A Comparative Analysis of Efficiency and Losses in a 5 kW Hybrid and Full-SiC Converter, for PV Applications in Austria
Abstract
:1. Introduction
2. The Hybrid Converter and the Full-SiC Inverter: Topology
3. Simulation Studies
4. Experimental Setup
5. Experimental Results
5.1. Boost Converter
5.2. NPC
5.3. Auxiliary Power
5.4. Overall Converter Efficiency
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Su, W.; Tai, X.; Sun, W.; Gu, L.; Wen, X. Development of an inverter using Hybrid SIC power module for EV/HEV applications. In Proceedings of the 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Raj, J.S.S.; Sivaraman, P.; Prem, P.; Matheswaran, A. A Wide Band Gap semiconductor material for electric vehicle charger. Mater. Today Proc. Int. Conf. Adv. Mater. Res. 2021, 45, 852–856. [Google Scholar]
- Gonzalez, J.O.; Wu, R.; Agbo, S.N.; Alatise, O. Robustness and Reliability review of Si and SiC FET devices for more-electric-aircraft applications. Microelectron. Reliab. 2019, 100–101, 113324. [Google Scholar] [CrossRef]
- Brando, G.; Dannier, A.; Del Pizzo, A.; Coppola, M. An All-Electric-Aircraft Tailored SiC-Based Power Factor Correction Converter with Adaptive DC-Link Regulator. Energies 2017, 10, 1227. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Willich, C.; Kallo, J. Design and Demonstration of a 540 V/28 V SiC-Based Resonant DC–DC Converter for Auxiliary Power Supply in More Electric Aircraft. Electronics 2022, 11, 1382. [Google Scholar] [CrossRef]
- Diao, F.; Du, X.; Ma, Z.; Wu, Y.; Guo, F.; Li, Y.; Zhao, Z.; Zhao, Y. A Megawatt-Scale Si/SiC Hybrid Multilevel Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 4095–4107. [Google Scholar] [CrossRef]
- Ho, C.N.M.; Breuninger, H.; Pettersson, S.; Escobar, G.; Serpa, L.A.; Coccia, A. Practical Design and Implementation Procedure of an Interleaved Boost Converter Using SiC Diodes for PV Applications. IEEE Trans. Power Electron. 2012, 27, 2835–2845. [Google Scholar] [CrossRef]
- Mouli, G.R.C.; Schijffelen, J.H.; Bauer, P.; Zeman, M. Design and Comparison of a 10-kW Interleaved Boost Converter for PV Application Using Si and SiC Devices. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 610–623. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Wang, M.; Hassan, M.A.S.; Ullah, I. Power Loss Model and Efficiency Analysis of Three-Phase Inverter Based on SiC MOSFETs for PV Applications. IEEE Access 2019, 7, 75768–75781. [Google Scholar] [CrossRef]
- Öztürk, S.; Canver, M.; Çadırcı, I.; Ermiş, M. All SiC Grid-Connected PV Supply with HF Link MPPT Converter: System De-sign Methodology and Development of a 20 kHz, 25 kVA Prototype. Electronics 2018, 7, 85. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Xie, R.; Shi, Y.; Li, H. A 60-kW 3-kW/kg Five-Level T-Type SiC PV Inverter With 99.2% Peak Efficiency. IEEE Trans. Ind. Electron. 2017, 64, 9144–9154. [Google Scholar] [CrossRef]
- Anthon, A.; Zhang, Z.; Andersen, M.A.; Holmes, D.G.; McGrath, B.; Teixeira, C.A. The Benefits of SiC mosfets in a T-Type Inverter for Grid-Tie Applications. IEEE Trans. Power Electron. 2017, 32, 2808–2821. [Google Scholar] [CrossRef]
- Alhuwaishel, F.M.; Allehyani, A.K.; Al-Obaidi, S.A.S.; Enjeti, P.N. A Medium-Voltage DC-Collection Grid for Large-Scale PV Power Plants With Interleaved Modular Multilevel Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3434–3443. [Google Scholar] [CrossRef]
- Stevanović, B.; Serrano, D.; Vasić, M.; Alou, P.; Oliver, J.A.; Cobos, J.A. Highly Efficient, Full ZVS, Hybrid, Multilevel DC/DC Topology for Two-Stage Grid-Connected 1500-V PV System With Employed 900-V SiC Devices. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 811–832. [Google Scholar] [CrossRef]
- Stecca, M.; Tan, C.; Xu, J.; Soeiro, T.B.; Bauer, P.; Palensky, P. Hybrid Si/SiC Switch Modulation With Minimum SiC MOSFET Conduction in Grid Connected Voltage Source Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4275–4289. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Xu, D. Design of Low Inductance SiC-MOS/Si-IGBT Hybrid Module for PV Inverters. IEEE Open J. Power Electron. 2022, 3, 942–954. [Google Scholar] [CrossRef]
- Barater, D.; Concari, C.; Buticchi, G.; Gurpinar, E.; De, D.; Castellazzi, A. Performance Evaluation of a Three-Level ANPC Photovoltaic Grid-Connected Inverter With 650-V SiC Devices and Optimized PWM. IEEE Trans. Ind. Appl. 2016, 52, 2475–2485. [Google Scholar] [CrossRef]
- Eskilson, T.; Jehle, A.; Schmidt, P.; Makoschitz, M.; Baumgartner, F. Identifying the potential of SiC technology for PV inverters. In Proceedings of the 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe), Aalborg, Denmark, 4–8 September 2023. [Google Scholar]
- Jehle, A.; Baumgartner, F.; Heinzelmann, A.; Carigiet, F.; Schmidt, P.; Baumann, P. Schlussbericht: Optimierter SiC PV-Wechselrichter; ARAMIS: Administrative Research Actions Management Information System: Winterthur, Switzerland, 2024; Available online: https://www.aramis.admin.ch/Default?DocumentID=71550&Load=true (accessed on 9 April 2024).
- Fechner, H.; Tabakovic, M.; Leonhartsberger, K. National Survey Report of PV Power Applications in Austria 2014. 2014. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/National_Survey_Report_of_PV_Power_Applications_in_Austria_2014.pdf (accessed on 15 November 2023).
- Gut zu wissen über Erneuerbare Energie. Available online: https://energie.gv.at/ (accessed on 15 November 2023).
- Lindig, S.; Curran, A.; Rath, K.; Khalilnejad, A.; Moser, D.; French, R.H.; Wieser, R. OSF. Available online: https://osf.io/vtr2s/ (accessed on 5 June 2024).
- Biermayr, P.; Dißauer, C.; Eberl, M.; Enigl, M.; Fechner, H.; Fürnsinn, B.; Jaksch-Fliegenschnee, M.; Leonhartsberger, K.; Moidl, S.; Prem, E.; et al. Innovative Energietechnologien in Österreich Marktentwicklung 2020-Federal Ministry Republic of Austria. 2017. Available online: https://nachhaltigwirtschaften.at/resources/iea_pdf/marktentwicklung-2020_web.pdf (accessed on 15 November 2023).
Hybrid Converter | Full-SiC Converter | |
---|---|---|
Boost Converter | Infineon DF160R12W2H3F_B11 | Infineon DF23MR12W1M1_B11 |
NPC Inverter | Infineon FS3L50R07W2H3F_B11 | Microchip MSCSM70TLM44C3AG |
Inductor | Inductance (μH) | RDC (mΩ) | RAC @ 50 Hz (mΩ) | RAC @ 20 kHz (Ω) | Resonant Frequency (kHz) |
---|---|---|---|---|---|
Boost | 812 | 29 | 35 | 1.181 | 500 |
Ferrite Grid | 3 | - | <1 | 0.001 | >50,000 |
Main Grid | 1000 | 35 | 70 | 2.302 | 550 |
All Power Figures Are in W | Hybrid Converter | Full-SiC Converter |
---|---|---|
Heatsink Fan | 3.12 | 4.92 |
Boost Inductor Fan | 2.64 | 2.4 |
Relays | 7.68 | 3.84 |
Total Known | 13.44 | 11.16 |
Hybrid Converter | Full-SiC Converter | ||||||||
---|---|---|---|---|---|---|---|---|---|
162.34 | 162.35 | 162.36 | 162.4 | 163.178 | 162.605 | 162.245 | 161.34 | ||
593.93 | 594.28 | 596.3 | 602.12 | 604.56 | 601.376 | 598.222 | 592.79 | ||
713.01 | 1295 | 2543.24 | 3747.51 | 713.25 | 1294.82 | 2544.98 | 3748.57 | ||
684.07 | 1252.33 | 2474.17 | 3641.63 | 695.39 | 1270.74 | 2511.16 | 3698.86 | ||
Efficiency | 0.9594 | 0.9673 | 0.9728 | 0.9717 | Efficiency | 0.9750 | 0.9814 | 0.9867 | 0.9867 |
0.1368 | 0.2505 | 0.4948 | 0.7283 | 0.1391 | 0.2541 | 0.5022 | 0.7398 | ||
28.94 | 42.36 | 69.07 | 105.88 | 17.86 | 24.09 | 33.82 | 49.71 |
Hybrid Converter | Full-SiC Converter | ||||||||
---|---|---|---|---|---|---|---|---|---|
599.34 | 799.80 | 799.85 | 718.98 | 600.067 | 800.8 | 799.353 | 719.04 | ||
172.44 | 230.58 | 231.05 | 207.38 | 172 | 230 | 230 | 206 | ||
1028.70 | 1824.84 | 3567.63 | 4328.11 | 1031.24 | 1822.73 | 3562.97 | 4325.62 | ||
994.53 | 1778.72 | 3494.97 | 4238.64 | 1017.6 | 1798.9 | 3528.9 | 4283.5 | ||
Efficiency | 0.9668 | 0.9747 | 0.9796 | 0.9793 | Efficiency | 0.9868 | 0.9869 | 0.9904 | 0.9903 |
0.1989 | 0.3557 | 0.699 | 0.8477 | 0.2035 | 0.3598 | 0.7058 | 0.8567 | ||
34.17 | 46.12 | 72.66 | 89.47 | 13.64 | 23.83 | 34.07 | 42.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, R.; Eskilson, T.; Biswas, S.; Makoschitz, M. A Comparative Analysis of Efficiency and Losses in a 5 kW Hybrid and Full-SiC Converter, for PV Applications in Austria. Energies 2024, 17, 5600. https://doi.org/10.3390/en17225600
Chakraborty R, Eskilson T, Biswas S, Makoschitz M. A Comparative Analysis of Efficiency and Losses in a 5 kW Hybrid and Full-SiC Converter, for PV Applications in Austria. Energies. 2024; 17(22):5600. https://doi.org/10.3390/en17225600
Chicago/Turabian StyleChakraborty, Rupak, Troy Eskilson, Sumanta Biswas, and Markus Makoschitz. 2024. "A Comparative Analysis of Efficiency and Losses in a 5 kW Hybrid and Full-SiC Converter, for PV Applications in Austria" Energies 17, no. 22: 5600. https://doi.org/10.3390/en17225600
APA StyleChakraborty, R., Eskilson, T., Biswas, S., & Makoschitz, M. (2024). A Comparative Analysis of Efficiency and Losses in a 5 kW Hybrid and Full-SiC Converter, for PV Applications in Austria. Energies, 17(22), 5600. https://doi.org/10.3390/en17225600