Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China
Abstract
:1. Introduction
2. Methodology
2.1. Goal and Scope Definition
2.1.1. System Description: Water Glass (Sodium Silicate) Acquisition
2.1.2. System Description: Feedstock Transportation
2.1.3. System Description: Nanosilica Synthesis
2.2. Life Cycle Inventory (LCI)
2.3. Life Cycle Impact Assessment (LCIA)
3. Results
3.1. Life Cycle Environmental Impacts
3.2. Improvement Assessment
3.2.1. Electricity
3.2.2. Alkalis and Acids
3.2.3. Steam
3.3. Final Changes for Improvement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Ahmad, J.; Jebur, Y.M.; Deifalla, A.F. A review on partial substitution of nanosilica in concrete. Rev. Adv. Mater. Sci. 2024, 63, 20230157. [Google Scholar]
- Muralishwara, K.; Kini, U.A.; Sharma, S. Epoxy-clay nanocomposite coatings: A review on synthesis and characterization. Mater. Res. Express 2019, 6, 82007. [Google Scholar] [CrossRef]
- Salami, B.A.; Oyehan, T.A.; Gambo, Y.; Badmus, S.O.; Tanimu, G.; Adamu, S.; Lateef, S.A.; Saleh, T.A. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. Environ. Sci. Pollut. Res. 2022, 29, 42560–42600. [Google Scholar] [CrossRef] [PubMed]
- Nidhi, S.; Sushmita, J. Amorphous nanosilica induced toxicity, inflammation and innate immune responses: A critical review. Toxicology 2020, 441, 152519. [Google Scholar]
- Maity, A.; Polshettiwar, V. Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing. ChemSusChem 2017, 10, 3866–3913. [Google Scholar] [CrossRef]
- Ab Rahman, I.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. J. Nanomat. 2012, 2012, 132424. [Google Scholar] [CrossRef]
- Thuadaij, P.; Yodyingyong, S. Green nanosilica and highly efficient removal of methylene blue. Adv. Nat. Sci. Nanosci. Nanotechnol. 2023, 14, 35017. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Chen, J.; Zhang, C.; Feng, S.; Zhang, W. Tunable synthesis of dendritic fibrous nano silica using 1-pentanol-water microemulsion at low oil to water ratio. Nanotechnology 2022, 33, 325601. [Google Scholar] [CrossRef]
- Al Shunaifi, I.A.; Elaissi, S.; Ghiloufi, I.; Alterary, S.S.; Alharbi, A.A. Modelling of a Non-Transferred Plasma Torch Used for Nano-Silica Powders Production. Appl. Sci. 2021, 11, 9842. [Google Scholar] [CrossRef]
- Chai, X.; Liu, J.; He, Q.; Peng, G.; Yang, C. Synthesis and characterization of Parylene C/nanosilica composite film. Appl. Surf. Sci. 2011, 257, 10771–10774. [Google Scholar] [CrossRef]
- Hong, R.Y.; Feng, B.; Ren, Z.Q.; Xu, B.; Li, H.Z.; Zheng, Y.; Ding, J.; Wei, D.G. Thermodynamic, hydrodynamic, particle dynamic, and experimental analyses of silica nanoparticles synthesis in diffusion flame. Can. J. Chem. Eng. 2009, 87, 143–156. [Google Scholar] [CrossRef]
- Stopic, S.; Dertmann, C.; Koiwa, I.; Kremer, D.; Wotruba, H.; Etzold, S.; Telle, R.; Knops, P.; Friedrich, B. Synthesis of Nanosilica via Olivine Mineral Carbonation under High Pressure in an Autoclave. Metals 2019, 9, 708. [Google Scholar] [CrossRef]
- Global Industry Analysts. Precipitated Silica. Available online: https://www.marketresearch.com/Global-Industry-Analysts-v1039/Precipitated-Silica-36841395/ (accessed on 1 August 2024).
- Duan, L.; Guo, Y.; Liu, W.; Wang, M.; Cao, W.; Yin, J. Investigation of Fluorine Removal with Nanosilica During Zinc Hydrometallurgy Process. Min. Metall. Eng. 2022, 42, 113–116. (in Chinese). [Google Scholar]
- Dileep, P.; Narayanankutty, S.K. A novel method for preparation of nanosilica from bamboo leaves and its green modification as a multi-functional additive in styrene butadiene rubber. Mater. Today Commun. 2020, 24, 100957. [Google Scholar] [CrossRef]
- Velmurugan, P.; Shim, J.; Oh, B.-T. Removal of anionic dye using amine-functionalized mesoporous hollow shells prepared from corn cob silica. Res. Chem. Intermediat. 2016, 42, 5937–5950. [Google Scholar] [CrossRef]
- Gebretatios, A.G.; Kadiri Kanakka Pillantakath, A.R.; Witoon, T.; Lim, J.-W.; Banat, F.; Cheng, C.K. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Chemosphere 2023, 310, 136843. [Google Scholar] [CrossRef]
- Athinarayanan, J.; Jaafari, S.A.A.H.; Periasamy, V.S.; Almanaa, T.N.A.; Alshatwi, A.A. Fabrication of Biogenic Silica Nanostructures from Sorghum bicolor Leaves for Food Industry Applications. Silicon 2020, 12, 2829–2836. [Google Scholar] [CrossRef]
- Porrang, S.; Rahemi, N.; Davaran, S.; Mahdavi, M.; Hassanzadeh, B. Preparation and in-vitro evaluation of mesoporous biogenic silica nanoparticles obtained from rice and wheat husk as a biocompatible carrier for anti-cancer drug delivery. Eur. J. Pharm. Sci. 2021, 163, 105866. [Google Scholar] [CrossRef]
- Balamurugan, M.; Saravanan, S. Producing nanosilica from Sorghum vulgare seed heads. Powder Technol. 2012, 224, 345–350. [Google Scholar] [CrossRef]
- Kunchariyakun, K.; Sinyoung, S.; Asavapisit, S.; MacKenzie, K.J.D. Comparative study on the preparation of belite cement from nano-silicas extracted from different agricultural wastes with calcium carbide residue. J. Sustain. Cem. Based Mater. 2023, 12, 129–140. [Google Scholar] [CrossRef]
- Barracco, F.; Demichelis, F.; Sharifikolouei, E.; Ferraris, M.; Fino, D.; Tommasi, T. Life cycle assessment for the production of MSWI fly-ash based porous glass-ceramics: Scenarios based on the contribution of silica sources, methane aided, and energy recoveries. Waste Manag. 2023, 157, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Sackey, S.; Lee, D.-E.; Kim, B.-S. Life Cycle Assessment for the Production Phase of Nano-Silica-Modified Asphalt Mixtures. Appl. Sci. 2019, 9, 1315. [Google Scholar] [CrossRef]
- Fallah-Valukolaee, S.; Mousavi, R.; Arjomandi, A.; Nematzadeh, M.; Kazemi, M. A comparative study of mechanical properties and life cycle assessment of high-strength concrete containing silica fume and nanosilica as a partial cement replacement. Structures 2022, 46, 838–851. [Google Scholar] [CrossRef]
- Joglekar, S.N.; Kharkar, R.A.; Mandavgane, S.A.; Kulkarni, B.D. Process development of silica extraction from RHA: A cradle to gate environmental impact approach. Environ. Sci. Pollut. Res. 2019, 26, 492–500. [Google Scholar] [CrossRef]
- Dominic, C.D.M.; Rosa, D.D.; Barbosa, R.F.D.; Anagha, O.V.; Neenu, K.V.; Begum, P.M.S.; Kumar, A.; Parameswaranpillai, J.; Siriwong, C.; Ajithkumar, T.G. Extraction, characterization, and life cycle assessment of nanosilica from millet husk: A sustainable alternative with low environmental impact. J. Clean. Prod. 2024, 442, 140924. [Google Scholar] [CrossRef]
- Farjana, S.H.; Tokede, O.; Tao, Z.; Ashraf, M. Life cycle assessment of end-of-life engineered wood. Sci. Total Environ. 2023, 887, 164018. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Luliang Environmental Protection Research Institute; Shanxi Shengyou Technology Building Materials Co., LTD. Environmental Impact Report on the Construction Project of a New 60,000 t/a Sodium Silicate Product (Public release). 2018. Available online: https://www.docin.com/p-2164334998.html (accessed on 2 January 2019).
- Guigang Environmental Protection Research Institute; Nanxian Changzheng New Material Technology Co., LTD. Environmental Impact Report of Annual Production of Tons of Silica Matting Agent and Large Pore Volume Silica Matting Agent Project. 2016. Available online: https://max.book118.com/html/2018/0603/170418747.shtm (accessed on 5 June 2018).
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Sleeswijk, A.W.; Suh, S.; de Haes, H.A.U.D. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: New York, NY, USA, 2001; pp. 71–82. [Google Scholar]
- Rao, B.; Gao, L.; Dai, H.; Xie, H. The Invention Relates to a Method for Preparing Water Glass from Silicate Minerals. Patent CN111268686A, 1 July 2022. [Google Scholar]
- Gao, H.; Hu, M.; He, S.; Liu, J. Green electricity trading driven low-carbon sharing for interconnected microgrids. J.Clean. Prod. 2023, 414, 137618. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Implementation Plan for Promoting Green Consumption. Available online: https://www.gov.cn/zhengce/zhengceku/2022-01/21/content_5669785.htm (accessed on 18 January 2011).
- Searchinger, T.D.; Hamburg, S.P.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.; Obersteiner, M.; Oppenheimer, M.; et al. Fixing a Critical Climate Accounting Error. Science 2009, 326, 527–528. [Google Scholar] [CrossRef]
- 2024 China Silica Market Research Report. Available online: https://zhuanlan.zhihu.com/p/719527253 (accessed on 11 September 2024).
- National Development and Reform Commission. Guiding Opinions on Vigorously Implementing Renewable Energy Alternatives. Available online: https://www.gov.cn/zhengce/202411/content_6984336.htm. (accessed on 1 November 2024).
Symbol | Unit | Value | |
---|---|---|---|
Hydrogen | H2 | % | 58.4 |
Oxygen | O2 | % | 0.40 |
Methane | CH4 | % | 24.0 |
Carbon Monoxide | CO | % | 9.0 |
Carbon Dioxide | CO2 | % | 3.0 |
Nitrogen | N2 | % | 3.6 |
Hydrocarbons | CmHn | % | 1.6 |
Low Calorific Value | Qnetar | kJ/Nm3 | 17,362.53 |
Hydrogen Sulfide | H2S | mg/Nm3 | 18.40 |
Ammonia | NH3 | mg/Nm3 | 41.60 |
Stage 1 | Stage 2 | Stage 3 | ||||
---|---|---|---|---|---|---|
Input | Quartz sand | 0.76 kg | Diesel | 0.002 kg | Water glass | 1.245 kg |
Soda | 0.41 kg | Water glass | 1 kg | Concentrated sulfuric acid | 0.445 kg | |
Coke oven gas | 0.32 m3 | Steam | 0.8 kg | |||
Electricity | 5 kWh | Water | 26.689 kg | |||
Water | 0.0654 m3 | Electricity | 0.18 kWh | |||
Air | 0.45 m3 | |||||
Major Output | Water glass | 1 kg | Water glass | 1 kg | Nanosilica | 1 kg |
Carbon dioxide | 0.166 kg | Sodium sulfate | 0.6962 kg | |||
Wastewater | 22.894 kg |
Electricity from Coal Power Generation | Electricity from Wind Power | Electricity from Hydropower | Electricity from Municipal Solid Waste Power Generation | Electricity from Solar Thermal Power Generation | Electricity from Photovoltaic Power Generation | Electricity from Biomass Power Generation | Steam from Hard Coal | Steam from Biogas | Steam from Biomass | Steam from Natural Gas | |
---|---|---|---|---|---|---|---|---|---|---|---|
Resources | 65.54 | 19.97 | 3121.15 | 29.25 | 6.60 | 15.31 | 102.28 | 1.74 | 35.19 | 4.44 | 0.90 |
Deposited goods | 1.89 | 0.05 | 0.04 | 0.18 | 0.04 | 0.24 | 0.04 | 0.19 | 0.03 | 3.48 × 10−3 | 5.18 × 10−3 |
Emissions to air | 7.84 | 0.20 | 22.92 | 17.84 | 0.24 | 17.28 | 38.08 | 0.58 | 27.77 | 2.79 | 0.47 |
Emissions to fresh water | 41.26 | 19.73 | 3098.17 | 12.69 | 6.36 | 14.97 | 52.56 | 0.95 | 8.81 | 1.79 | 0.35 |
Emissions to sea water | 14.54 | 0.09 | 1.16 × 10−3 | 0.32 | 0.02 | 0.07 | 13.48 | 0.01 | 0.03 | 7.74 × 10−3 | 4.10 × 10−3 |
Emissions to agricultural soil | 2.60 × 10−8 | 5.25 × 10−8 | 1.11 × 10−9 | 2.23 × 10−7 | 4.21 × 10−8 | 1.84 × 10−7 | 5.59 × 10−7 | 2.68 × 10−9 | −2.70 × 10−6 | 4.31 × 10−8 | 2.03 × 10−9 |
Emissions to industrial soil | 9.47 × 10−8 | 2.06 × 10−7 | 2.67 × 10−9 | 5.59 × 10−4 | 1.33 × 10−6 | 3.04 × 10−6 | 1.89 × 10−7 | 9.59 × 10−9 | 4.70 × 10−8 | 1.48 × 10−8 | 1.71 × 10−7 |
Na2CO3 + H2SO4 | NaOH + H2SO4 | Na2CO3 + HCl | NaOH + HCl | 10% Saving of Na2CO3 | 10% Saving of H2SO4 | ||
---|---|---|---|---|---|---|---|
Stage 1 | Quartz sand | 0.76 kg | 0.76 kg | 0.76 kg | 0.76 kg | 0.41 kg | 0.41 kg |
Na2CO3 | 0.41 kg | / | 0.41 kg | / | 0.684 kg | 0.76 kg | |
NaOH | / | 0.31 kg | / | 0.31 kg | / | / | |
Stage 3 | Water glass | 1.245 kg | 1.245 kg | 1.245 kg | 1.245 kg | 1.245 kg | 1.245 kg |
H2SO4 | 0.445 kg | 0.445 kg | / | / | 0.445 kg | 0.4005 kg | |
HCl | / | / | 0.37 kg | 0.37 kg | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Yang, L.; Liang, X.; Zhou, J. Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China. Energies 2024, 17, 5621. https://doi.org/10.3390/en17225621
Gu S, Yang L, Liang X, Zhou J. Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China. Energies. 2024; 17(22):5621. https://doi.org/10.3390/en17225621
Chicago/Turabian StyleGu, Shan, Li Yang, Xiaoye Liang, and Jingsong Zhou. 2024. "Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China" Energies 17, no. 22: 5621. https://doi.org/10.3390/en17225621
APA StyleGu, S., Yang, L., Liang, X., & Zhou, J. (2024). Life Cycle Assessment and Process Optimization of Precipitated Nanosilica—A Case Study in China. Energies, 17(22), 5621. https://doi.org/10.3390/en17225621