Analysis of Key Factors Affecting Case-to-Ambient Thermal Resistance in Thermal Modeling of Power Devices
Abstract
:1. Introduction
Literature Review
2. Analysis and Calculation of the Rca Ignoring Thermal Coupling
2.1. Analysis of the Rca for a Single Power Device
2.2. Methods to Calculate the Resistance of Rca
3. Thermal Coupling Between Power Devices [9]
3.1. Thermal Analysis Considering the Thermal Coupling
3.2. FEM Models for Adjacent Devices of the MOSFET and Diode
3.3. Thermal Coupling Testing Between the Devices
- (1)
- When testing the MOSFET, it is powered on while in the on-state, and all other devices are left in an open-circuit configuration.
- (2)
- Similarly, when testing the diode, it is powered on in the on-state while the other devices remain in an open-circuit state.
- (1)
- A PCB with closely spaced devices (designated as Type I), including MOSFETs, diodes, capacitors, inductors, and others. In this configuration, the convective thermal dissipation of the devices is restricted, resulting in significant thermal coupling.
- (2)
- A PCB with ample spacing (designated as Type II) between MOSFETs, diodes, and other components. This setup provides ample convective thermal dissipation space, minimizing the coupling effect.
3.4. Calculation of the Rca
4. Discussions
- (1)
- The ambient temperature
- (2)
- The case temperature of the power devices
- (3)
- Thermal coupling effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, T.; Lu, D.D.-C.; Siwakoti, Y. Electro-Thermal Modeling of a Boost Converter Considering Device Self-heating. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 25–28 November 2019; pp. 1–6. [Google Scholar]
- Cheng, T.; Lu, D.D.-C.; Siwakoti, Y.P. A MOSFET SPICE Model with Integrated Electro-Thermal Averaged Modeling, Aging, and Lifetime Estimation. IEEE Access 2021, 9, 5545–5554. [Google Scholar] [CrossRef]
- An, L.; Cheng, T.; Lu, D.D.-C. Single-Stage Boost-Integrated Full-Bridge Converter with Simultaneous MPPT, Wide DC Motor Speed Range, and Current Ripple Reduction. IEEE Trans. Ind. Electron. 2019, 66, 6968–6978. [Google Scholar] [CrossRef]
- Cheng, T. Electro-Thermal Modelling and Lifetime Evaluation of Power MOSFETs and Converters. Ph.D. Thesis, University of Technology Sydney, Sydney, Australia, 2022. [Google Scholar]
- Kuprat, J.; van der Broeck, C.H.; Andresen, M.; Kalker, S.; Liserre, M.; DeDoncker, R.W. Research on Active Thermal Control: Actual Status and Future Trends. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6494–6506. [Google Scholar] [CrossRef]
- Kolar, J.W.; Krismer, F. Power Electronics Design 4.0. In Proceedings of the IEEE Design Automation for Power Electronics Workshop (DAPE), Portland, OR, USA, 22 September 2018. [Google Scholar]
- Ma, K.; Liserre, M.; Blaabjerg, F.; Kerekes, T. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter. IEEE Trans. Power Electron. 2015, 30, 590–602. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Kotecha, R.M.; Bahman, A.S.; Iannuzzo, F.; Mantooth, H.A. Mission-Profile-Based Lifetime Prediction for a SiC mosfet Power Module Using a Multi-StepCondition-Mapping Simulation Strategy. IEEE Trans. Power Electron. 2019, 34, 9698–9708. [Google Scholar] [CrossRef]
- Wei, K. Analysis and Modeling of Thermal Coupling Effect Between Power Semiconductor Devices. Ph.D. Thesis, University of Technology Sydney, Sydney, Australia, 2020. [Google Scholar]
- Drofenik, U.; Cottet, D.; Meyer, J.-M.; Kolar, J.W. Modelling the thermal coupling between internal power semiconductor dies of a water-cooled 3300V/1200A HiPak IGBT module. In Proceedings of the Conference for Power Electronics, Intelligent Motion, Power Quality (PCIM’07), Nuremberg, Germany, 22–24 May 2007; pp. 22–24. [Google Scholar]
- Jauregui, D. Estimating TJ of SO-8 Power MOSFETs; International Rectifier Semiconductor: El Segundo, CA, USA, 2006; pp. 99–102. [Google Scholar]
- Tang, Y.; Ma, H. Dynamic electrothermal model of paralleled IGBT modules with unbalanced stray parameters. IEEE Trans. Power Electron. 2017, 32, 1385–1399. [Google Scholar] [CrossRef]
- Wang, X.-X.; Jing, L.; Wang, Y.; Gao, Q.; Sun, Q. The influence of junction temperature variation of LED on the lifetime estimation during accelerated aging test. IEEE Access 2018, 7, 4773–4781. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, R.; Wang, H.; Liserre, M.; Blaabjerg, F. A Thermal Modeling Method Considering Ambient Temperature Dynamics. IEEE Trans. Power Electron. 2019, 35, 6–9. [Google Scholar] [CrossRef]
- Sheltami, K.; Refai-Ahmed, G.; Shwehdi, M. Thermal management of high power transformer in different outdoor environment conditions. In Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Cat. No. 04CH37543), Las Vegas, NV, USA, 1–4 June 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 543–548. [Google Scholar]
- Sintamarean, C.; Blaabjerg, F.; Wang, H. A novel electro-thermal model for wide bandgap semiconductor based devices. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–10. [Google Scholar]
- Xu, S.; Yang, X.; Chen, M.; Lai, W.; Wang, Y.; Ran, L. Analysis and Modeling for the Real-Time Condition Evaluating of MOSFET Power Device Using Adaptive Neuro-Fuzzy Inference System. IEEE Access 2019, 7, 6510–6518. [Google Scholar] [CrossRef]
- Williams, R.K.; Darwish, M.N.; Blanchard, R.A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. The trench power MOSFET—Part II: Application specific VDMOS, LDMOS, packaging, and reliability. IEEE Trans. Electron Devices 2017, 64, 692–712. [Google Scholar] [CrossRef]
- Raciti, A.; Cristaldi, D.; Greco, G.; Vinci, G.; Bazzano, G. Electrothermal PSpice modeling and simulation of power modules. IEEE Trans. Ind. Electron. 2015, 62, 6260–6271. [Google Scholar] [CrossRef]
- Shabany, Y. Heat Transfer: Thermal Management of Electronics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ying, S.-P.; Fu, H.-K.; Hong, R.-C. The study of thermal resistance measurement of multichip LED. IEEE Trans. Electron Devices 2015, 62, 3291–3295. [Google Scholar] [CrossRef]
- Vermeersch, B.; De Mey, G. Dependency of thermal spreading resistance on convective heat transfer coefficient. Microelectron. Reliab. 2008, 48, 734–738. [Google Scholar] [CrossRef]
- Odendaal, W.G.; Ferreira, J.A. A thermal model for high-frequency magnetic components. IEEE Trans. Ind. Appl. 1999, 35, 924–931. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Ishizuka, M.; Nakagawa, S.; Watanabe, K. Development of practical thermal design technique of printed circuit boards for power electronics. In Proceedings of the 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2–5 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–7. [Google Scholar]
- Laloya, E.; Lucia, O.; Sarnago, H.; Burdio, J.M. Heat management in power converters: From state of the art to future ultrahigh efficiency systems. IEEE Trans. Power Electron. 2016, 31, 7896–7908. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, F.; Zhu, J. Modern Electric Vehicle Technology; Beijing University of Technology Press: Beijing, China, 2002. [Google Scholar]
- Liu, J.; Wang, Z. Power Electronics Technology; China Machine Press: Beijing, China, 2009. [Google Scholar]
- Zhang, Y.; Wang, Z.; Wang, H.; Blaabjerg, F. Artificial Intelligence-Aided Thermal Model Considering Cross-Coupling Effects. IEEE Trans. Power Electron. 2020, 35, 9998–10002. [Google Scholar] [CrossRef]
- Wei, K.; Shi, P.; Bao, P.; Gao, X.; Du, Y.; Qin, Y. Thermal Analysis and Junction Temperature Estimation under Different Ambient Temperatures Considering Convection Thermal Coupling between Power Devices. Appl. Sci. 2023, 13, 5209. [Google Scholar] [CrossRef]
- Haque, S.; Xing, K.; Suchicital, C.; Nelson, D.J.; Lu, G.-Q.; Borojevic, D. Thermal management of high-power electronics modules packaged with interconnected parallel plates. In Proceedings of the Fourteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 98CH36195), San Diego, CA, USA, 10–12 March 1998; IEEE: Piscataway, NJ, USA, 1998; pp. 111–119. [Google Scholar]
- Wei, K.; Lu, D.D.-C.; Zhang, C.; Siwakoti, Y.P.; Soon, J.L.; Yao, Q. Modeling and Analysis of Thermal Resistances and Thermal Coupling Between Power Devices. IEEE Trans. Electron Devices 2019, 66, 4302–4308. [Google Scholar] [CrossRef]
- Wei, K.; Cheng, T.; Lu, D.D.-C.; Siwakoti, Y.P.; Zhang, C. Multi-Variable Thermal Modeling of Power Devices Considering Mutual Coupling. Appl. Sci. 2019, 9, 3240. [Google Scholar] [CrossRef]
- Zheng, T.; Huang, M.; Zhu, L.; Zha, X. Reliability evaluation of MMC system considering working conditions. IET Renew. Power Gener. 2019, 16, 1877–1881. [Google Scholar] [CrossRef]
- de Jong, E.C.; Ferreira, B.J.; Bauer, P. Toward the next level of PCB usage in power electronic converters. IEEE Trans. Power Electron. 2008, 23, 3151–3163. [Google Scholar] [CrossRef]
- JB/T 9684-2000; Guidelines for Selecting Heat Sinks for Power Semiconductor Devices. Chinese Industry Standard: Beijing, China, 2000.
Types of Convection Thermal Transfer | Convection Thermal Transfer Coefficient h/[W/(m2·K)] |
---|---|
Natural convection thermal transfer of air | 1~10 |
Natural convection thermal transfer of water | 100~1000 |
Forced convection thermal transfer of air | 10~100 |
Forced convection thermal transfer of water | 100~15,000 |
Key Structural Layers | Specific Heat Capacity Cp/[J/(kg*K)] | Thermal Conductivity k/[W/(m*K)] |
---|---|---|
Chip | 700 | 130 |
Ceramic substrate | 730 | 35 |
Copper baseplate | 385 | 400 |
Heat sink | 900 | 238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Shi, P.; Bao, P.; Liu, C.; Qin, Y. Analysis of Key Factors Affecting Case-to-Ambient Thermal Resistance in Thermal Modeling of Power Devices. Energies 2024, 17, 5692. https://doi.org/10.3390/en17225692
Wei K, Shi P, Bao P, Liu C, Qin Y. Analysis of Key Factors Affecting Case-to-Ambient Thermal Resistance in Thermal Modeling of Power Devices. Energies. 2024; 17(22):5692. https://doi.org/10.3390/en17225692
Chicago/Turabian StyleWei, Kaixin, Peiji Shi, Pili Bao, Chuanchao Liu, and Yanzhou Qin. 2024. "Analysis of Key Factors Affecting Case-to-Ambient Thermal Resistance in Thermal Modeling of Power Devices" Energies 17, no. 22: 5692. https://doi.org/10.3390/en17225692
APA StyleWei, K., Shi, P., Bao, P., Liu, C., & Qin, Y. (2024). Analysis of Key Factors Affecting Case-to-Ambient Thermal Resistance in Thermal Modeling of Power Devices. Energies, 17(22), 5692. https://doi.org/10.3390/en17225692