A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology
Abstract
:1. Introduction
- the mineral carbonation of natural resources and wastes;
- the naturally occurring carbonation processes of concrete;
- the production of sodium bicarbonate (NaHCO3);
- the CO2 treatment of concrete;
- the carbonation of bauxite residues.
2. Mineral Carbonation—Fundamentals of the Process
- grinding—the rate of the carbonation reaction increases with an increase in surface area, and a reduction in grain size results in an increase in permeation by 10 to 90%;
- magnetic separation—as a result of this separation, iron compounds are removed, so the reaction rate increases;
- thermal treatment—the carbonation of gaseous CO2 is very slow at room temperature, but thermal treatment can accelerate the reaction;
- surface activation techniques—the specific surface area of the mineral is increased by applying acids or steam.
- CO2—aqueous suspension of mineral resources (natural or waste);
- CO2—raw mineral materials (natural or waste);
- flue gases—aqueous suspension of raw mineral materials (natural or waste);
- flue gases—raw mineral materials (natural or waste).
- HCl;
- calcium hydroxide—Ca(OH)2;
- a double leaching process;
- acetic acid;
- MgCl2-3.5H2O;
- NaOH;
- NH4Cl;
- seawater.
- diffusion of CO2 into a suspension;
- solvation of CO2(g) to CO2(aq);
- formation of H2CO3;
- dissociation of H2CO3 into H+, HCO3−, and CO32−;
- migration of Ca2+ ions from the sorbent phases into a solution;
- nucleation of carbonates;
- precipitation of carbonates.
3. Factors Influencing the Mineral Carbonation Process
3.1. Fly Ash Type
Fly Ash Type | CaO/Ca Content | Process Characterisation | Reference | ||||
---|---|---|---|---|---|---|---|
Temperature | Duration | Other Process Parameters | Results of process | ||||
Suspension—CO2 | Maximum conversion: 5.2 moles CO2/kg FA | [40] | |||||
Semi-dry reaction conditions L/S = 0.03–0.36 dm3/kg | Carbonation efficiency: 13.1–52.8%; cumulative CO2 uptake: 2.2–4.8 mmol/g | [43] | |||||
Aqueous carbon sequestration process | 1; 4 h | Results of process: amorphous calcium carbonate | [44] | ||||
CaO—29.7% | Suspension—CO2 | 25; 60 °C | 30–60 min. | p: 0.1 MPa | CO2 capture capacity: 26.4 kg CO2/Mg FA | [45] | |
CaO—29.6; 19.6; 24.7; 64.7% | Suspension—flue gas (CO2; SO2; NOx) | 200–600 °C waters | 1–6 h | p: 0.1; 0.2 MPa | Carbonation of ash slurries and carbonation yield products: 19–37% | [46] | |
Suspension—CO2 L/S = 0.1−0.7 | 40 °C | 24 h | p: 3.0 MPa | FA can store up to 23 kg CO2/Mg FA | [47] | ||
Suspension (brine and water)—CO2 | 40 °C | 48 h | p: 3.0 MPa | Sequestration: 10.03, 19.93, and 25.66 kg CO2/Mg FA for water saturation; 10.60, 20.50, and 26.23 kg CO2/Mg FA for brine saturation; sequestration capacity: 7.66 kg CO2/Mg FA | [48] | ||
Suspension—CO2 S/L = 0.8; 1.0; 1.25; 2.5 | CO2 absorption: 1.4–8.8 g CO2/100 g | [49] | |||||
Suspension—CO2 L/S = 0.7:1; 0.8:1 | CO2 absorption: 4.71–9.33 g CO2/100 g | [50] | |||||
Fly ash—CO2 | Best carbonation efficiency: 10.5% | [51] | |||||
Ca—24.85% | Suspension—CO2 | 30–80 °C; optimum—75 °C | 10–56 min. Optimal —60 min. | - | %CO2 capture: max. 19.6 % efficiency: max. 78.62 | [52] | |
CaO—8.28% | Suspension—CO2 L/S = 3~7 | 30 °C | 0.25 h | p: 0.05, 0.1, 0.15, 0.2, 0.25 | Max. sequestration capacity: 67.92 g/kg | [35] | |
CaO—9.4; 32.4% | One- or five-cycle leaching; carbonation of ammonium chloride | 25; 40; 60; 80° C | 10–60 min. | Carbonation percentage of Mg and Ca decreased with increasing cycle number | [53] | ||
CaO—15.0% | Slurries of Ca–FA-AEW | 86 d | Sequestration efficiency: up to 32.3 g CO2/kg | [54] | |||
CaO—38.77% | Suspension—CO2 L/S = 10 l/kg | 25; 50; 100; 150; 200 °C | 24 h | p: 0.1–1.5 | Sequestration efficiency: 212.57 kg CO2/Mg FA | [55] | |
Class F | CaO—8.80% | Suspension—CO2 L/S = 6 | 30 °C | 900 s | p: 0.20 MPa | CO2 sequestration: 54.9 g/kg; initial rate of CO2 sequestration: 0.035 mol/kg/s | [56] |
Class F | CaO—2.08% | Suspension (fly ash + cement)—CO2 | 20 min. | Max. CO2 uptake efficiency: 1.39 mg CO2/g fly ash + cement | [57] | ||
CaO—18.0% | Suspension—CO2 | p: atmospheric | CO2 sequestration capacity: 81.70 g CO2/kg fly ash; CO2 sequestration capacity of treated fly ash: 81.44 g CO2/kg FA | [58] | |||
high-alkali coal | CaO—36.30% | Fly ash: CaO—3:1 ratio carbonation furnace flue gas (10% CO2 and 90% N2) | 750 °C | 1 h | Analytical reagents: KOH, NaOH, Fe(OH)3, NaCl, KCl, Fe(Cl)3; doping ratios: 10%; 20%; 30% | Carbonation conversion after 1 h = range from about 60% to almost 100% | [59] |
CaO—13.4% | Suspension—CO2 | 40; 140 °C | 120 min. | p: 0.2 MPa | 103.0 and 102.0 g CO2/kg FA | [60] | |
CaO—16.4% | 43.2 g CO2/kg FA | ||||||
FBC | CaO—15.5% | Suspension—CO2 S/L = 1.0 | 28 d | CO2 storage capacity: 15.7%; degree of CO2 binding: 11.4% | [11] |
Fly Ash Type | CaO/Ca Content | Process Characterisation | Reference | ||||
---|---|---|---|---|---|---|---|
Temperature | Duration | Other Process Parameters | Results of the process | ||||
Suspension—CO2 | Carbonation efficiency of 83.5%—final CO2 3.2%, i.e., 32 g CO2/kg FA | [61] | |||||
CaO—3.72 % | carbonation/zeolitization | 1 Mg–45 kg of CO2 79% carbonation efficiency | [62] | ||||
Suspension—CO2; 0.5 M NaHCO3 | 4 h | Results of the process: amorphous calcium carbonate | [44] | ||||
Suspension—CO2 | Aqueous carbonation capacity to sequester CO2: 26 kg CO2/Mg FA | [63] | |||||
Accelerated mineral carbonation: 3.86 ± 1.28 CaCO3 | [64] | ||||||
Solid—CO2 | 0.29–4.29 mmol CO2 capture/g FA | [65] | |||||
Solid—CO2 | 25 °C 45 °C | 42.9; 52.3; 68.7; 106.7; 163.1; 177.0; 209.1 min. 24.9; 54.0; 79.5; 96.0; 101.1; 111.3; 134.8 min. | p: 0.1; 0.25; 0.5; 0.75; 1;0; 1.25; 1.5 MPa | CO2 uptake: 18.2 wt. %; max. carbonation efficiency: 74% | [30] | ||
Suspension—CO2 | 24.9 | 10.71–27.05 kg CO2/Mg FA | [48] | ||||
Suspension—CO2 | CO2 absorption: 0.42–1.31 g CO2/100 g | [66] | |||||
[11] | |||||||
CaO—9.198% | CO2—FA/brine slurry S/L = 0.1; 0.5; 1.0 | 30; 90 °C | p: 4.0 MPa | CO2 sequestration potential: 36.47 and 71.84 kg of CO2/Mg FA | [67] | ||
Fly ash brine dispersion—CO2 S/L = 0.1; 0.5; 1.0 | 30; 90 °C | p: 1.0; 4.0 MPa | CO2 content: 2.75–6.5 %wt. | [68] | |||
CaO—7.2% | Indirect aqueous carbonation | 1 M NH4Cl; seawater | CO2 sequestration: 0.008 kg CO2/kg FA | [41] | |||
Ca—42.28 mg/g | Indirect mineral carbonation | 2 h | Gas mixtures: 15% and 33% CO2 | CO2 storage capacity: 31.1 mg CO2/g FA | [69] | ||
CaO—4.74% | Suspension—CO2 S/L = 50–200 g/L; optimum—100 g/L | 25–60 °C optimum—40 °C | 90 min. | (MEA)/N-methyldiethanolamine (MDEA); mixed amine solution (MAS) | Mineralisation efficiency: max. 64.8% | [24] | |
Sonochemically enhanced carbonation | Max. conversion to carbonate: 50.5% | [33] | |||||
CaO—22.75% | Suspension—CO2 L/S = 0.2; 0.3 | 40 °C | CO2 sequestration: 0.2; 0.21% by mass | [25] | |||
Ca—3.44% | Indirect carbonation process L/S = 6.25; 8.9; 12.5; 20; and 25 for 0.06 M HNO3 | HNO3/Ca = 0.44; 0.62; 0.87; 1.4; 1.74 | CO2 uptake efficiency: 0.011 g CO2/g FA | [70] | |||
CaO—6.74% | Solid—CO2 | 30 ± 3°C | 0.5; 1; 2; 3; 4 h; optimum: 1 h | p: 0.2; 0.4; 0.6; 0.8; 1.0 MPa optimum pressure: 0.1 MPa | Max. carbonation capacity: 50.3 g CO2/kg FA | [71] | |
Suspension—CO2 L/S = 2; 5; 10; 15; 20 | 0.5; 1; 2; 3; 4 h; optimum: 2 h | p: 0.2; 0.4; 0.6; 0.8; 1.0 MPa optimum pressure: 0.4 MPa | Max. carbonation capacity: 26.3 g CO2/kg FA | ||||
CaO—6.74% | Solid—flue gas | 31.72; 40; 60; 80; 88.28 °C | 0.5; 1; 2; 3; 4; 5; 6 h | p: 0.257; 1.5; 4.5; 7.5 MPa; optimum pressure: 4.87 MPa | Max. sequestration capacity: 21.03 g of CO2 /kg FA | [72] | |
Suspension—CO2 L/S = 13.35 | 33.92; 62.5; 45; 80; 91.08 °C optimum—61.6 °C | 0–180 min; optimum—50 min. | p: 0.418; 2;0; 4.5; 7.0; 8.583 L/S = 6.0; 1.57; 13.0; 20.0; 24.43 MPa; optimum pressure—0.481 MPa | Max. sequestration capacity: 50.72 g of CO2 /kg | |||
CaO—6.14% | Solid—CO2 L/S ratio of 0.15 H2O and NaOH solutions (1 and 3 M) | 25; 50; 100; 150 °C | 1 h | p: 1.0 MPa | Carbonation efficiency: 43.57% | [73] | |
CaO—9.4% | Suspension—CO2 | 40 °C 140 °C | 120 min. | p: 0.2 MPa | 33.3 g-CO2/kg FA; 93.1 g-CO2/kg FA | [60] | |
CaO—3.20% | Suspension (fly ash + red mud)—CO2 | Ratio of red mud and fly ash ranged from 10:0 to 5:5 | Carbonation capacity: 135.51 g CO2/kg fly ash + red mud | [74] | |||
CaO—1.24% | Solid—supercritical CO2 | 40 °C | 3 h | Hydrothermally activated at 220 °C—30 min. | CO2 mineralization sequestration: 25.03 kg/Mg CO2 mineralization sequestration alter hydrothermal activation: 154.10 kg/Mg | [75] | |
CaO—1.24% | 100; 140; 180; 220 °C | 3 h | p: 2.0 MPa | Adsorption energy of CO2: −66.424 kcal/mol; adsorption energy of CO2 (hot steam): −65.037 kcal/mol | [76] | ||
CaO—4.16% | Fly ash + ground granulated blast furnace slag + alkaline activators + superplasticizer + C12H25SO4Na + H2O2 (alkali activated foam concrete)—CO2 (20%) | 20 ± 2 °C | Relative humidity: 70 ± 5% | Max. CO2 sequestration capacity of alkali activated foam concrete: 26.41 kg/m3 | [77] | ||
CaO—3.36% | Solid—CO2 | 20 °C | 3 d | p: 3.0 MPa | Carbon sequestered: 1.68 g | [78] | |
Suspension—CO2 | Carbon sequestered: 1.83 g | ||||||
CaO—6.01% | Indirect | 0.5; 1.0; 2.0; 4.0; 8.0;16.0 h; 1 d; 2 d; 4 d; 8 d; 16 d | 1 g of dried CFA was reacted in a 250 mL solution with 0.1 mol/L oxalic acid | 1 Mg of reacted fly ash could store over 34 kg of carbon | [79] | ||
CFB fly ash | CaO—28.42% | Solid—CO2 | 300–800 °C | 5; 10; 30; 60 min. | CO2 content: 5%; 10%; 15%; 20%; 100% | Max. CO2 sequestration capacity: 60 g CO2/kg FA; max. sequestration efficiency: 28.74% | [80] |
CFBC fly ash | CaO—24.40% | CO2 sequestration: 1.27; 2.50% | [25] | ||||
CFB fly ash | CaO—33.06% | Suspension—CO2 S/L = 50; 100; 150; 200 | 20; 40; 60; 80°C optimum—60°C | p: 0.1 flue gas—CO2 conc.—14.85% | Carbonation efficiency: 78.17%; CO2 sequestration capacity: 0.128 g CO2/g CFA | [28] | |
CFB fly ash | CaO—28.83% | Suspension— exhaust gases L/S = 10:1 | Ambient | 30 min. | Exhaust gases: 72–78% N2; 12–15% CO2; 6–8% H2O; 3–4% O2; 300–500 ppm SO2; 150–220 ppm NOx; 10–50 ppm CO p: atmospheric | Carbon fixation effect: 58.14 kg CO2/ton for fly ash | [81] |
CFB fly ash | CaO—38.35% | Suspension—CO2 L/S = 3:1 | L/S = 3:1 | [82] | |||
CFB fly ash | CaO—38.42% | Suspension—CO2 L/S = 3:1; 5 | L/S = 3:1; 5 | [83] | |||
CFB fly ash | CaO—7.03% | Suspension—CO2 | 40 °C | 1 h | Liquid-to-solid ratio of 10 mL/g p: 3.0; 5.0; 7.0; 7.1; 7.2; 7.3; 7.4; 7.5; 7.6; 7.7; 7.8; 7.9; 8.0 MPa | Max. CO2 sequestration capacities: 89.3 g/kg | [84] |
CaO—5.02; 5.07; 4.10% | Max. CO2 sequestration capacities: 38.3; 35.5; 13.9 g/kg | ||||||
CFB fly ash | Ca—18.46% | Suspension—CO2 L/S = 10 mL/g | 40 °C | 1 h | p: 1; 3; 5; 7; 8 MPa | Max. carbonation efficiency: ~90% | [85] |
Fly ash from the co-combustion of coal and biomass | CaO—5.17% | Solid—CO2 | Degree of carbonation: 1.51% | [86] |
3.2. Liquid/Solid Ratio (L/S)
3.3. Temperature and Pressure
4. The Effect of Mineral Sequestration on the Leachability of Contaminants
- lowering of the leachate pH;
- changes in solubility due to carbonate precipitation or the formation of oxygen anions;
- lowering the release of selected metals through their sorption by newly formed minerals;
- reduction in matrix porosity due to calcite formation.
5. Fly Ash in CCUS Technology—Product Disposal and Utilisation
- in situ: underground mineral sequestration of CO2 combined with the geological storage of CO2;
- ex situ: aboveground industrial processes;
- end-of-pipe technology (CO2 is converted into solid carbonates that are stored for sequestration);
- process-integrated technology (this applies, for example, to the use of CO2 in the production of construction materials).
6. Conclusions
Future Work
Funding
Conflicts of Interest
Nomenclature
List of Abbreviations | |
FA | Fly ash |
CFBC | Combustion by-product from circulating fluidised bed coal plants |
FBC FA | Fluidised bed combustion fly ash |
L/S | Liquid/solid |
S/L | Solid/liquid |
Max. | Maximum |
AEW | Artificial eutrophic water |
Parameters: | |
p | Pressure (MPa) |
T | Temperature (°C) |
Units: | |
MPa | Megapascals |
g | Grams |
Mg | Megagrams |
cm | Centimetres |
kg/cm2 | Kilograms per square centimetre |
g/cm3 | Grams per centimetre cubed |
°C | Celsius |
h | Hours |
min. | Minutes |
mmol/g | Millimoles per gram |
d | Days |
References
- Masson-Delmotte, V.; Zhai, H.-O.P.P.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; Connors, S.; et al. (Eds.) Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response To; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- United Nations Framework Convention on Climate Change the Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 27 April 2021).
- International Energy Agency. CO2 Emissions in 2023; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Uliasz-Bochenczyk, A.; Mokrzycki, E. Emissions from the Polish Power Industry. Energy 2007, 32, 2370–2375. [Google Scholar] [CrossRef]
- Climate Change 2022 Mitigation of Climate Change|Enhanced Reader. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf (accessed on 17 August 2024).
- Yusuf, M.; Ibrahim, H. A Comprehensive Review on Recent Trends in Carbon Capture, Utilization, and Storage Techniques. J. Environ. Chem. Eng. 2023, 11, 111393. [Google Scholar] [CrossRef]
- Carbon Capture, Utilisation and Storage—Energy System—IEA. Available online: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage#how-does-ccus-work (accessed on 17 August 2024).
- CO2 Capture and Utilisation—Carbon Capture, Utilisation and Storage—Energy System—IEA. Available online: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/co2-capture-and-utilisation (accessed on 13 October 2024).
- Ahmed, S.; Irshad, M.; Yoon, W.; Karanwal, N.; Sugiarto, J.R.; Khan, M.K.; Kim, S.K.; Kim, J. Evaluation of MgO as a Promoter for the Hydrogenation of CO2 to Long-Chain Hydrocarbons over Fe-Based Catalysts. Appl. Catal. B 2023, 338, 123052. [Google Scholar] [CrossRef]
- IEA Greenhouse Gas R&D Programme. Greenhouse Gas Emissions Accounting for Carbon Dioxide Capture and Utilisation (CCU) Technologies–Characterising CCU Technologies, Policy Support, Regulation and Emissions Accounting. IEAGHG Technical Report 2018-TR01a. 2018. Available online: https://ieaghg-publications.s3.eu-north-1.amazonaws.com/Technical+Reports/2018-TR1a+GHG+Accounting+for+CCU+Technologies+-+Characterising+CCU+technologies,+policy+support,+regulation+and+emissions+accounting.pdf (accessed on 13 October 2024).
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Potential of FBC Fly Ashes to Reduce CO2 Emissions. Sci. Rep. 2020, 10, 9469. [Google Scholar] [CrossRef]
- Seifritz, W. CO2 Disposal by Means of Silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, D.H. Carbon Dioxide Disposal in Carbonate Minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Mazzotti, M.; Carlos, J.; Allam, R.; Lackner, K.S.; Meunier, F.; Rubin, E.M.; Sanchez, J.C.; Yogo, K.; Zevenhoven, R. Mineral Carbonation and Industrial Uses of Carbon Dioxide. In IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Lackner, K.S.; Butt, D.P.; Wendt, C.H. Progress on Binding CO2 in Mineral Substrates. Energy Convers. Manag. 1997, 38, S259–S264. [Google Scholar] [CrossRef]
- Olajire, A.A. A Review of Mineral Carbonation Technology in Sequestration of CO2. J. Pet. Sci. Eng. 2013, 109, 364–392. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Rush, G.E.; Gerdemann, S.J.; Nilsen, D.N. Final Report: Aqueous Mineral Carbonation. 2004. Available online: https://www.researchgate.net/profile/William-Oconnor-4/publication/315844800_Aqueous_Mineral_Carbonation_Mineral_Availability_Pretreatment_Reaction_Parametrics_and_Process_Studies/links/58ebb247a6fdcc965767765f/Aqueous-Mineral-Carbonation-Mineral-Availability-Pretreatment-Reaction-Parametrics-and-Process-Studies.pdf (accessed on 13 October 2024).
- Maroto-Valer, M.M.; Fauth, D.J.; Kuchta, M.E.; Zhang, Y.; Andrésen, J.M. Activation of Magnesium Rich Minerals as Carbonation Feedstock Materials for CO2 Sequestration. Fuel Process. Technol. 2005, 86, 1627–1645. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J. Mineral CO2 Sequestration by Steel Slag Carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef]
- Teir, S.; Kuusik, R.; Fogelholm, C.J.; Zevenhoven, R. Production of Magnesium Carbonates from Serpentinite for Long-Term Storage of CO2. Int. J. Min. Process 2007, 85, 1–15. [Google Scholar] [CrossRef]
- Herzog, H. Carbon Sequestration via Mineral Carbonation: Overview and Assessment Motivation and Scientific Basis; Massachusetts Institute of Technology, Laboratory for Energy and the Environment: Cambridge, MA, USA, 2002. [Google Scholar]
- Huang, H.P.; Shi, Y.; Li, W.; Chang, S.G. Dual Alkali Approaches for the Capture and Separation of CO2. Energy Fuels 2001, 15, 263–268. [Google Scholar] [CrossRef]
- Yanagisawa, Y. A New CO2 Disposal Process via Artificial Weathering of Calcium Silicate Accelerated by Acetic Acid. Energy 2001, 26, 341–354. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Su, S.; Liu, H.; Ma, Z.; Ren, Q.; Xu, K.; Wang, Y.; Hu, S.; Xiang, J. Single-Step Integrated CO2 Absorption and Mineralization Using Fly Ash Coupled Mixed Amine Solution: Mineralization Performance and Reaction Kinetics. Energy 2024, 286, 129615. [Google Scholar] [CrossRef]
- Siriwardena, D.P.; Peethamparan, S. Quantification of CO2 Sequestration Capacity and Carbonation Rate of Alkaline Industrial Byproducts. Constr. Build. Mater. 2015, 91, 216–224. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Yu, B.; Zhang, R.; French, D.; Grigore, M.; Wang, X.; Chen, Z.; Zhao, S. Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO2 Sequestration. Energy Fuels 2018, 32, 4569–4578. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. Analysis of the Process of Mineral Sequestration of CO2 with the Use of Fluidised Bed Combustion (FBC) Fly Ashes. Minerals 2021, 11, 676. [Google Scholar] [CrossRef]
- Miao, E.; Du, Y.; Zheng, X.; Zhang, X.; Xiong, Z.; Zhao, Y.; Zhang, J. Kinetic Analysis on CO2 Sequestration from Flue Gas through Direct Aqueous Mineral Carbonation of Circulating Fluidized Bed Combustion Fly Ash. Fuel 2023, 342, 127851. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, L.; Zhang, Y.; Liu, G.; Sun, J. A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies 2023, 16, 6241. [Google Scholar] [CrossRef]
- Mazzella, A.; Errico, M.; Spiga, D. CO2 uptake Capacity of Coal Fly Ash: Influence of Pressure and Temperature on Direct Gas-Solid Carbonation. J. Environ. Chem. Eng. 2016, 4, 4120–4128. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J. Carbon Dioxide Sequestration by Mineral Carbonation. 2003. Available online: https://publications.tno.nl/publication/34628514/f2Z0x3/c05022.pdf (accessed on 4 September 2024).
- Fernández Bertos, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. A Review of Accelerated Carbonation Technology in the Treatment of Cement-Based Materials and Sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Anthony, E.J.; Jia, L.; Macchi, A. Carbonation of FBC Ash by Sonochemical Treatment. Fuel 2007, 86, 2603–2615. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon Dioxide Sequestration in Municipal Solid Waste Incinerator (MSWI) Bottom Ash. J. Hazard. Mater. 2006, 128, 73–79. [Google Scholar] [CrossRef]
- Shao, X.; Qin, B.; Shi, Q.; Yang, Y.; Ma, Z.; Li, Y.; Jiang, Z.; Jiang, W. The Impacts of CO2 Mineralization Reaction on the Physicochemical Characteristics of Fly Ash: A Study under Different Reaction Conditions of the Water-to-Solid Ratio and the Pressure of CO2. Energy 2024, 287, 129676. [Google Scholar] [CrossRef]
- Chiang, P.-C.; Pan, S.-Y. Carbonation Mechanisms and Modelling. Carbon Dioxide Miner. Util. 2017, 127–158. [Google Scholar] [CrossRef]
- Pan, S.Y.; Hung, C.H.; Chan, Y.W.; Kim, H.; Li, P.; Chiang, P.C. Integrated CO2 Fixation, Waste Stabilization, and Product Utilization via High-Gravity Carbonation Process Exemplified by Circular Fluidized Bed Fly Ash. ACS Sustain. Chem. Eng. 2016, 4, 3045–3052. [Google Scholar] [CrossRef]
- Pan, S.Y.; Ling, T.C.; Park, A.H.A.; Chiang, P.C. An Overview: Reaction Mechanisms and Modelling of CO2 Utilization via Mineralization. Aerosol Air Qual. Res. 2018, 18, 829–848. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chang, E.E.; Chiang, P.C. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual. Res. 2012, 12, 770–791. [Google Scholar] [CrossRef]
- Back, M.; Kuehn, M.; Stanjek, H.; Peiffer, S. Reactivity of Alkaline Lignite Fly Ashes towards CO2 in Water. Environ. Sci. Technol. 2008, 42, 4520–4526. [Google Scholar] [CrossRef]
- Jo, H.Y.; Ahn, J.H.; Jo, H. Evaluation of the CO2 Sequestration Capacity for Coal Fly Ash Using a Flow-through Column Reactor under Ambient Conditions. J. Hazard. Mater. 2012, 241, 127–136. [Google Scholar] [CrossRef]
- Uliasz-Bochenczyk, A.; Mokrzycki, E. Possible Applications of Energy Waste for Mineral Sequestration of CO2. Rocz. Ochr. Srodowiska 2011, 13, 1591–1604. [Google Scholar]
- Bauer, M.; Gassen, N.; Stanjek, H.; Peiffer, S. Carbonation of Lignite Fly Ash at Ambient T and P in a Semi-Dry Reaction System for CO2 Sequestration. Appl. Geochem. 2011, 26, 1502–1512. [Google Scholar] [CrossRef]
- Noack, C.W.; Dzombak, D.A.; Nakles, D.V.; Hawthorne, S.B.; Heebink, L.V.; Dando, N.; Gershenzon, M.; Ghosh, R.S. Comparison of Alkaline Industrial Wastes for Aqueous Mineral Carbon Sequestration through a Parallel Reactivity Study. Waste Manag. 2014, 34, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Parikh, V.; Zhang, L. Sequestration of Carbon Dioxide by Indirect Mineralization Using Victorian Brown Coal Fly Ash. J. Hazard. Mater. 2012, 209–210, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Tosun, Y.İ. Flue Gas CO2 Sequestration by Turkish Coal Fly Ashes and Anatolian Geothermal Hot Waters. In Energy, Transportation and Global Warming; Springer: Berlin/Heidelberg, Germany, 2016; pp. 605–616. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H. Investigation of the Potential of Coal Combustion Fly Ash for Mineral Sequestration of CO2 by Accelerated Carbonation. Energy 2013, 52, 230–236. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Yellishetty, M.; Bui, H.H.; Xu, T. A Laboratory-Scale Study of the Aqueous Mineral Carbonation of Coal Fly Ash for CO2sequestration. J. Clean. Prod. 2015, 103, 665–674. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E.; Piotrowski, Z.; Pomykała, R. Estimation of CO2 Sequestration Potential via Mineral Carbonation in Fly Ash from Lignite Combustion in Poland. Energy Procedia 2009, 1, 4873–4879. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Gawlicki, M.; Pomykała, R. Evaluation of the Possibilities of Sequestration of Carbon Dioxide in Aqueous Suspensions of Selected Fly Ash. Gospod. Surowcami Miner./Miner. Resour. Manag. 2012, 28, 103–112. [Google Scholar] [CrossRef]
- Ćwik, A.; Casanova, I.; Rausis, K.; Zarȩbska, K. Utilization of High-Calcium Fly Ashes through Mineral Carbonation: The Cases for Greece, Poland and Spain. J. CO2 Util. 2019, 32, 155–162. [Google Scholar] [CrossRef]
- Mayoral, M.C.; Andrés, J.M.; Gimeno, M.P. Optimization of Mineral Carbonation Process for CO2 Sequestration by Lime-Rich Coal Ashes. Fuel 2013, 106, 448–454. [Google Scholar] [CrossRef]
- Hosseini, T.; Selomulya, C.; Haque, N.; Zhang, L. Indirect Carbonation of Victorian Brown Coal Fly Ash for CO2 Sequestration: Multiple-Cycle Leaching-Carbonation and Magnesium Leaching Kinetic Modeling. Energy Fuels 2014, 28, 6481–6493. [Google Scholar] [CrossRef]
- Moon, J.W.; Cho, K.S.; Moberly, J.G.; Roh, Y.; Phelps, T.J. Simultaneous Leaching and Carbon Sequestration in Constrained Aqueous Solutions. Environ. Geochem. Health 2011, 33, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Karalis, K.; Kollias, K.; Bartzas, G.; Mystrioti, C.; Xenidis, A. CO2 Sequestration Using Fly Ash from Lignite Power Plants. Mater. Proc. 2022, 5, 131. [Google Scholar] [CrossRef]
- Shao, X.; Qin, B.; Shi, Q.; Yang, Y.; Ma, Z.; Xu, Y.; Hao, M.; Jiang, Z.; Jiang, W. Study on the Sequestration Capacity of Fly Ash on CO2 and Employing the Product to Prevent Spontaneous Combustion of Coal. Fuel 2023, 334, 126378. [Google Scholar] [CrossRef]
- Ngo, I.; Ma, L.; Zhai, J.; Wang, Y. Enhancing Fly Ash Utilization in Backfill Materials Treated with CO2 Carbonation under Ambient Conditions. Int. J. Min. Sci. Technol. 2023, 33, 323–337. [Google Scholar] [CrossRef]
- Jiang, Z.; Qin, B.; Shi, Q.; Ma, Z.; Shao, X.; Xu, Y.; Hao, M.; Yang, Y. Effect of Ball Milling Activation on CO2 Mineralization Performance in Fly Ash and Fire Resistance Capabilities of Mineralized Product. J. Environ. Chem. Eng. 2024, 12, 113954. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Fan, W.; Guo, H.; Zhang, H. Fly Ash-CaO Sorbents Modified with Chlorides and Hydroxides for CO2 Capture in High-Temperature Flue Gas. Chem. Eng. J. 2024, 498, 155606. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Zhang, R.; French, D.; Grigore, M.; Yu, B.; Wang, X.; Yu, J.; Zhao, S. Effects of Fly Ash Properties on Carbonation Efficiency in CO2 Mineralisation. Fuel Process. Technol. 2019, 188, 79–88. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Milani, D.; Montoya, A.; Valix, M.; Abbas, A. Sustainable Transformation of Fly Ash Industrial Waste into a Construction Cement Blend via CO2 Carbonation. J. Clean. Prod. 2017, 156, 660–669. [Google Scholar] [CrossRef]
- Monasterio-Guillot, L.; Alvarez-Lloret, P.; Ibañez-Velasco, A.; Fernandez-Martinez, A.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: Impact on the trapping of toxic elements. J. CO2 Utilizat. 2020, 40, 101263. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Pérez-López, R.; Renard, F.; Nieto, J.M.; Charlet, L. Mineral Sequestration of CO2 by Aqueous Carbonation of Coal Combustion Fly-Ash. J. Hazard. Mater. 2009, 161, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, B.; Reddy, K.; Argyle, M. Field Application of Accelerated Mineral Carbonation. Minerals 2014, 4, 191–207. [Google Scholar] [CrossRef]
- Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S. CO2 Capture Using Fly Ash from Coal Fired Power Plant and Applications of CO2-Captured Fly Ash as a Mineral Admixture for Concrete. J. Environ. Manag. 2016, 170, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Uliasz-Bochenczyk, A. Application of Fly Ash From Hard Coal Combustion in Water Boilers for CO2 Sequestration via Mineral Carbonation. Rocz. Ochr. Srodowiska 2008, 10, 567–574. [Google Scholar]
- Nyambura, M.G.; Mugera, G.W.; Felicia, P.L.; Gathura, N.P. Carbonation of Brine Impacted Fractionated Coal Fly Ash: Implications for CO2 Sequestration. J. Environ. Manag. 2011, 92, 655–664. [Google Scholar] [CrossRef]
- Muriithi, G.N.; Petrik, L.F.; Fatoba, O.; Gitari, W.M.; Doucet, F.J.; Nel, J.; Nyale, S.M.; Chuks, P.E. Comparison of CO2 capture by Ex-Situ Accelerated Carbonation and in in-Situ Naturally Weathered Coal Fly Ash. J. Environ. Manag. 2013, 171, 212–220. [Google Scholar] [CrossRef]
- Han, S.J.; Im, H.J.; Wee, J.H. Leaching and Indirect Mineral Carbonation Performance of Coal Fly Ash-Water Solution System. Appl. Energy 2015, 142, 274–282. [Google Scholar] [CrossRef]
- Ho, H.J.; Iizuka, A.; Shibata, E.; Ojumu, T. Circular Indirect Carbonation of Coal Fly Ash for Carbon Dioxide Capture and Utilization. J. Environ. Chem. Eng. 2022, 10, 108269. [Google Scholar] [CrossRef]
- Revathy, R.; Dananjayan, T.; Kandasamy, P.; Andimuthu, R. Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2015, 112, 4173–4182. [Google Scholar] [CrossRef]
- Revathy, T.D.R.; Ramachandran, A.; Palanivelu, K. Carbon Capture and Storage Using Coal Fly Ash with Flue Gas. Clean. Technol. Environ. Policy 2022, 24, 1053–1071. [Google Scholar] [CrossRef]
- Triwigati, P.T.; Sim, G.; Seo, D.; Park, Y. Effects of Alkali-Treated Coal Fly Ash on Carbonation Efficiency and Its Implication for Carbon Mineralization. Ind. Eng. Chem. Res. 2024, 63, 10524–10531. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Y.; Shen, J.; Niu, Y.; Yang, J.F.; Wei, X. Synergistic CO2 Mineralization Using Coal Fly Ash and Red Mud as a Composite System. Int. J. Coal Sci. Technol. 2024, 11, 1–10. [Google Scholar] [CrossRef]
- Xia, B.; Peng, J. Experimental Study on the Effect of Hydrothermal Activation on the Physicochemical Properties and Mineralization Efficiency of Fly Ash-Supercritical CO2. Fuel 2024, 378, 132919. [Google Scholar] [CrossRef]
- Binwei, X.; Jiansong, P. Investigating the Impact of Hot Steam on the Efficiency of Fly Ash-CO2 Mineralization: DFT Analysis and Experimental Study. J. Environ. Chem. Eng. 2024, 12, 114135. [Google Scholar] [CrossRef]
- Wei, X.; Li, J.; Shi, H.; Cao, Y.; Liu, G. Experimental Study on CO2 Sequestration Performance of Alkali Activated Fly Ash and Ground Granulated Blast Furnace Slag Based Foam Concrete. Constr. Build. Mater. 2024, 447, 138043. [Google Scholar] [CrossRef]
- Kang, J.; Yu, Z.; Zhang, Y.; Xu, T.; Guo, L.; Hao, S. Optimization of CO2 Sequestration in Alkaline Industrial Residues: The Enhancement Mechanism of Saline Soil. Chem. Eng. J. 2024, 486, 150402. [Google Scholar] [CrossRef]
- Wu, H.; Aruch, S.; Grayevsky, R.; Yao, Y.; Emmanuel, S. Carbon Storage in Coal Fly Ash by Reaction with Oxalic Acid. ACS ES T Eng. 2023, 3, 1227–1235. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.; Xu, J.; Sun, Z.; Wang, Y.; Hu, S.; Wang, X.; Xue, Y.; et al. CO2 sequestration by Direct Gas–Solid Carbonation of Fly Ash with Steam Addition. J. Clean. Prod. 2018, 178, 98–170. [Google Scholar] [CrossRef]
- Jeong, E.; Jung, S.H.; Shin, H.S. The Integrated Approach of Carbon Capture, Utilization, and Storage via CO2 Mineralization for the Removal of Fly Ash, Bottom Ash, and Exhaust Gas—A Case Study of Circulating Fluidized Bed Combustion. Sci. Total Environ. 2024, 945, 174104. [Google Scholar] [CrossRef]
- Bae, S.J.; Lee, K.G.; Bae, S.J.; Lee, K.G. Carbonation Behavior of Fly Ash with Circulating Fluidized Bed Combustion (CFBC). J. Korean Ceram. Soc. 2015, 52, 154. [Google Scholar] [CrossRef]
- Lee, K.G.; Bae, S.J. Carbonation of Circulating Fluidized Bed Combustion Fly Ash with Hybrid Reaction. J. Korean Ceram. Soc. 2018, 55, 160–165. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Mineralization Characteristics of Coal Fly Ash in the Transition from Non-Supercritical CO2 to Supercritical CO2. Fuel 2022, 318, 123636. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J. Characterization of Heavy Metals in Fly Ash Stabilized by Carbonation with Supercritical CO2 Coupling Mechanical Force. J. CO2 Util. 2023, 67, 102308. [Google Scholar] [CrossRef]
- Uliasz-Bochenczyk, A.; Pawluk, A.; Pyzalski, M. The Mineral Sequestration of CO2 with the Use of Fly Ash from the Co-Combustion of Coal and Biomass. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2017, 33, 143–155. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.; Miao, E.; Wang, Y.; Zhang, T.; Xiao, Y.; Liu, Z.; Ma, J.; Xiong, Z.; Zhao, Y.; et al. Accelerated CO2 Mineralization Technology Using Fly Ash as Raw Material: Recent Research Advances. Chem. Eng. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Li, B.; Song, X.; Yang, Y.; Tu, Y. Experimental Analyses of CO2 Sequestration Potential in Mineralized Fly Ash and Its Efficacy in Mitigating Coal Spontaneous Ignition Risks in Underground Mine Goafs. Process Saf. Environ. Prot. 2024, 189, 995–1002. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R. Leaching Behaviour of Incineration Bottom Ash by Accelerated Ageing. J. Hazard. Mater. 2004, B113, 209–215. [Google Scholar] [CrossRef]
- Zhang, H.; He, P.J.; Shao, L.M.; Lee, D.J. Temporary Stabilization of Air Pollution Control Residues Using Carbonation. Waste Manag. 2008, 28, 509–517. [Google Scholar] [CrossRef]
- Astrup, T.; Dijkstra, J.J.; Comans, R.N.J.; Van Der Sloot, H.A.; Christensen, T.H. Geochemical Modeling of Leaching from MSWI Air-Pollution-Control Residues. Environ. Sci. Technol. 2006, 40, 3551–3557. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A. Mineral sequestration of CO2 using water suspensions of selected fly ashes from the combustion of lignite coal. Gospod. Surowcami Miner. / Miner. Resour. Manag. 2011, 27, 145–153. [Google Scholar]
- Gu, Y.; Wang, X.; Xu, Z.; Wei, S.; Yuan, Q.; Zhang, Y. Effect of Supercritical CO2 Carbonation Parameters on Heavy Metal Solidification and Environmental Stability of Coal Fly Ash. J. Mater. Cycles Waste Manag. 2024, 26, 3047–3058. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching Behaviour of Elements from Coal Combustion Fly Ash: An Overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef]
- Reeder, R.J. Interaction of Divalent Cobalt, Zinc, Cadmium, and Barium with the Calcite Surface during Layer Growth. Geochim. Cosmochim. Acta 1996, 60, 1543–1552. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Pankow, J.F. Solid Solution Partitioning of Sr2+, Ba2+, and Cd2+ to Calcite. Geochim. Cosmochim. Acta 1996, 60, 1053–1063. [Google Scholar] [CrossRef]
- Todorovic, J.; Ecke, H. Demobilisation of Critical Contaminants in Four Typical Waste-to-Energy Ashes by Carbonation. Waste Manag. 2006, 26, 430–441. [Google Scholar] [CrossRef]
- Ecke, H. Sequestration of Metals in Carbonated Municipal Solid Waste Incineration (MSWI) Fly Ash. Waste Manag. 2003, 23, 631–640. [Google Scholar] [CrossRef]
- Román-Ross, G.; Cuello, G.J.; Turrillas, X.; Fernández-Martínez, A.; Charlet, L. Arsenite Sorption and Co-Precipitation with Calcite. Chem. Geol. 2006, 233, 328–336. [Google Scholar] [CrossRef]
- Theis, T.L.; Wirth, J.L. Sorptive Behavior of Trace Metals on Fly Ash in Aqueous Systems. Environ. Sci. Technol. 1977, 11, 1096–1100. [Google Scholar] [CrossRef]
- Costa, G.; Baciocchi, R.; Polettini, A.; Pomi, R.; Hills, C.D.; Carey, P.J. Current Status and Perspectives of Accelerated Carbonation Processes on Municipal Waste Combustion Residues. Environ. Monit. Assess. 2007, 135, 55–75. [Google Scholar] [CrossRef]
- Chiang, P.-C.; Pan, S.-Y. CO2 Mineralization and Utilization via Accelerated Carbonation. In Carbon Dioxide Mineralization and Utilization; Springer: Berlin/Heidelberg, Germany, 2017; pp. 35–49. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. Carbon Dioxide Sequestration by Industrial Wastes through Mineral Carbonation: Current Status and Perspectives. J. Clean. Prod. 2024, 434, 140258. [Google Scholar] [CrossRef]
- Project CO2ment. Available online: https://www.lafarge.ca/en/project-co2ment (accessed on 4 September 2024).
- Technology|Blue Planet Systems. Available online: https://www.blueplanetsystems.com/technology (accessed on 18 August 2024).
- Ren, K.; Ma, S.; Feng, Y.; Xu, N.; Bai, S. Study on the Composite Gravel Preparation and the Synergistic Absorption of CO2 by Fly Ash of CFB Boiler. Fuel 2023, 342, 127843. [Google Scholar] [CrossRef]
- Chen, T.; Bai, M.; Gao, X. Carbonation Curing of Cement Mortars Incorporating Carbonated Fly Ash for Performance Improvement and CO2 Sequestration. J. CO2 Util. 2021, 51, 101633. [Google Scholar] [CrossRef]
- Woodall, C.M.; McQueen, N.; Pilorgé, H.; Wilcox, J. Utilization of Mineral Carbonation Products: Current State and Potential. Greenh. Gases: Sci. Technol. 2019, 9, 1096–1113. [Google Scholar] [CrossRef]
- Lin, K.L.; Lee, T.C.; Hwang, C.L. Effects of Sintering Temperature on the Characteristics of Solar Panel Waste Glass in the Production of Ceramic Tiles. J. Mater. Cycles Waste Manag. 2015, 17, 194–200. [Google Scholar] [CrossRef]
- From Carbon Dioxide to Building Materials—Improving Process Efficiency—IEAGHG. Available online: https://ieaghg.org/publications/from-carbon-dioxide-to-building-materials-improving-process-efficiency/ (accessed on 17 August 2024).
- Renforth, P. The Negative Emission Potential of Alkaline Materials. Nat. Commun. 2019, 10, 1401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliasz-Bocheńczyk, A. A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology. Energies 2024, 17, 5605. https://doi.org/10.3390/en17225605
Uliasz-Bocheńczyk A. A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology. Energies. 2024; 17(22):5605. https://doi.org/10.3390/en17225605
Chicago/Turabian StyleUliasz-Bocheńczyk, Alicja. 2024. "A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology" Energies 17, no. 22: 5605. https://doi.org/10.3390/en17225605
APA StyleUliasz-Bocheńczyk, A. (2024). A Comprehensive Review of CO2 Mineral Sequestration Methods Using Coal Fly Ash for Carbon Capture, Utilisation, and Storage (CCUS) Technology. Energies, 17(22), 5605. https://doi.org/10.3390/en17225605