Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression
Abstract
:1. Introduction
2. Support Vector Regression
3. Sparrow Search Algorithm
4. Improved Sparrow Search Algorithm
4.1. Discoverer Position Update Strategy
4.2. Scouter Position Update Strategy
- (1)
- Gaussian mutation
- (2)
- Cauchy mutation
- (3)
- Gravity coefficient
4.3. ISSA Flow
- (1)
- Determine the training data set .
- (2)
- Set the main parameters such as P, M, B, , , .
- (3)
- Set the initial positions of the sparrows, evaluate their fitness levels, and update and .
- (4)
- (5)
- Update the positions and re-evaluate the fitness of the subsequent generation of sparrows. and update and .
- (6)
- If the iteration limit is reached, stop the process and output the optimal solution. If not, proceed back to step (4).
5. SOH Prediction Model Based on ISSA-SVR
5.1. Experimental Data
5.2. Feature Extraction
5.3. Evaluation Criterion
5.4. Prediction Model
6. Experiments and Analysis
6.1. Model Performance Comparison
6.2. Dependence of ISSA-SVR on Feature Set
6.3. Universality Validation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.; Liu, Y. Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef]
- Chen, C.; Pecht, M. Prognostics of lithium-ion batteries using model-based and data-driven methods. In Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), Beijing, China, 23–25 May 2012; pp. 1–6. [Google Scholar]
- Qu, X.; Song, Y.; Liu, D.; Cui, X.; Peng, Y. Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model. Microelectron. Reliab. 2020, 114, 113857. [Google Scholar] [CrossRef]
- Ge, M.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K.; Poll, S.; Christophersen, J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans. Instrum. Meas. 2008, 58, 291–296. [Google Scholar] [CrossRef]
- Zhou, D.; Zheng, W.; Chen, S.; Fu, P.; Wang, T. Research on State of Health Prediction Model for Lithium Batteries Based on Actual Diverse Data. Energy 2021, 230, 120851. [Google Scholar] [CrossRef]
- Li, J.; Lai, Q.; Wang, L.; Lyu, C.; Wang, H. A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery. Energy 2016, 114, 1266–1276. [Google Scholar] [CrossRef]
- Baghdadi, I.; Briat, O.; Delétage, J.Y.; Gyan, P.; Vinassa, J.M. Lithium battery aging model based on Dakin’s degradation approach. J. Power Sources 2016, 325, 273–285. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Peng, B. Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method. Energy Procedia 2019, 158, 3008–3013. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Chen, L.; Xun, H.; Chen, W. Estimation of state of charge of lithium battery based on parameter identification of fractional order model. J. Phys. Conf. Ser. 2021, 1774, 012049. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, B.; Wang, X.; Liu, Y.; Fu, Y. Estimation of the state of charge of lithium batteries based on adaptive unscented Kalman filter algorithm. Electronics 2020, 9, 1425. [Google Scholar] [CrossRef]
- Oji, T.; Zhou, Y.; Ci, S.; Kang, F.; Chen, X.; Liu, X. Data-driven methods for battery soh estimation: Survey and a critical analysis. IEEE Access 2021, 9, 126903–126916. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, K.; Yu, X.; Wang, Y. State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR. Electrochim. Acta 2022, 428, 140940. [Google Scholar] [CrossRef]
- Lin, M.; Yan, C.; Meng, J.; Wang, W.; Wu, J. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression. Energy 2022, 250, 123829. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y.; Lu, S.; Wang, J.; Zhang, X. Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony. IEEE Trans. Veh. Technol. 2019, 68, 9543–9553. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Zhao, K.; Wang, L.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Qin, T.; Zeng, S.; Guo, J. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model. Microelectron. Reliab. 2015, 55, 1280–1284. [Google Scholar] [CrossRef]
Optimize | Setting Parameters |
---|---|
GA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.9, = 0.1, = 0.5 |
GWO-SVR | M = 300, V = 2, B = [100, 100], P = 15 |
SSA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.7, ST = 0.6 |
ISSA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.7, , |
Optimizer | SSA-SVR | ISSA-SVR | GWO-SVR | GA-SVR |
---|---|---|---|---|
MAE | 0.12 | 0.08 | 0.13 | 0.09 |
MAPE (%) | 0.17 | 0.11 | 0.18 | 0.12 |
MSE | 0.03 | 0.02 | 0.03 | 0.04 |
RMSE | 0.17 | 0.14 | 0.17 | 0.20 |
Proportion | 50% | 60% | 70% |
---|---|---|---|
MAE | 0.13 | 0.10 | 0.09 |
MAPE (%) | 0.11 | 0.08 | 0.07 |
MSE | 0.03 | 0.03 | 0.02 |
RMSE | 0.17 | 0.17 | 0.14 |
Optimizer | SSA-SVR | ISSA-SVR | SSA-SVR | ISSA-SVR | SSA-SVR | ISSA-SVR |
---|---|---|---|---|---|---|
Battery | B0006 | B0007 | B0018 | |||
MAE | 0.23 | 0.16 | 0.18 | 0.11 | 0.22 | 0.15 |
MAPE (%) | 0.40 | 0.31 | 0.26 | 0.15 | 0.37 | 0.28 |
MSE | 0.29 | 0.09 | 0.28 | 0.05 | 0.29 | 0.07 |
RMSE | 0.53 | 0.30 | 0.52 | 0.22 | 0.54 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Zhu, X.; Zhang, W.; Zheng, J. Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies 2024, 17, 5671. https://doi.org/10.3390/en17225671
Yin D, Zhu X, Zhang W, Zheng J. Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies. 2024; 17(22):5671. https://doi.org/10.3390/en17225671
Chicago/Turabian StyleYin, Deyang, Xiao Zhu, Wanjie Zhang, and Jianfeng Zheng. 2024. "Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression" Energies 17, no. 22: 5671. https://doi.org/10.3390/en17225671
APA StyleYin, D., Zhu, X., Zhang, W., & Zheng, J. (2024). Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies, 17(22), 5671. https://doi.org/10.3390/en17225671