A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting
Abstract
:1. Introduction
1.1. Energy Harvester Technology
1.2. Energy Harvester’s Role in Energy Transition Towards Greener and Cleaner Energy Systems
2. Research Methodology
2.1. Data Collection and Article Identification
Search Strategies
2.2. Screening and Exclusion
- Only English language articles.
- Access to the full-text version of articles is required.
- Articles were required to present one or more of the following factors:
- (a)
- A VIV energy harvester used to harness the kinetic or turbulent energy from wind and water flow systems.
- (b)
- An evaluation or assessment of VIV energy harvester technology.
- (c)
- A discussion of the design, material selection, challenges, and limitations of VIV energy harvester technology in a particular application.
2.3. Reviewing of Selected Articles
3. Results and Discussion
3.1. Bibliometric Results
3.2. Reasoning for Developing a Multidimensional Technology Feasibility Assessment for Energy Harvesting Technology
3.2.1. Economic
3.2.2. Environment
3.2.3. Social
3.3. Challenges
4. Conclusions and Limitations
Limitations and Next Research Steps
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VIV | Vortex-induced vibration |
FIV | Flow-induced vibration |
UWCAES | Underwater Compressed Air Energy Storage |
VIVACE | Vortex-Induced Vibration Aquatic Clean Energy |
PEWEH | Piezoelectric–electromagnetic wave energy harvester |
PRISMA | Systematic Review And Meta-Analysis |
IC | Interference cylinder |
FSRs | Fin-shaped rods |
EH | Energy harvester |
TRL | Technology Readiness Level |
Appendix A
Search String Combination | |
---|---|
1 | “Energy System” AND “Feasibility Assessment” |
2 | “Vortex Induced Vibration” OR “Energy Harvester” AND “Technoeconomic” AND “Assessment” |
3 | “Energy Harvester” AND “Feasibility Assessment” |
4 | energy harvester OR “Vortex Induced Vibration” AND “Technical” |
5 | energy harvester OR “Vortex Induced Vibration” AND “Technical” AND “Assessment” |
6 | Energy Harvester OR “Vortex Induced Vibration” AND “socioeconomic” AND “Assessment” |
7 | Energy Harvester OR “Vortex Induced Vibration” AND “Technoeconomic” AND “Assessment” |
8 | Energy Harvester OR “Vortex Induced Vibration” AND “Feasibility” AND “Assessment” |
9 | “Vortex induced vibration” AND “life cycle assessment” |
10 | “Vortex induced vibration” AND “environmental impact” |
11 | “Energy harvester” AND “life cycle assessment” |
12 | “Energy harvester” AND “environmental impact” |
13 | “Energy system” AND “life cycle assessment” |
14 | “Energy system” AND “environmental impact” |
Reference: | Case Study | Experimental Data | Software or Method(s) | Geographical Location | Global | Geographic Regions | National | Local Region | Community and City Scale | Whole System | Integration as Large Scale Solutions | Integration as Small-Scale Solutions | Integration as Hybrid Solutions | Micro-Scale Devices |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H. Farokhi and M.H. Ghayesh 2019 | x | use of the nonlinear Euler–Bernoulli beam theory | x | x | ||||||||||
J.Kan et al., 2023 | x | CFD, two-degree-of-freedom (2-DOF) lumped parameter model | Jinhuan, China | x | ||||||||||
L. He et al., 2023 | x | ANSYS and experimentation | Jilin, China | x—focus on wider application of proposed design | x | |||||||||
l. He et al., 2024 | x | ANSYS and experimentation | Changchun, China | x | ||||||||||
Rostami and Armandei 2017 | review paper | Rio de Janeiro, Brazil | x | x | ||||||||||
A.Barrero-Gil et al., 2012 | x | CFD (1-DOF model) | Madrid, Spain | |||||||||||
Vasel-Be-Hagh et al., 2014 | x | technical note paper | Windsor, Ontario, Canada | x | x | |||||||||
Aabid et al., 2021 | review paper | x—focus on the piezolectric material | ||||||||||||
Abdelkefi 2016 | review paper | USA | x | x | ||||||||||
Abdelkefi et al., 2012 | x | mathematical model, linear analysis (Pol equation and the Gauss Law) | Virginia Tech, USA | x | ||||||||||
Abdulkhaliq et al., 2023 | x | simulations, and experimentation—using a small-scale prototype | Cranfield, UK | x | x | |||||||||
Hu et al., 2009 | x | mathematical model | Wuhan, China | x | ||||||||||
Marqui Junior et al., 2009 | x | x | electromechanical FE plate model | Virginia Tech, USA, Sao Paulo, Brazil | x | x | ||||||||
Erturk and Inman 2009 | x | mathematical model—close-form analytical solution based on Euler–Bernoulli beam assumption | Virginia Tech, USA | x | x | |||||||||
Aramendia et al., 2019 | x | Adaptive Differential Evolution (DE)-based (JADE) algorithm, Multivariable JADE algorithm, CFD software | Vitoria-Gasteiz, Spain | x | x | |||||||||
Araujo, da Silva and Marques 2022 | x | Van der Pols wake model, particleswarm optimization (PSO) method | Sao Carlos, Brazil | x | ||||||||||
Azam et al., 2019 | x | prototype and experimentation; The National Instruments (USB-6211 Data acquisition device), Arduino Uno microcontroller, and LabVIEW | Kuala Lumpur, Malaysia | x | ||||||||||
B.Zhang et al., 2018 | (x) | x | CFD software fluent, time-step independence validation | Xi’an, China | x | x | ||||||||
B.Zhang et al., 2022 | (x) | x | Two-way CFD model, FSI simulation method | Beijing, China | x | x | ||||||||
Bernitasa_and_Diaz_2006 | x | project summary report | Michigan, USA | x | x | |||||||||
Burda 2022 | x | Matlab | Romania | x | x | |||||||||
Cepenas et al., 2020 | x | COMSOL Multiphysics software | Lithuania | x | x | |||||||||
Ceponis et al., 2019 | x | COMSOL Multiphysics software | Lithuania | x | ||||||||||
Ceponis et al., 2022 | x | Comsol Multiphysics | Lithuania | x | ||||||||||
Chong Li and Lv 2023 | x | COMSOL software | China | x | x | |||||||||
Costanzo et al., 2023 | x | MatLab | Italy | x | ||||||||||
Daqaq 2012 | x | mathematical model | USA | |||||||||||
Lu et al., 2022 | x | MatLab | Singapore, China | x | x | |||||||||
Del Priore et al., 2023 | x | Simulink | Italy | x | ||||||||||
Kim et al., 2023 | x | experimental setup | China | x | ||||||||||
E.S. Kim et al., 2021 | x | x | case study analysis | South Korea, USA | x | x | ||||||||
Li., H. et al., 2014 | review paper | USA | ||||||||||||
Erturk et al., 2009 | x | x | electromechanical model | USA | x | x | ||||||||
Abrol and Chhabra 2018 | x | experimental setup | India | x | x | |||||||||
Franzine and Bunzel 2018 | x | Matlab and numerical Model | Brazil | x | ||||||||||
Ghazanfarian et al. 2021 | review paper | Iran and USA | ||||||||||||
Han et al., 2022 | x | COMSOL Multiphysics software | China | x | x | |||||||||
Erturk and Inman 2008 | review and discussion paper | USA | ||||||||||||
J. Wang et al., 2020 | review paper | China and UK | x | |||||||||||
Jin et al., 2020 | x | experimental setup | China | x | x | |||||||||
Narendran et al., 2016 | x | experimental setup | India | x | x | |||||||||
Kang et al., 2016 | review paper | South Korea, USA | x | x | ||||||||||
Khojasteh et al., 2023 | review paper | Australia, UK, Finland, Iran, Ireland, USA | ||||||||||||
Kong et al., 2010 | x | experimental setup | USA | x | ||||||||||
Kumar and Sarkar 2016 | review paper | India | x | x | ||||||||||
Kumar and Sourav 2023 | x | experimental setup and numerical model | India and USA | x | x | |||||||||
L.B. Zhang et al. 2019 | x | experimental setup and numerical model | China and Singapore | x | x | |||||||||
L.B. Zhang et al. 2019 | x | experimental setup | China and USA | x | x | |||||||||
Cimorelli et al., 2020 | x | x | numerical model (nonlinear programming algorithm) | Italy | x | x | ||||||||
Lei and Sun 2023 | x | experimental setup | China | x | x | |||||||||
Li et al., 2019 | x | experimental setup | China | x | x | |||||||||
Modir and Goudarzi 2019 | x | analytical modeling and experimentation | Florida, United States | x | ||||||||||
Li et al., 2021 | x | numerical simulation and experimentation | Zhengzhou, China | x | ||||||||||
Kuriyama et al., 2020 | x | prototype and experiementation | Kiryu, Japan | x | ||||||||||
Du et al., 2023 | x | finite element simulation and experimentation | Huainan, China | x—for deployment in mines | x | |||||||||
Deng et al., 2014 | x | theoretical and computational modeling | Houston, United States | x | ||||||||||
Bowen et al., 2014 | x | review paper | Bath, United Kingdom | x | ||||||||||
Zanelli et al., 2022 | x | field test | Milan, Italy | x—deployment on power lines | x | |||||||||
Naqvi et al., 2022 | x | review paper | Haripur, Pakistan | x | ||||||||||
Park et al., 2023 | x | experimentation | Ann Arbor, United States | x—tidal energy deployment | x | |||||||||
Wang et al., 2020 | x | numerical modeling and experimentation | Zhengzhou, China | x | ||||||||||
Wang et al., 2022 | x | CFD modeling | Zhengzhou, China | x | ||||||||||
Younis et al., 2022 | x | CFD simulation | Safat, Kuwait | x | ||||||||||
Mehdipour et al., 2022 | x | CFD analysis | Arnesano, Italy | x | ||||||||||
Rabiee and Esmaeili 2023 | x | numerical analysis | Arak, Iran | x | ||||||||||
Simiao and Bernitsas 2013 | x | prototype and experiementation | Michigan, USA | x | ||||||||||
Weller et al., 2013 | x | best practice report | Exeter, United Kingdom | x | ||||||||||
Wang and Ng 2023 | x | CFD modleing | Nanyang, Singapore | x—tidal power | x | |||||||||
Raghavan and Bernitsas 2011 | x | experimentation | Michigan, USA | x | ||||||||||
Raghavan 2007 | x | experimentation and prototype testing | Michigan, USA | x—ocean deployment | x | |||||||||
Wang et al., 2021 | x | modeling and experimentation | Zhengzhou, China | x—deployment on power lines | ||||||||||
Novara and McNabola 2021 | x | own development, PAT selection software | Dublin, Ireland | x | x | |||||||||
Zhou et al., 2020 | x | FEM, COMSOL 5.4 | Harbin, China | x | x | |||||||||
Zhang et al., 2021 | x | theoretical modeling | Xi’an, China | x | x | |||||||||
Zaarour et al., 2019 | x | review paper | Shanghai, China | x | ||||||||||
Yu et al., 2023 | x | FEM, numerical simulation | Harbin, China | x | ||||||||||
Wu et al., 2021 | x | prototype and experimentation | Guangzhou, China | x | x | |||||||||
Wu et al., 2012 | x | FEM simulation (ANSYS) and experimentation | Singapore, Singapore | x | ||||||||||
Wang et al., 2022 | x | CAE simulation, ANSYS | Jiaozuo, China | x | ||||||||||
Wang et al., 2023 | x | ANSYS and experimentation | New Taipei City, Taiwan | x | x | |||||||||
Usharani et al., 2018 | x | analytical modeling | Tiruchirappalli, India | x | x | |||||||||
Tabil et al., 2019 | x | review paper | Kajang, Selangor, Malaysia | x | ||||||||||
Sun et al., 2019 | x | fabrication and experimentation | North Wollongong, Australia | x | ||||||||||
Su and Tseng 2023 | x | theoretical modeling | Taipei, Taiwan | x | ||||||||||
Stefanizzi et al., 2018 | x | preliminary assessment, three installation cases | Bari, Italy | x | x | |||||||||
Shi et al., 2021 | x | experimentation, wind tunnel | Wuhan, China | x | ||||||||||
Pecunia et al., 2023 | x | roadmap, review | Surrey BC, Canada [piezoelectric chapter from Belvaux, Luxembourg] | x | ||||||||||
Shan et al., 2017 | x | theoretical modeling | Harbin, China | x | ||||||||||
Rezaei et al., 2013 | review paper | Edmonton, Canada | x | |||||||||||
Renzi et al., 2019 | x | CFD, ANSYS | Bolzano, Italy | x—focused on one case study but with global application | ||||||||||
Pertin et al., 2022 | x | mathematical modeling and FEM | Assam, India | x | ||||||||||
Noh et al., 2023 | x | analytical modeling | Daejeon, Republic of Korea | x | ||||||||||
Mo et al., 2020 | x | systematic analysis | Guilin, China | x | ||||||||||
Masana and Daqaq 2011 | x | numerical modeling and experimentation | Clemson, United States | x | ||||||||||
Manoj et al., 2021 | x | numerical simulation, ANSYS | Warangal, India | x | x | |||||||||
Ma et al., 2020 | x | numerical modeling, optimization | Huainan, China | x | ||||||||||
Lu et al., 2018 | x | analytical and numerical simulation | Harbin, China | x | ||||||||||
Liu et al., 2020 | x | theoretical modeling and experimentation | Suzhou, China | x | ||||||||||
Liu et al., 2011 | x | theoretical modeling | Singapore, Singapore | x | ||||||||||
Liu et al., 2012 | x | numerical modeling and experimentation | Singapore, Singapore | x | ||||||||||
Li et al., 2020 | x | mathematical modeling | Nanning, China | x | ||||||||||
Li et al., 2022 | x | numerical modeling and experimentation | Zhengzhou, China | x | ||||||||||
Li et al., 2022, 2 | x | numerical analysis and prototype | Zhengzhou, China | x | ||||||||||
Laws and Epps 2016 | x | literature review, feasibility assessment | Hanover, United States | x | ||||||||||
Manasseh et al., 2017 | x | marine energy review | Melbourne, Australia | x | x | |||||||||
Wu et al., 2022 | x | comprehensive modeling survey | Waterloo, Canada | x | ||||||||||
Rehman et al., 2023 | technical review | Dhahran, Saudi Arabia | x | |||||||||||
Yan et al., 2020 | x | numerical modeling and experimentation | Shanghai, China | x | ||||||||||
Zhou and Yang 2018 | x | numerical modeling | Ultimo, Australia | x | ||||||||||
Sun et al., 2018 | x | modeling and experimentation | Xi’an, China | x | ||||||||||
Xu et al., 2020 | x | modeling and experimentation | Tianjin, China | x | ||||||||||
Tamimi et al., 2022 | x | empirical comparison | Harbin, China | x | ||||||||||
M.Zhang et al., 2021 | x | numerical modeling and experimentation | Trondheim, Norway | x | ||||||||||
Shan et al., 2020 | x | Prototype and experimentation | Harbin, China | x | ||||||||||
Liu and D’Angelo 2014 | x | experimentation and analytical computation | San Diego, United States | x | ||||||||||
Qi et al., 2021 | x | modeling and experimentation | Chengdu, China | x | x | |||||||||
Li et al., 2023 | x | mathematical modeling | Shanghai, China | x | ||||||||||
Rahmawati et al., 2018 | x | numerical and theoretical modeling, experimentation | Hiroshima, Japan | x | ||||||||||
Ye and Soga 2012 | x | x | energy system modeling | Cambridge, United Kingdom | x | x | ||||||||
Lu et al., 2018 | x | MSCA ITN VIPER program | Harbin 150080, People’s Republic of Chin | x | x | |||||||||
Behara et al., 2023 | x | Andhra Pradesh 532201, India | x | x | ||||||||||
Branch et al., 2022 | x | Seattle, WA, United States | x | x | ||||||||||
Branch et al., 2022 | x | Seattle, USA | x | x | x | |||||||||
Li et al., 2020 | x | Nanning 530004, China | x | x | ||||||||||
Cai et al., 2021 | x | Ontario, N9B 3P4, Canada | x | x | ||||||||||
Ding et al., 2015 | x | y, Chongqing, People’s Republic of China | x | x | ||||||||||
Ding et al., 2020 | x | Xi’an 710049, China | x | x | ||||||||||
Ding et al., 2021 | x | Chongqing University, Chongqing, China | x | x | ||||||||||
Falment et al., 2023 | x | ONERA, Universit’e Paris Saclay, Chˆatillon, F-92322, FRANCE | x | x | ||||||||||
Sun et al., 2019 | x | University of Wollongong, Australia | x—high temperature operation (oil exploration) 150–200 °C | x | ||||||||||
Renzi et al., 2019 | x | x | computational fluid dynamics (CFD) simulations | Italy | x involves the installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery in Italy | x wastewater sewer within an oil refinery | ||||||||
Lu et al., 2018 | x | simulations based on Euler–Bernoulli beam theory. | Harbin Institute of Technology, China | x | ||||||||||
Li et al., 2020 | x | equation based on the extended Hamilton principle | Guangxi University, Nanning, China | x | ||||||||||
Ding et al., 2021 | x | Chongqing University, China | x | |||||||||||
Jiang et al., 2022 | x | Wuhan University, China | x | x | ||||||||||
Karami et al., 2022 | theoretical analysis and numerical simulations, NETCOOP optimization algorithm | University of Isfahan, Iran | x | |||||||||||
Ding et al., 2015 | x | open source CFD tool OpenFOAM | Chongqing University, Chongqing, China | x | ||||||||||
Ma et al., 2022 | review paper | Xi’an, China | The paper summarizes studies and developments in flow-induced vibration energy harvesters from various regions worldwide | |||||||||||
Hamlehdar et al., 2019 | review paper | Ho Chi Minh City, Vietnam |
Reference: | Technical Scale | Social Scale | Economic Scale | Environmental Scale | Risk Assessment | Participatory—Engagement with Stakeholders |
---|---|---|---|---|---|---|
H. Farokhi and M.H. Ghayesh 2019 | x | |||||
J.Kan et al., 2023 | x | |||||
L. He et al., 2023 | ||||||
l. He et al., 2024 | x | |||||
Rostami and Armandei 2017 | x | x | ||||
A.Barrero-Gil et al., 2012 | x | |||||
Vasel-Be-Hagh et al., 2014 | x | |||||
Aabid et al., 2021 | ||||||
Abdelkefi 2016 | x | |||||
Abdelkefi et al., 2012 | x | |||||
Abdulkhaliq et al., 2023 | x | |||||
Hu et al., 2009 | x | |||||
Marqui Junior et al., 2009 | x | |||||
Erturk and Inman 2009 | x | |||||
Aramendia et al., 2019 | x | |||||
Araujo, da Silva and Marques 2022 | x | |||||
Azam et al., 2019 | x | |||||
B.Zhang et al., 2018 | x | |||||
B.Zhang et al., 2022 | x | |||||
Bernitasa and Diaz 2006 | x | x | ||||
Burda 2022 | x | |||||
Cepenas et al., 2020 | x | |||||
Ceponis et al., 2019 | x | |||||
Ceponis et al., 2022 | x | |||||
Chong Li and Lv 2023 | x | |||||
Costanzo et al., 2023 | x | |||||
Daqaq 2012 | x | |||||
Lu et al., 2022 | x | |||||
Del Priore et al., 2023 | x | |||||
Kim et al., 2023 | x | |||||
E.S. Kim et al., 2021 | x | x | x | |||
Li., H. et al., 2014 | x | |||||
Erturk et al., 2009 | x | |||||
Abrol and Chhabra 2018 | x | |||||
Franzine and Bunzel 2018 | x | |||||
Ghazanfarian et al. 2021 | ||||||
Han et al., 2022 | x | |||||
Erturk and Inman 2008 | ||||||
J. Wang et al., 2020 | x | |||||
Jin et al., 2020 | x | |||||
Narendran et al., 2016 | x | |||||
Kang et al., 2016 | x | |||||
Khojasteh et al., 2023 | ||||||
Kong et al., 2010 | x | |||||
Kumar and Sarkar 2016 | x | x | x | x | ||
Kumar and Sourav 2023 | x | |||||
L.B. Zhang et al. 2019 | x | |||||
L.B. Zhang et al. 2019 | x | |||||
Cimorelli et al., 2020 | x | x | ||||
Lei and Sun 2023 | x | |||||
Li et al., 2019 | x | |||||
Modir and Goudarzi 2019 | x | |||||
Li et al., 2021 | x | |||||
Kuriyama et al., 2020 | x | |||||
Du et al., 2023 | x | |||||
Deng et al., 2014 | x | |||||
Bowen et al., 2014 | x | |||||
Zanelli et al., 2022 | x | x | ||||
Naqvi et al., 2022 | x | |||||
Park et al., 2023 | x | |||||
Wang et al., 2020 | x | |||||
Wang et al., 2022 | x | |||||
Younis et al., 2022 | x | |||||
Mehdipour et al., 2022 | x | |||||
Rabiee and Esmaeili 2023 | x | |||||
Simiao and Bernitsas 2013 | x | |||||
Weller et al., 2013 | x | |||||
Wang and Ng 2023 | x | |||||
Raghavan and Bernitsas 2011 | x | |||||
Raghavan 2007 | x | |||||
Wang et al., 2021 | x | |||||
Novara and McNabola 2021 | x | x | ||||
Zhou et al., 2020 | x | |||||
Zhang et al., 2021 | x | |||||
Zaarour et al., 2019 | ||||||
Yu et al., 2023 | x | |||||
Wu et al., 2021 | x | |||||
Wu et al., 2012 | x | |||||
Wang et al., 2022 | x | |||||
Wang et al., 2023 | x | |||||
Usharani et al., 2018 | x | |||||
Tabil et al., 2019 | x | |||||
Sun et al., 2019 | x | |||||
Su and Tseng 2023 | x | |||||
Stefanizzi et al., 2018 | x | |||||
Shi et al., 2021 | x | |||||
Pecunia et al., 2023 | x | |||||
Shan et al., 2017 | x | |||||
Rezaei et al., 2013 | x | |||||
Renzi et al., 2019 | x | |||||
Pertin et al., 2022 | x | |||||
Noh et al., 2023 | x | |||||
Mo et al., 2020 | x | |||||
Masana and Daqaq 2011 | x | |||||
Manoj et al., 2021 | x | |||||
Ma et al., 2020 | x | |||||
Lu et al., 2018 | x | |||||
Liu et al., 2020 | x | |||||
Liu et al., 2011 | x | |||||
Liu et al., 2012 | x | |||||
Li et al., 2020 | x | |||||
Li et al., 2022 | x | |||||
Li et al., 2022, 2 | x | |||||
Laws and Epps 2016 | x | x | x | |||
Manasseh et al., 2017 | x | x | ||||
Wu et al., 2022 | x | |||||
Rehman et al., 2023 | x | x | x | |||
Yan et al., 2020 | x | |||||
Zhou and Yang 2018 | x | |||||
Sun et al., 2018 | x | |||||
Xu et al., 2020 | x | |||||
Tamimi et al., 2022 | x | |||||
M.Zhang et al., 2021 | x | |||||
Shan et al., 2020 | x | |||||
Liu and D’Angelo 2014 | x | |||||
Qi et al., 2021 | x | |||||
Li et al., 2023 | x | |||||
Rahmawati et al., 2018 | x | x | ||||
Ye and Soga 2012 | x | x | ||||
Lu et al., 2018 | x | |||||
Behara et al., 2023 | x | |||||
Branch et al., 2022 | x | |||||
Branch et al., 2022 | x | |||||
Li et al., 2020 | x | |||||
Cai et al., 2021 | x | |||||
Ding et al., 2015 | x | |||||
Ding et al., 2020 | x | |||||
Ding et al., 2021 | x | |||||
Falment et al., 2023 | x | |||||
Sun et al., 2019 | x | |||||
Renzi et al., 2019 | x | x | ||||
Lu et al., 2018 | x | |||||
Li et al., 2020 | x | |||||
Ding et al., 2021 | x | |||||
Jiang et al., 2022 | x | |||||
Karami et al., 2022 | x | |||||
Ding et al., 2015 | x | |||||
Ma et al., 2022 | ||||||
Hamlehdar et al., 2019 |
References
- Daniel, I.; Ajami, N.K.; Castelletti, A.; Savic, D.; Stewart, R.A.; Cominola, A. A survey of water utilities’ digital transformation: Drivers, impacts, and enabling technologies. Npj Clean Water 2023, 6, 51. [Google Scholar] [CrossRef]
- Jasiūnas, J.; Lund, P.D.; Mikkola, J. Energy system resilience—A review. Renew. Sustain. Energy Rev. 2021, 150, 111476. [Google Scholar] [CrossRef]
- European Commission. Digitalising the energy System—EU Action Plan: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022DC0552 (accessed on 30 May 2024).
- Abdulkhaliq, H.S.; Crawley, F.; Luk, P.; Luo, Z. Piezoelectric energy harvester for harnessing rotational kinetic energy through linear energy conversion. Energies 2023, 16, 6504. [Google Scholar] [CrossRef]
- He, L.; Liu, R.; Liu, X.; Zhang, Z.; Zhang, L.; Cheng, G. A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling. Renew. Energy 2023, 210, 397–407. [Google Scholar] [CrossRef]
- European Commission. Hidden Hydro Oscillating Power for Europe. 2022. Available online: https://cordis.europa.eu/project/id/101084362 (accessed on 2 May 2024).
- Taghavifar, H.; Rakheja, S. Supervised ANN-assisted modeling of seated body apparent mass under vertical whole body vibration. Measurement 2018, 127, 78–88. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 2018, 212, 233–243. [Google Scholar] [CrossRef]
- Rabiee, A.H.; Esmaeili, M. Effect of the flow incidence angle on the VIV-based energy harvesting from triple oscillating cylinders. Sustain. Energy Technol. Assess. 2023, 57, 103312. [Google Scholar] [CrossRef]
- Rehman, S.; Alhems, L.M.; Alam, M.M.; Wang, L.; Toor, Z. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost. Ocean. Eng. 2023, 267, 113192. [Google Scholar] [CrossRef]
- Aramendia, I.; Saenz-Aguirre, A.; Boyano, A.; Fernandez-Gamiz, U.; Zulueta, E. Oscillating U-shaped body for underwater piezoelectric energy harvester power optimization. Micromachines 2019, 10, 737. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Abdelkefi, A.; Yu, H.; Gaidai, O.; Qin, X.; Zhu, H.; Wang, J. Piezoelectric energy harvesting from vortex-induced vibration of a circular cylinder: Effect of Reynolds number. Ocean. Eng. 2021, 235, 109378. [Google Scholar] [CrossRef]
- Hamlehdar, M.; Kasaeian, A.; Safaei, M.R. Energy harvesting from fluid flow using piezoelectrics: A critical review. Renew. Energy 2019, 143, 1826–1838. [Google Scholar] [CrossRef]
- Karami, P.; Ariaei, A.; Hasanpour, K. Optimum network configuration design of a multi-beam vortex-induced vibration piezoelectric energy harvester. Mech. Syst. Signal Process. 2022, 177, 109186. [Google Scholar] [CrossRef]
- Sharma, S.; Kiran, R.; Azad, P.; Vaish, R. A review of piezoelectric energy harvesting tiles: Available designs and future perspective. Energy Convers. Manag. 2022, 254, 115272. [Google Scholar] [CrossRef]
- McGrane, S.J.; Acuto, M.; Artioli, F.; Chen, P.Y.; Comber, R.; Cottee, J.; Farr-Wharton, G.; Green, N.; Helfgott, A.; Larcom, S.; et al. Scaling the nexus: Towards integrated frameworks for analysing water, energy and food. Geogr. J. 2019, 185, 419–431. [Google Scholar] [CrossRef]
- Ahmed, T.G.; Gudlaugsson, B.; Ogwumike, C.; Dawood, H.; Short, M.; Dawood, N. Evaluation framework for Techno-economic analysis of energy system retrofit technologies. Energy Build. 2023, 286, 112967. [Google Scholar] [CrossRef]
- Štreimikienė, D.; Šliogerienė, J.; Turskis, Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renew. Energy 2016, 85, 148–156. [Google Scholar] [CrossRef]
- Barney, A.; Petersen, U.R.; Polatidis, H. Energy scenarios for the Faroe Islands: A MCDA methodology including local social perspectives. Sustain. Futures 2022, 4, 100092. [Google Scholar] [CrossRef]
- Francis, C.; Hansen, P.; Guðlaugsson, B.; Ingram, D.M.; Thomson, R.C. Weighting Key Performance Indicators of Smart Local Energy Systems: A Discrete Choice Experiment. Energies 2022, 15, 9305. [Google Scholar] [CrossRef]
- Conti, P.; Schito, E.; Testi, D. Cost-benefit analysis of hybrid photovoltaic/thermal collectors in a nearly zero-energy building. Energies 2019, 12, 1582. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy. Energy Policy 2020, 137, 111137. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.; Gu, C.; Shen, X. Cost-benefit analysis of integrated energy system planning considering demand response. Energy 2020, 192, 116632. [Google Scholar] [CrossRef]
- Musango, J.K.; Brent, A.C.; Amigun, B.; Pretorius, L.; Müller, H. A system dynamics approach to technology sustainability assessment: The case of biodiesel developments in South Africa. Technovation 2012, 32, 639–651. [Google Scholar] [CrossRef]
- Moeis, A.O.; Desriani, F.; Destyanto, A.R.; Zagloel, T.Y.; Hidayatno, A.; Sutrisno, A. Sustainability assessment of the tanjung priok port cluster. Int. J. Technol. 2020, 11, 353–363. [Google Scholar] [CrossRef]
- Janipour, Z.; Swennenhuis, F.; de Gooyert, V.; de Coninck, H. Understanding contrasting narratives on carbon dioxide capture and storage for Dutch industry using system dynamics. Int. J. Greenh. Gas Control 2021, 105, 103235. [Google Scholar] [CrossRef]
- Heo, E.; Kim, J.; Boo, K.J. Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy, A.H.P. Renew. Sustain. Energy Rev. 2010, 14, 2214–2220. [Google Scholar] [CrossRef]
- Abdelkefi, A. Aeroelastic energy harvesting: A review. Int. J. Eng. Sci. 2016, 100, 112–135. [Google Scholar] [CrossRef]
- Latif, U.; Younis, M.Y.; Uddin, E.; Ali, Z.; Mubashar, A.; Abdelkefi, A. Impact of solid and hollow bluff bodies on the performance and dynamics of flag-based energy harvester. Sustain. Energy Technol. Assess. 2023, 55, 102882. [Google Scholar] [CrossRef]
- Yuan, M.; Thellufsen, J.Z.; Lund, H.; Liang, Y. The electrification of transportation in energy transition. Energy 2021, 236, 121564. [Google Scholar] [CrossRef]
- Panda, A.; Dauda, A.K.; Chua, H.; Tan, R.R.; Aviso, K.B. Recent advances in the integration of renewable energy sources and storage facilities with hybrid power systems. Clean. Eng. Technol. 2023, 12, 100598. [Google Scholar] [CrossRef]
- Motawa, I.; Oladokun, M. A model for the complexity of household energy consumption. Energy Build. 2015, 87, 313–323. [Google Scholar] [CrossRef]
- Li, G.; Kou, C.; Wang, Y.; Yang, H. System dynamics modelling for improving urban resilience in Beijing, China. Resour. Conserv. Recycl. 2020, 161, 104954. [Google Scholar] [CrossRef]
- Kang, S.; Kim, S.; Kim, S.; Lee, D. System dynamics model for the improvement planning of school building conditions. Sustainability 2020, 12, 4235. [Google Scholar] [CrossRef]
- Zolfagharian, M.; Walrave, B.; Romme AG, L.; Raven, R. Toward the dynamic modeling of transition problems: The case of electric mobility. Sustainability 2020, 13, 38. [Google Scholar] [CrossRef]
- Bernitsas, M.M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E.M.H. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 2008, 130, 041101. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
- Kim, E.S.; Sun, H.; Park, H.; Shin, S.-C.; Chae, E.J.; Ouderkirk, R.; Bernitsas, M.M. Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy. Renew. Sustain. Energy Rev. 2021, 145, 111094. [Google Scholar] [CrossRef]
- Naqvi, A.; Ali, A.; Altabey, W.A.; Kouritem, S.A. Energy harvesting from fluid flow using piezoelectric materials: A review. Energies 2022, 15, 7424. [Google Scholar] [CrossRef]
- Dhanwani, M.A.; Sarkar, A.; Patnaik BS, V. Lumped parameter models of vortex induced vibration with application to the design of aquatic energy harvester. J. Fluids Struct. 2013, 43, 302–324. [Google Scholar] [CrossRef]
- Xu, W.; Yang, M.; Wang, E.; Sun, H. Performance of single-cylinder VIVACE converter for hydrokinetic energy harvesting from flow-induced vibration near a free surface. Ocean Eng. 2020, 218, 108168. [Google Scholar] [CrossRef]
- Vasel-Be-Hagh, A.; Carriveau, R.; Ting DS, K. Underwater compressed air energy storage improved through Vortex Hydro Energy. Sustain. Energy Technol. Assess. 2014, 7, 1–5. [Google Scholar] [CrossRef]
- Qi, L.; Li, H.; Wu, X.; Zhang, Z.; Duan, W.; Yi, M. A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges. Renew. Energy 2021, 178, 1223–1235. [Google Scholar] [CrossRef]
- Cai, W.; Roussinova, V.; Stoilov, V. Piezoelectric wave energy harvester. Renew. Energy 2022, 196, 973–982. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S. A review of flow-induced vibration energy harvesters. Energy Convers. Manag. 2022, 254, 115223. [Google Scholar] [CrossRef]
- Cai, H.; Ziras, C.; You, S.; Li, R.; Honoré, K.; Bindner, H.W. Demand side management in urban district heating networks. Appl. Energy 2018, 230, 506–518. [Google Scholar] [CrossRef]
- Khojasteh, D.; Shamsipour, A.; Huang, L.; Tavakoli, S.; Haghani, M.; Flocard, F.; Farzadkhoo, M.; Iglesias, G.; Hemer, M.; Lewis, M.; et al. A large-scale review of wave and tidal energy research over the last 20 years. Ocean. Eng. 2023, 282, 114995. [Google Scholar] [CrossRef]
- Lewis, A.; Estefen, S.; Huckerby, J.; Musial, W.; Pontes, T.; Torres-Martinez, J. Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- IRENA and OEE (2023), Scaling Up Investments in Ocean Energy Technologies, International Renewable Energy Agency, Abu Dhabi. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_OEE_Scaling_up_investment_ocean_energy_2023.pdf?rev=8743c0e4f40f443fa8f4d1d0aebc1184 (accessed on 14 July 2023).
- Quaranta, E.; Bódis, K.; Kasiulis, E.; McNabola, A.; Pistocchi, A. Is there a residual and hidden potential for small and micro hydropower in Europe? A screening-level regional assessment. Water Resour. Manag. 2022, 36, 1745–1762. [Google Scholar] [CrossRef]
- Park, H.; Mentzelopoulos, A.P.; Bernitsas, M.M. Hydrokinetic energy harvesting from slow currents using flow-induced oscillations. Renew. Energy 2023, 214, 242–254. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Padilla, R.V.; Unger, A.; Barraza, R.; Thabet, A.M.; Izadgoshasb, I. A self-tunable wind energy harvester utilising a piezoelectric cantilever beam with bluff body under transverse galloping for field deployment. Energy Convers. Manag. 2021, 245, 114559. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Yurchenko, D.; Abdelkefi, A.; Zhang, M.; Liu, H. Usefulness of inclined circular cylinders for designing ultra-wide bandwidth piezoelectric energy harvesters: Experiments and computational investigations. Energy 2022, 239, 122203. [Google Scholar] [CrossRef]
- Ye, G.; Soga, K. Energy harvesting from water distribution systems. J. Energy Eng. 2012, 138, 7–17. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Bwire, C.; Mohan, G.; Karthe, D.; Caucci, S.; Pu, J. A Systematic Review of Methodological Tools for Evaluating the Water, Energy, Food, and One Health Nexus in Transboundary Water Basins. Environ. Manag. 2023, 72, 598–613. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A. The resilience of urban social-ecological-technological systems (SETS): A review. Sustain. Cities Soc. 2023, 99, 104910. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual. University of Leiden. 2023. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 15 April 2024).
- Manasseh, R.; Sannasiraj, S.A.; McInnes, K.L.; Sundar, V.; Jalihal, P. Integration of wave energy and other marine renewable energy sources with the needs of coastal societies. Int. J. Ocean. Clim. Syst. 2017, 8, 19–36. [Google Scholar] [CrossRef]
- Hafizh, M.; Muthalif, A.G.; Renno, J.; Paurobally, M.R.; Ali MS, M. A vortex-induced vibration-based self-tunable airfoil-shaped piezoelectric energy harvester for remote sensing applications in water. Ocean. Eng. 2023, 269, 113467. [Google Scholar] [CrossRef]
- Del Priore, E.; Romano, G.P.; Lampani, L. Coupled electro-aeroelastic energy harvester model based on piezoelectric transducers, VIV-galloping interaction and nonlinear switching circuits. Smart Mater. Struct. 2023, 32, 075012. [Google Scholar] [CrossRef]
- He, L.; Liu, R.; Liu, X.; Zheng, X.; Zhang, L.; Lin, J. A piezoelectric-electromagnetic hybrid energy harvester for low-frequency wave motion and self-sensing wave environment monitoring. Energy Convers. Manag. 2024, 300, 117920. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Hajj, M.R.; Nayfeh, A.H. Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 2012, 70, 1377–1388. [Google Scholar] [CrossRef]
- Zhang, L.B.; Dai, H.L.; Abdelkefi, A.; Wang, L. Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections. Energy 2019, 167, 970–981. [Google Scholar] [CrossRef]
- Wang, J.; Su, Z.; Li, H.; Ding, L.; Zhu, H.; Gaidai, O. Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations. Ocean. Eng. 2020, 208, 107455. [Google Scholar] [CrossRef]
- Ding, L.; Mao, X.; Yang, L.; Yan, B.; Wang, J.; Zhang, L. Effects of installation position of fin-shaped rods on wind-induced vibration and energy harvesting of aeroelastic energy converter. Smart Mater. Struct. 2021, 30, 025026. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Zhang, M.; Abdelkefi, A.; Yu, H.; Ge, X.; Liu, H. Enhancing energy harvesting from flow-induced vibrations of a circular cylinder using a downstream rectangular plate: An experimental study. Int. J. Mech. Sci. 2021, 211, 106781. [Google Scholar] [CrossRef]
- Wang, J.; Gu, S.; Yurchenko, D.; Hu, G.; Wei, R. On the investigation of ash deposition effect on flow-induced vibration energy harvesting. Mech. Syst. Signal Process. 2022, 174, 109092. [Google Scholar] [CrossRef]
- Erturk, A.; Renno, J.M.; Inman, D.J. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 2009, 20, 529–544. [Google Scholar] [CrossRef]
- Narayanamurthy, V.; Manoj, K.; Korla, S. Performance of a cantilever energy harvester under harmonic and random excitations. Def. Sci. J. 2021, 71, 231. [Google Scholar]
- Rostami, A.B.; Armandei, M. Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renew. Sustain. Energy Rev. 2017, 70, 193–214. [Google Scholar] [CrossRef]
- Zhang, B.; Mao, Z.; Song, B.; Tian, W.; Ding, W. Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation. Ocean. Eng. 2018, 165, 55–68. [Google Scholar] [CrossRef]
- Renzi, M.; Rudolf, P.; Štefan, D.; Nigro, A.; Rossi, M. Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study. Appl. Energy 2019, 250, 665–676. [Google Scholar] [CrossRef]
- Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.; Scarpa, F.; Leng, J.; Liu, Y. A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 2018, 201, 121–130. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Li, X.; Lu, Y.; Zhang, S.; Cheng, Z. Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy 2019, 61, 337–345. [Google Scholar] [CrossRef]
- He, L.; Zhou, J.; Zhang, Z.; Gu, X.; Yu, Y.; Cheng, G. Research on multi-group dual piezoelectric energy harvester driven by inertial wheel with magnet coupling and plucking. Energy Convers. Manag. 2021, 243, 114351. [Google Scholar] [CrossRef]
- Han, B.; Zhang, S.; Liu, J.; Jiang, Y. Design and Development of a 2 × 2 Array Piezoelectric–Electromagnetic Hybrid Energy Harvester. Micromachines 2022, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, C.; Lv, M. An array magnetic coupling piezoelectric and electromagnetic energy harvester for rotary excitation. Micromachines 2023, 14, 1527. [Google Scholar] [CrossRef]
- Shi, T.; Hu, G.; Zou, L.; Song, J.; Kwok, K.C. Performance of an omnidirectional piezoelectric wind energy harvester. Wind. Energy 2021, 24, 1167–1179. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Shan, X.; Hu, L.; Zhang, X.; Hou, C.; Xie, T. A novel bird-shape broadband piezoelectric energy harvester for low frequency vibrations. Micromachines 2023, 14, 421. [Google Scholar] [CrossRef]
- Bernitsas, M.B.; Dritz, T. Low Head, Vortex Induced Vibrations River Energy Converter (No. I&I Final Report); Vortex Hydro Energy, Inc.: Ann Arbor, MI, USA, 2006. [Google Scholar]
- Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Shen, Y.; Huang, X.; Kwak, K.S. Resource configuration for minimizing source energy consumption in multi-carrier networks with energy harvesting relay and data-rate guarantee. Comput. Commun. 2020, 149, 121–133. [Google Scholar] [CrossRef]
- Gudlaugsson, B.; Secnik, M.; Stepanovic, I.; Bronkema, B.; Hocevar, M.; Finger, D. Multi-Dimensional Feasibility Assessment of the Deployment of Vortex-induced vibration Energy Harvester to utilize hidden hydro potential in European water and energy infrastructure. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 10664. [Google Scholar]
Wave Energy | Tidal Range (Barrage) | Tidal Stream | OTEC | |
---|---|---|---|---|
Theoretical Energy Generation Potential (TWh/yr) | 29,500 | 3 | 48 | 44,000 |
Current Capacity Deployment (MW/yr) | 2.31 | 521.5 | 10.6 | 0.23 |
Country | Number of Articles | Country | Number of Articles |
---|---|---|---|
China | 55 | Malaysia | 2 |
USA | 13 | Japan | 2 |
India | 8 | Ireland | 2 |
Italy | 8 | Spain | 2 |
UK | 6 | Saudi Arabia | 1 |
Singapore | 6 | France | 1 |
Canada | 5 | Norway | 1 |
Australia | 5 | Kuwait | 1 |
Brazil | 4 | Romania | 1 |
Iran | 4 | Pakistan | 1 |
Republic of Korea | 3 | Vietnam | 1 |
Lithuania | 3 | Finland | 1 |
Taiwan | 2 |
Authors | Year | Title | Journal | Number of Citation |
---|---|---|---|---|
Abdessattar Abdelkefi; Muhammad R. Hajj; Ali H. Nayfeh | 2012 | Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders | Nonlinear Dynamics | 127 |
Abdessattar Abdelkefi | 2016 | Aeroelastic energy harvesting: A review | International Journal of Engineering Science | 503 |
Lei Zhang; H. L. Dai; Abdessattar Abdelkefi; Lin Wang | 2019 | Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections | Energy | 104 |
Junlei Wang; Linfeng Geng; Lin Ding; Hongjun Zhu; Daniil Yurchenko | 2020 | The state-of-the-art review on energy harvesting from flow-induced vibrations | Applied Energy | 490 |
Junlei Wang; Zhen Su; Hang Li; Lin Ding; Hongjun Zhu; Oleg Gaidai | 2020 | Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations | Ocean Engineering | 58 |
Lin Ding; Xiangxi Mao; Lin Yang; Bowen Yan; Junlei Wang; Li Zhang | 2021 | Effects of installation position of fin-shaped rods on wind-induced vibration and energy harvesting of aeroelastic energy converter | Smart Materials and Structures | 31 |
Mingjie Zhang; Chengyun Zhang; Abdessattar Abdelkefi; Yu Haiyan; Oleg Gaidai; Xiang Qin; Hongjun Zhu; Junlei Wang | 2021 | Piezoelectric energy harvesting from vortex-induced vibration of a circular cylinder: Effect of Reynolds number | Ocean Engineering | 49 |
Junlei Wang; Chengyun Zhang; Mingjie Zhang; Abdessattar Abdelkefi; Yu Haiyan; Xiaomeng Ge; Huadong Liu | 2021 | Enhancing energy harvesting from flow-induced vibrations of a circular cylinder using a downstream rectangular plate: An experimental study | International Journal of Mechanical Sciences | 44 |
Junlei Wang; Chengyun Zhang; Daniil Yurchenko; Abdessattar Abdelkefi; Mingjie Zhang; Huadong Liu | 2022 | Usefulness of inclined circular cylinders for designing ultra-wide bandwidth piezoelectric energy harvesters: Experiments and computational investigations | Energy | 24 |
U. Latif; M. Y. Younis; Emad Uddin; Z. Ali; A. Mubashar; Abdessattar Abdelkefi | 2023 | Impact of solid and hollow bluff bodies on the performance and dynamics of flag-based energy harvester | Sustainable Energy Technologies and Assessments | 9 |
Type of Studies | Number of Articles | Relative % |
---|---|---|
Applications in Case Study | 23 | 17% |
Experimental Data | 116 | 83% |
Application Area | Number of Articles | Relative % | Example of Research Area |
---|---|---|---|
Wind | 15 | 11% |
|
Water | 26 | 19% | |
Unclear/Uncategorized | 98 | 70% |
Spatial Scale on EH Application | Number of Articles | Relative % |
---|---|---|
Whole System | 10 | 7% |
Integration as a Large-Scale Solution | 5 | 3.5% |
Integration as a Small-Scale Solution | 18 | 13% |
Integration as Hybrid Solutions | 7 | 5% |
Micro-Scale Device | 45 | 32% |
Unclear/Uncategorized | 54 | 39% |
Assessment Area | Number of Articles | Relative % | Key Assessment Metrics |
---|---|---|---|
Technical Scale | 131 | 94% | Technical Metrics
|
Social Scale | 2 | 1% | Social Metrics
|
Economic Scale | 6 | 4% | Economic Metrics
|
Environmental Scale | 5 | 3% | Environmental Metrics
|
Risk Assessment | 4 | 3% | |
Stakeholder Engagement | 1 | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudlaugsson, B.; Bronkema, B.M.; Stepanovic, I.; Finger, D.C. A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting. Energies 2024, 17, 5666. https://doi.org/10.3390/en17225666
Gudlaugsson B, Bronkema BM, Stepanovic I, Finger DC. A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting. Energies. 2024; 17(22):5666. https://doi.org/10.3390/en17225666
Chicago/Turabian StyleGudlaugsson, Bjarnhedinn, Bethany Marguerite Bronkema, Ivana Stepanovic, and David Christian Finger. 2024. "A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting" Energies 17, no. 22: 5666. https://doi.org/10.3390/en17225666
APA StyleGudlaugsson, B., Bronkema, B. M., Stepanovic, I., & Finger, D. C. (2024). A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting. Energies, 17(22), 5666. https://doi.org/10.3390/en17225666