A Fast Variance Reduction Technique for Efficient Radiation Shielding Calculations in Nuclear Reactors
Abstract
:1. Introduction
2. Methodology and Reactor Overview
2.1. MCNP
2.2. Reference Reactor Description
2.3. Variance Reduction Technique (VRT)
2.4. Two-Step Variance Reduction Technique
3. Results and Sensitivity Analysis
3.1. Comparison Between Direct Source Approach and Two-Step Source Approach
3.2. Efficiency of VRT
3.3. Potential Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bagheri, S.; Khalafi, H. SMR, 3D source term simulation for exact shielding design based on genetic algorithm. Ann. Nucl. Energy 2023, 191, 109915. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Yan, B. The technology of shielding design for nuclear reactor: A review. Prog. Nucl. Energy 2018, 161, 104741. [Google Scholar] [CrossRef]
- Yamaji, A.; Sako, K. Shielding Design to Obtain Compact Marine Reactor. J. Nucl. Sci. Technol. 2012, 31, 510–520. [Google Scholar] [CrossRef]
- Shen, S.; Wang, W.; Chen, H.; Duan, W.; Zhang, K.; Shi, K.; Chen, Z. Core design and neutronic analysis of a long-life LBE-cooled fast reactor NCLFR-Oil. Prog. Nucl. Energy 2023, 164, 104861. [Google Scholar] [CrossRef]
- Yoo, J.-W.; Kim, Y.J.; Sungyeol, C.; Jaehyun, C.; Soon, H.I. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation. Prog. Nucl. Energy 2014, 83, 433–442. [Google Scholar]
- Alizadeh, A.; Shirani, A.S.; Kashi, S. Neutron and gamma-ray deep penetration calculation through biological concrete shield of VVER-1000 reactor by a new technique based on variance reduction. Ann. Nucl. Energy 2013, 60, 86–92. [Google Scholar] [CrossRef]
- Judith, F.; Briesmeister. MCNPTM–A General Monte Carlo N–Particle Transport Code, 5th ed.; 2000; Available online: https://inspirehep.net/files/78c669e8d3bb59ccf6fb868a6061450chttps:/inspirehep.net/manual4d/chap2_jfb1.pdf (accessed on 7 November 2024).
- Farkas, G. wwer-440 Criticality Calculations Using mcnp5 Code, 2008. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/059/40059704.pdf (accessed on 7 November 2024).
- Yuan, X.; Cao, L.; Wu, H. Pre-conceptual study of small modular PbBi-cooled nitride fuel reactor core characteristics. Nucl. Eng. Des. 2015, 285, 23–30. [Google Scholar] [CrossRef]
- Pan, R.; Duan, W.; Wang, W.; Qin, C.; Dong, S.; Zeng, Q.; Chen, H. Design and analysis on the HP-PHRS for small modular lead-bismuth fast reactor. Nucl. Eng. Des. 2024, 426, 113371. [Google Scholar] [CrossRef]
- Rabir, M.H.; Usang, M.D. Modeling the Puspati Triga Reactor Using Mcnp Code. In Proceedings of the R and D Seminar 2012: Research and Development Seminar 2012, Bangi, Malaysia, 26–28 September 2012. [Google Scholar]
- Haghighat, A.; Wagner, J.C. Monte Carlo variance reduction with deterministic importance functions. Prog. Nucl. Energy 2003, 42, 25–53. [Google Scholar] [CrossRef]
- Thomas, E.B. A Sample Problem for Variance Reduction in MCNP; Los Alamos National Lab.: Los Alamos, NM, USA, 1985. [Google Scholar]
- Junli, L.; Li, C.; Wu, Z. An Auto-Importance Sampling Method for Deep Penetration Problems. Prog. Nucl. Sci. Technol. 2011, 2, 732–737. [Google Scholar]
- Martínez-Fernandez, E. Neural network-based source biasing to speed-up challenging MCNP simulations. Fusion Eng. Des. 2024, 202, 114406. [Google Scholar] [CrossRef]
- Trahan; John, T. MCNP Surface Source Write/Read File Format Primer. 2016. Available online: https://mcnp.lanl.gov/pdf_files/TechReport_2016_LANL_LA-UR-16-20109_Trahan.pdf (accessed on 7 November 2024).
- Hendricks, J.S.; Swinhoe, M.T.; Favalli, A. Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Murata, I.; Yamamoto, H.; Miyamaru, H.; Goldenbaum, F.; Filges, D. Scattering direction biasing for Monte Carlo transport calculation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 562, 845–848. [Google Scholar] [CrossRef]
- Armstrong, J.; Mashnik, S.G.; McKinkey, G.W.; Brown, F.B.; Rising, M.E.; McMath, G.E.; Bull, J.S.; Solomon, C.; Hendricks, J.S.; Casswell, L.; et al. Mcnp® User’s Manual Code Version 6.2; Los Alamos National Security LLC: Los Alamos, NM, USA, 2017. [Google Scholar]
- Winkelman, A. Validation of the Hor Oscar4/Mcnp Model for Use in Safety Studies. 2018. Available online: https://www.rertr.anl.gov/RERTR39/pdfs/S11-P5_Winkelmanpaper.pdf (accessed on 7 November 2024).
- Lamarsh, J.R.; Baratta, A.J. Introduction to Nuclear Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Catalan, J.P. Development of radiation sources for nuclear analysis beyond ITER bio-shield: SRC-UNED code. Comput. Phys. Commun. 2022, 275, 108309. [Google Scholar] [CrossRef]
- Ko, J.H.; Park, J.H.; Jung, I.S.; Lee, G.-U.; Baeg, C.-Y.; Kim, C.-M. Shielding analysis of dual purpose casks for spent nuclear fuel under normal storage conditions. Nucl. Energy Technol. 2014, 46, 547–556. [Google Scholar] [CrossRef]
- Nicks, R.; Farinelli, U. Physics Problems of Fast Reactor Shielding. In Atomic Energy; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Fensin, M.L.; Michael, R.; James, J.S.; Hendricks, J.T.G. The New MCNP6 Depletion Capability. In Proceedings of the Proceedings of ICAPP’12, Chicago, IL, USA, 24–28 June 2012. [Google Scholar]
- Žerovnik, G.; Podvratnik, M.; Snoj, L. On normalization of fluxes and reaction rates in MCNP criticality calculations. Ann. Nucl. Energy 2014, 63, 126–128. [Google Scholar] [CrossRef]
- Petoussi-Henss, N.; Bolch, W.E.; Eckerman, K.F.; Endo, A.; Hertel, N.; Hunt, J.; Pelliccioni, M.; Schlattl, H.; Zankl, M.; International Commission on Radiological Protection; et al. ICRP publication 116 Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. Ann. ICRP 2010, 40, 1–257. [Google Scholar] [CrossRef] [PubMed]
- Andrianova, O.N. Application of MCNP nonanalog techniques for calculations of reaction rate measurements at the BFS facilities. Nucl. Energy Technol. 2016, 2, 197–202. [Google Scholar] [CrossRef]
- Han, M.C.; Yeom, Y.S.; Lee, H.S.; Shin, B.; Kim, C.H.; Furuta, T. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry. Phys. Med. Biol. 2018, 63, 09NT02. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Pan, Q.; He, D.; Liu, X. Reactor lightweight shielding optimization method based on parallel embedded genetic particle-swarm hybrid algorithm. Prog. Nucl. Energy 2024, 168, 105040. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Xie, J.; Guo, Q.; Yu, T. Metaheuristic optimization method for compact reactor radiation shielding design based on genetic algorithm. Ann. Nucl. Energy 2019, 134, 318–329. [Google Scholar] [CrossRef]
Parameters | Specification |
---|---|
Thermal power | 40 Mw_th |
Fuel | UO2 |
Enrichment (Innermost/Middle/Outermost) | 13.5 wt%/16.5 wt%/18.5 wt% |
Cladding | T91 |
Absorber | B4C |
Reflector | YSZ |
Primary coolant | LBE |
Gap | Helium |
Core lifetime | ≥15 years |
Assembly geometry | Hexagonal |
Reactivity swing | 5247 pcm |
Secondary coolant | Rankine cycle with superheated steam |
Core inlet temperature | 405 °C |
Core outlet temperature | 545 °C |
Primary cooling method | Natural circulation |
Primary heat transfer system | Compact pool type |
Parameters | Specification |
---|---|
Number of fuel assemblies | 37 |
Number of pins per assembly | 198 |
Equivalent core diameter | 180 (cm) |
Active core height | 90 (cm) |
Pitch-to-diameter ratio | 1.2 |
Fuel pin diameter | 0.56 (cm) |
Assembly geometry | Hexagonal |
Number of source history N per cycle | 500,000 |
Initial guess for the multiplication factor | 1 |
Number of inactive cycles | 100 |
Number of active cycles | 150 |
Method | FOM | Recording Time (min) | Computing Time (min) |
---|---|---|---|
Direct | 1.336 | - | 188.58 |
SSW/SSR | 23.995 | 1620 | 0.95 |
Two-step | 12.097 | 16.5 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.; Kim, S.; Cho, J. A Fast Variance Reduction Technique for Efficient Radiation Shielding Calculations in Nuclear Reactors. Energies 2024, 17, 5695. https://doi.org/10.3390/en17225695
Jo S, Kim S, Cho J. A Fast Variance Reduction Technique for Efficient Radiation Shielding Calculations in Nuclear Reactors. Energies. 2024; 17(22):5695. https://doi.org/10.3390/en17225695
Chicago/Turabian StyleJo, Seungjae, Sanghwan Kim, and Jaehyun Cho. 2024. "A Fast Variance Reduction Technique for Efficient Radiation Shielding Calculations in Nuclear Reactors" Energies 17, no. 22: 5695. https://doi.org/10.3390/en17225695
APA StyleJo, S., Kim, S., & Cho, J. (2024). A Fast Variance Reduction Technique for Efficient Radiation Shielding Calculations in Nuclear Reactors. Energies, 17(22), 5695. https://doi.org/10.3390/en17225695