korashy, A.; Kamel, S.; Youssef, A.-R.; Jurado, F. Modified water cycle algorithm for optimal direction overcurrent relays coordination. Appl. Soft Comput. 2019, 74, 10–25. [Google Scholar] [CrossRef]
- Hatata, A.Y.; Lafi, A. Ant lion optimizer for optimal coordination of directional overcurrent relays in distribution systems containing DGs. IEEE Access 2018, 6, 72241–72252. [Google Scholar] [CrossRef]
- Singh, M.; Panigrahi, B.K.; Abhyankar, A.R.; Das, S. Optimal coordination of directional over-current relays using informative differential evolution algorithm. J. Comput. Sci. 2014, 5, 269–276. [Google Scholar] [CrossRef]
- Alipour, M.; Teimourzadeh, S.; Seyedi, H. Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evol. Comput. 2015, 23, 40–49. [Google Scholar] [CrossRef]
- Damchi, Y.; Dolatabadi, M.; Mashhadi, H.R.; Sadeh, J. MILP approach for optimal coordination of directional overcurrent relays in interconnected power systems. Electr. Power Syst. Res. 2018, 158, 267–274. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Zellagui, M.; Abido, M.A. Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. Appl. Soft Comput. 2017, 54, 267–283. [Google Scholar] [CrossRef]
- Sueiro, J.A.; Diaz-Dorado, E.; Miguez, E.; Cidras, J. Coordination of directional overcurrent relay using evolutionary algorithm and linear programming. Int. J. Electr. Power Energy Syst. 2012, 42, 299–305. [Google Scholar] [CrossRef]
- Alam, M.N.; Das, B.; Pant, V. A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Electr. Power Syst. Res. 2015, 128, 39–52. [Google Scholar] [CrossRef]
- Habib, K.; Lai, X.; Wadood, A.; Khan, S.; Wang, Y.; Xu, S. An improved technique of hybridization of PSO for the optimal coordination of directional overcurrent protection relays of IEEE bus system. Energies 2022, 15, 3076. [Google Scholar] [CrossRef]
- Habib, K.; Lai, X.; Wadood, A.; Khan, S.; Wang, Y.; Xu, S. Hybridization of PSO for the optimal coordination of directional overcurrent protection relays. Electronics 2022, 11, 180. [Google Scholar] [CrossRef]
- Irfan, M.; Wadood, A.; Khurshaid, T.; Khan, B.M.; Kim, K.-C.; Oh, S.-R.; Rhee, S.-B. An optimized adaptive protection scheme for numerical and directional overcurrent relay coordination using Harris hawk optimization. Energies 2021, 14, 5603. [Google Scholar] [CrossRef]
- Wadood, A.; Farkoush, S.G.; Khurshaid, T.; Yu, J.-T.; Kim, C.-H.; Rhee, S.-B. Application of the JAYA algorithm in solving the problem of the optimal coordination of overcurrent relays in single-and multi-loop distribution systems. Complexity 2019, 2019, 5876318. [Google Scholar] [CrossRef]
- Wadood, A.; Khurshaid, T.; Farkoush, S.G.; Yu, J.; Kim, C.-H.; Rhee, S.-B. Nature-inspired whale optimization algorithm for optimal coordination of directional overcurrent relays in power systems. Energies 2019, 12, 2297. [Google Scholar] [CrossRef]
- Wadood, A.; Khurshaid, T.; Farkoush, S.G.; Kim, C.H.; Rhee, S.B. A bio-inspired rooted tree algorithm for optimal coordination of overcurrent relays. In Proceedings of the Intelligent Technologies and Applications: First International Conference, INTAP 2018, Bahawalpur, Pakistan, 23–25 October 2018; Revised Selected Papers 1. Springer: Singapore, 2019. [Google Scholar]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S. A many-objective marine predators algorithm for solving manyobjective optimal power flow problem. Appl. Sci. 2022, 12, 11829. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S. Multi-objective optimal power flow problems based on slime mould algorithm. Sustainability 2021, 13, 7448. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S.; Chatthaworn, R.; Watson, N. A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems. Energies 2018, 11, 2270. [Google Scholar] [CrossRef]
- Giannelos, S.; Bellizio, F.; Strbac, G.; Zhang, T. Machine learning approaches for predictions of CO2 emissions in the building sector. Electr. Power Syst. Res. 2024, 235, 110735, ISSN 0378-7796. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, Y.; Xu, J. Based on Big Data: The Analysis of Asian Options Compared with European Options in Chinese Market. In Proceedings of the 2nd International Conference on Big Data Economy and Information Management (BDEIM), Sanya, China, 3–5 December 2021; pp. 76–80. [Google Scholar] [CrossRef]
- Noghabi, A.S.; Mashhadi, H.R.; Sadeh, J. Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming. IEEE Trans. Power Deliv. 2010, 25, 1348–1354. [Google Scholar] [CrossRef]
- Saleh, K.A.; Zeineldin, H.H.; Al-Hinai, A.; El-Saadany, E.F. Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic. IEEE Trans. Power Syst. 2014, 30, 537–544. [Google Scholar] [CrossRef]
- Zeineldin, H.H.; El-Saadany, E.F.; Salama, M.M.A. Optimal coordination of overcurrent relays using a modified particle swarm optimization. Electr. Power Syst. Res. 2006, 76, 988–995. [Google Scholar] [CrossRef]
- Khurshaid, T.; Wadood, A.; Farkoush, S.G.; Kim, C.-H.; Cho, N.; Rhee, S.-B. Modified particle swarm optimizer as optimization of time dial settings for coordination of directional overcurrent relay. J. Electr. Eng. Technol. 2019, 14, 55–68. [Google Scholar] [CrossRef]
- Ayyarao, T.S.; Ramakrishna, N.S.S.; Elavarasan, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Alatas, B. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Wadood, A.; Gholami Farkoush, S.; Khurshaid, T.; Kim, C.-H.; Yu, J.; Geem, Z.W.; Rhee, S.-B. An Optimized Protection Coordination Scheme for the Optimal Coordination of Overcurrent Relays Using a Nature-Inspired Root Tree Algorithm. Appl. Sci. 2018, 8, 1664. [Google Scholar] [CrossRef]
- Bedekar, P.P.; Bhide, S.R.; Kale, V. Optimum Coordination of Overcurrent Relay Timing Using Simplex Method. Electr. Power Compon. Syst. 2010, 38, 1175–1193. [Google Scholar] [CrossRef]
- Gokhale, S.S.; Kale, V.S. An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination. Int. J. Electr. Power Energy Syst. 2016, 78, 336–342. [Google Scholar] [CrossRef]
- Bedekar, P.P.; Bhide, S.R. Optimum coordination of overcurrent relay timing using continuous genetic algorithm. Expert Syst. Appl. 2011, 38, 11286–11292. [Google Scholar] [CrossRef]
- Wadood, A.; Kim, C.-H.; Khurshiad, T.; Farkoush, S.G.; Rhee, S.-B. Application of a continuous particle swarm optimization (CPSO) for the optimal coordination of overcurrent relays considering a penalty method. Energies 2018, 11, 869. [Google Scholar] [CrossRef]
- Bedekar, P.P.; Bhide, S.R.; Kale, V.S. Optimum coordination of overcurrent relays in distribution system using genetic algorithm. In Proceedings of the International Conference on Power Systems (ICPS’09), Kharagpur, India, 27–29 December 2009. [Google Scholar]
Fault Location | Primary Relay | Backup Relay |
---|---|---|
W | 3, 7 | --, 4 |
X | 4, 8 | (1, 2), 3 |
Y | 1, 5 | --, 8 |
Z | 2, 6 | --, 8 |
No. of Relays | Current Transformer (CT) Ratio | Plug Setting (PS) |
---|---|---|
R1 | 300:1 | 50% |
R2 | 300:1 | 50% |
R3 | 300:1 | 50% |
R4 | 300:1 | 100% |
R5 | 100:1 | 100% |
R6 | 100:1 | 100% |
R7 | 300:1 | 100% |
R8 | 100:1 | 100% |
Fault Location | Relay | ||||||||
---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | ||
W | 0.731 | 0.731 | 3.655 | 1.462 | -- | -- | 1.462 | - | |
18.3606 | 18.3606 | 3.4494 | 18.3606 | -- | -- | 18.3606 | - | ||
X | 1.8275 | 1.8275 | 1.462 | 3.655 | -- | -- | -- | 4.386 | |
5.3311 | 5.3311 | 6.4543 | 5.3311 | -- | -- | -- | 4.6651 | ||
Y | 7.31 | 2.193 | 0.731 | -- | 8.772 | -- | -- | 2.193 | |
2.5402 | 4.6651 | 18.3606 | -- | 3.154 | -- | -- | 8.8443 | ||
Z | 2.193 | 7.31 | 0.731 | -- | -- | 8.772 | -- | 2.193 | |
4.6651 | 2.5402 | 18.3606 | -- | -- | 3.154 | -- | 8.8443 |
TMS | SM [49] | HPSO [33] | WSO |
---|---|---|---|
TMS (R1) | 0.0734 | 0.0734 | 0.0734 |
TMS (R2) | 0.0734 | 0.0734 | 0.0734 |
TMS (R3) | 0.0555 | 0.0538 | 0.0538 |
TMS (R4) | 0.0359 | 0.0359 | 0.0359 |
TMS (R5) | 0.03171 | 0.025 | 0.0250 |
TMS (R6) | 0.03171 | 0.025 | 0.0250 |
TMS (R7) | 0.025 | 0.025 | 0.0250 |
TMS (R8) | 0.03392 | 0.0315 | 0.0315 |
9.3912 | 9.2155 | 9.2154 |
No. of Relays | Plug Setting | Current Transformer (CT) Ratio |
---|---|---|
R1 | 1 | 1000:1 |
R2 | 1 | 300:1 |
R3 | 1 | 1000:1 |
R4 | 1 | 600:1 |
R5 | 1 | 600:1 |
R6 | 1 | 600:1 |
Fault Location | Primary Relay | Backup Relay |
---|---|---|
W | 1, 2 | --, 4 |
X | 3, 4 | 1, 5 |
Y | 5, 6 | --, 3 |
Z | 3, 5 | 1, -- |
Faulty Location | Relay | ||||||
---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | ||
W | 6.579 | 3.13 | -- | 1.565 | 1.565 | -- | |
3.646 | 6.065 | -- | 15.55 | 15.55 | -- | ||
X | 2.193 | -- | 2.193 | 2.193 | 2.193 | -- | |
8.844 | -- | 8.844 | 8.844 | 8.844 | -- | ||
Y | 1.096 | -- | 1.096 | -- | 5.482 | 1.827 | |
75.91 | -- | 75.91 | -- | 4.044 | 11.539 | ||
Z | 1.644 | -- | 1.644 | -- | 2.741 | -- | |
13.99 | -- | 13.99 | -- | 6.872 | -- |
TMS | CFA [50] | FA [50] | CGA [51] | CPSO [52] | HPSO [33] | WSO |
---|---|---|---|---|---|---|
TMS (R1) | 0.027 | 0.027 | 0.0765 | 0.0589 | 0.0588 | 0.0589 |
TMS (R2) | 0.221 | 0.13 | 0.034 | 0.0250 | 0.0249 | 0.0250 |
TMS (R3) | 0.025 | 0.025 | 0.0339 | 0.0250 | 0.0251 | 0.0250 |
TMS (R4) | 0.025 | 0.025 | 0.036 | 0.0290 | 0.0289 | 0.0290 |
TMS (R5) | 0.363 | 0.489 | 0.0711 | 0.0630 | 0.0629 | 0.0630 |
TMS (R6) | 0.029 | 0.0285 | 0.0294 | 0.0250 | 0.0251 | 0.0250 |
14.39 | 16.25 | 15.88 | 11.87 | 11.86 | 11.87 |
Fault Location | Total Fault Current | Primary Relay | Backup Relay |
---|---|---|---|
U | 2330 | 1, 2, 8 | --, --, 3 |
V | 1200 | 3, 4 | --, 1, 2 |
W | 1400 | 3, 7 | --, 4 |
X | 1400 | 4, 8 | 1, 2, 3 |
Y | 2800 | 1, 5 | --, 8 |
Z | 2800 | 2, 6 | --, 8 |
No. of Relays | Plug Setting | Current Transformer (CT) Ratio |
---|---|---|
R1 | 1 | 100:1 |
R2 | 1 | 100:1 |
R3 | 1 | 100:1 |
R4 | 1 | 100:1 |
R5 | 1 | 100:1 |
R6 | 1 | 100:1 |
R7 | 1 | 100:1 |
R8 | 1 | 100:1 |
Fault Location | Relay | ||||||||
---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | ||
U | Irelay | 10 | 10 | 3.3 | -- | -- | -- | -- | 3.3 |
2.971 | 2.971 | 5.749 | -- | -- | -- | -- | 5.749 | ||
V | Irelay | 3.45 | 3.45 | 5.1 | 6.9 | -- | -- | -- | -- |
5.584 | 5.584 | 4.227 | 3.551 | -- | -- | -- | -- | ||
W | Irelay | 2 | 2 | 10 | 4 | -- | -- | 4 | -- |
10.035 | 10.035 | 2.971 | 4.9804 | -- | -- | 4.9804 | -- | ||
X | Irelay | 5 | 5 | 4 | 10 | -- | -- | -- | 4 |
4.281 | 4.281 | 4.9804 | 2.971 | -- | -- | -- | 4.9804 | ||
Y | Irelay | 20 | 6 | 2 | -- | 8 | -- | -- | 2 |
2.267 | 3.837 | 10.035 | -- | 3.297 | -- | - | 10.035 | ||
Z | Irelay | 6 | 20 | 2 | -- | -- | 8 | -- | 2 |
3.837 | 2.267 | 10.035 | -- | -- | 3.297 | -- | 10.035 |
TMS | RTO [48] | GA [53] | JAYA [35] | WSO |
---|---|---|---|---|
TMS (R1) | 0.02521 | 0.2975 | 0.2412 | 0.2411 |
TMS (R2) | 0.02521 | 0.2975 | 0.2412 | 0.2000 |
TMS (R3) | 0.2000 | 0.2270 | 0.1903 | 0.1902 |
TMS (R4) | 0.1510 | 0.1730 | 0.1455 | 0.1455 |
TMS (R5) | 0.0303 | 0.0607 | 0.0303 | 0.0303 |
TMS (R6) | 0.0303 | 0.0607 | 0.0303 | 0.0303 |
TMS (R7) | 0.0250 | 0.0402 | 0.0250 | 0.0250 |
TMS (R8) | 0.0800 | 0.1129 | 0.0698 | 0.0697 |
26.681 | 31.883 | 24.953 | 24.1046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, B.M.; Wadood, A.; Khan, S.; Ali, H.; Khurshaid, T.; Iqbal, A.; Kim, K.C. Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays. Energies 2024, 17, 5542. https://doi.org/10.3390/en17225542
Khan BM, Wadood A, Khan S, Ali H, Khurshaid T, Iqbal A, Kim KC. Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays. Energies. 2024; 17(22):5542. https://doi.org/10.3390/en17225542
Chicago/Turabian StyleKhan, Bakht Muhammad, Abdul Wadood, Shahbaz Khan, Husan Ali, Tahir Khurshaid, Asim Iqbal, and Ki Chai Kim. 2024. "Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays" Energies 17, no. 22: 5542. https://doi.org/10.3390/en17225542
APA StyleKhan, B. M., Wadood, A., Khan, S., Ali, H., Khurshaid, T., Iqbal, A., & Kim, K. C. (2024). Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays. Energies, 17(22), 5542. https://doi.org/10.3390/en17225542