Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation
Abstract
:1. Introduction
2. Methodology of Numerical Modeling
2.1. Polarization Phenomena in AEM Water Electrolysis Cell
2.2. Balance of Plant in AEM Water Electrolysis System Heat Transfer
2.2.1. Electrical Heater
2.2.2. Compressor
2.2.3. Electrolyte Pump
2.2.4. AEM Water Electrolysis System Configuration
- All system components are operated in a steady state;
- All gases used in the system are assumed to be ideal;
- Radiant heat transfer is not considered in this study;
- In the AEM water electrolysis system, heat exchange calculations between the cell stack and the heat exchanger are conducted based on ref. [22], considering the electrochemical heat generated during water electrolysis in the cell stack and the heat exchange processes in both the heater and heat exchanger;
- The hydrogen production pressure in AEM water electrolysis would be managed in two stages: primary pressurization through cell stack operating pressure and secondary pressurization via a downstream hydrogen compressor;
- To standardize the application of the system’s electric heater, it is assumed that the electrolyzer and the inlet temperature of the electrolyzer must be ≤10 °C, with the outlet temperature equal to the electrolyzer temperature.
Parameter | Value |
---|---|
Number of electrolyzers in the AEM water electrolysis system | 1 |
Number of single cells in an electrolyzer | 120 |
The efficiency of the heat exchanger (%) | 70 |
The efficiency of the electrolyte pump (%) | 80 |
Polytropic coefficient of the hydrogen compressor | 1.4 |
The efficiency of the heater (%) | 100 |
3. Results and Discussion
3.1. Effects of Operating Parameters on AEM Water Electrolysis Cell
3.2. Effects of Operating Parameters on AEM Water Electrolysis System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasi, R.; Setzler, B.P.; Lin, S.; Wang, J.; Zhao, Y.; Xu, H.; Pivovar, B.; Tian, B.; Chen, X.; Wu, G.; et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, e1805876. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 11830–11895. [Google Scholar] [CrossRef] [PubMed]
- Shaya, N.; Glöser-Chahoud, S. A review of life cycle assessment (LCA) studies for hydrogen production technologies through water electrolysis: Recent advances. Energies 2024, 17, 3968. [Google Scholar] [CrossRef]
- Sun, L.; Luo, Q.; Dai, Z.; Ma, F. Material libraries for electrocatalytic overall water-splitting. Coord. Chem. Rev. 2021, 444, 214049. [Google Scholar] [CrossRef]
- Lazaridis, T.; Stühmeier, B.M.; Gasteiger, H.A.; El-Sayed, H.A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 2022, 5, 363–373. [Google Scholar] [CrossRef]
- Ju, W.; Heinz, M.; Burnat, D.; Battaglia, C.; Vogt, U.F. Alkaline water electrolysis: Membrane development & characterization. In Proceedings of the 1st International Conference on Electrolysis (ICE 2017), Copenhagen, Denmark, 13–15 June 2017. [Google Scholar]
- Moradi Nafchi, F.; Afshari, E.; Baniasadi, E. Anion exchange membrane water electrolysis: Numerical modeling and electrochemical performance analysis. Int. J. Hydrogen Energy 2024, 52, 306–321. [Google Scholar] [CrossRef]
- Niyati, A.; Moranda, A.; Beigzadeh Arough, P.; Navarra, F.M.; Paladino, O. Electrochemical performance of a hybrid NiCo2O4@NiFelt electrode at different operating temperatures and electrolyte pH. Energies 2024, 17, 3703. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Liu, M.; Sun, J.; Shangguan, Z. Dynamic simulation and performance analysis of alkaline water electrolyzers for renewable energy-powered hydrogen production. Energies 2024, 17, 4915. [Google Scholar] [CrossRef]
- Moradi Nafch, F.; Afshari, E.; Baniasadi, E. Numerical simulation and performance analysis of solar hydrogen production using anion exchange membrane electrolyzer and blending with natural gas. Energy Convers. Manag. 2024, 299, 117874. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Farooqui, A.; Bartocci, P.; Shamim, T. AEM-electrolyzer based hydrogen integrated renewable energy system optimisation model for distributed communities. Energy Convers. Manag. 2023, 285, 117025. [Google Scholar] [CrossRef]
- Enapter. EL 500. Available online: https://www.enapter.com/app/uploads/2021/12/Enapter_Technical-Sales_Presentation_July-2021.pdf (accessed on 5 October 2024).
- Xu, Q.; Zhang, L.; Zhang, J.; Wang, J.; Hu, Y.; Jiang, H.; Li, C. Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation. EnergyChem 2022, 4, 100087. [Google Scholar] [CrossRef]
- Vidales, A.G.; Millan, N.C.; Bock, C. Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chem. Eng. Res. Des. 2024, 194, 636–648. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Milewski, J.; Guandalini, G.; Campanari, S. Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches. J. Power Sources 2014, 269, 203–211. [Google Scholar] [CrossRef]
- Han, B.; Mo, J.; Kang, Z.; Yang, G.; Barnhill, W.; Zhang, F.-Y. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy. Int. J. Hydrogen Energy 2017, 42, 4478–4489. [Google Scholar] [CrossRef]
- Henao, C.; Agbossou, K.; Hammoudi, M.; Dubé, Y.; Cardenas, A. Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser. J. Power Sources 2014, 250, 58–67. [Google Scholar] [CrossRef]
- Gilliam, R.; Graydon, J.; Kirk, D.; Thorpe, S. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 2007, 32, 359–364. [Google Scholar] [CrossRef]
- Cho, M.K.; Park, H.-Y.; Choe, S.; Yoo, S.J.; Kim, J.Y.; Kim, H.-J.; Henkensmeier, D.; Lee, S.Y.; Sung, Y.-E.; Park, H.S.; et al. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis. J. Power Sources 2017, 347, 283–290. [Google Scholar] [CrossRef]
- Marangio, F.; Santarelli, M.; Cali, M. Theoretical model and experimental analysis of a high-pressure PEM water electrolyser for hydrogen production. Int. J. Hydrogen Energy 2009, 34, 1143–1158. [Google Scholar] [CrossRef]
- Liso, V.; Savoia, G.; Araya, S.S.; Cinti, G.; Kær, S.K. Modelling and experimental analysis of a polymer electrolyte membrane water electrolysis cell at different operating temperatures. Energies 2024, 11, 3273. [Google Scholar] [CrossRef]
- Al-Megren, A.H. Advances in Natural Gas Technology; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Sonntag, R.E.; Borgnakke, C.; Van Wylen, G.J. Fundamentals of Thermodynamics, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Luo, Q.; Sun, B.; Tian, H. The characteristic of polytropic coefficient of compression stroke in hydrogen internal combustion engine. Int. J. Hydrogen Energy 2014, 39, 13787–13792. [Google Scholar] [CrossRef]
Parameters | Value | Unit |
---|---|---|
Universal gas constant R | 8.3145 | J mol−1 K−1 |
Faraday’s constant F | 96,485 | A s mol−1 |
Operating temperature T | 333.15 | K |
Operating pressure P | 1 | atm |
LGDL thickness | 0.2 | m |
Water molar mass | 18 × 10−3 | kg mol1 |
Oxygen molar mass | 32 × 10−3 | kg mol1 |
Water viscosity | 1.1 × 10−3 | Pa s |
Membrane water permeability | 1.58 × 10−18 | m2 |
Membrane humidification degree λ | 18 | |
Ni nanoparticle (HER) exchange current density jo | 1.91 | A m−2 |
Ni oxide (OER) exchange current density jo | 0.056 | A m−2 |
Critical pressure of | 12.8 | atm |
Critical temperature of | 33.3 | K |
Critical pressure of | 49.7 | atm |
Critical temperature of | 154.4 | K |
Critical pressure of | 218.3 | atm |
Critical temperature of | 647.3 | K |
Empirical a | 3.640 × 10−4 | |
Empirical b | 2.334 | |
Empirical α | 0.785 | |
Diffusion coefficient of water | 1.28 × 10−1 | m2 s−1 |
Electro-osmotic drag coefficient | 3 | |
Hydrogen gas partial pressure | 0.5 | Pa |
Oxygen gas partial pressure | 0.2 | Pa |
Water vapor partial pressure | 1 | Pa |
Anode and cathode cross-sectional surface areas | 0.1 | m2 |
Thickness of the anode and cathode | 0.0002 | m |
Pressure at anode | 1 | atm |
Pressure at cathode | 13.6 | atm |
Active area of the membrane | 0.0005 | m2 |
Porosity of the electrode | 0.3 | |
Percolation threshold of the electrode | 0.11 | |
Distance between the anode or cathode and the membrane | 10−5 | m |
Number of electrons n | 2 | |
AEM thickness | 100 × 10−6 | m |
Current Density (A/cm2) | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Voltage of this study | 2.06 | 2.09 | 2.12 | 2.14 | 2.16 | 2.19 | 2.21 | 2.23 | 2.25 | 2.27 | 2.30 |
Voltage of ref. [15] | 2.01 | 2.05 | 2.08 | 2.12 | 2.14 | 2.17 | 2.19 | 2.20 | 2.21 | 2.22 | 2.23 |
Error rate (%) | 2.73 | 1.97 | 1.69 | 0.91 | 1.07 | 0.74 | 0.86 | 1.41 | 1.95 | 2.47 | 2.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-C.; Gu, R.-E.; Chan, Y.-H. Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation. Energies 2024, 17, 5682. https://doi.org/10.3390/en17225682
Chang S-C, Gu R-E, Chan Y-H. Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation. Energies. 2024; 17(22):5682. https://doi.org/10.3390/en17225682
Chicago/Turabian StyleChang, Shing-Cheng, Ru-En Gu, and Yen-Hsin Chan. 2024. "Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation" Energies 17, no. 22: 5682. https://doi.org/10.3390/en17225682
APA StyleChang, S. -C., Gu, R. -E., & Chan, Y. -H. (2024). Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation. Energies, 17(22), 5682. https://doi.org/10.3390/en17225682