On-Line Parameter Identification and SOC Estimation for Lithium-Ion Batteries Based on Improved Sage–Husa Adaptive EKF
Abstract
:1. Introduction
2. Battery Model and Parameter Identification
2.1. Battery Mode
2.2. On-Line Parameter Identification of Battery Model
- (1)
- Equation (1) is Laplace transformed to obtain the frequency domain expression.
- (2)
- Combining Equation (2) with Equation (3), the transfer function is given byLet:
- (3)
- To ensure consistency of the system before and after discretization, Equation (4) is discretized using the Z-transformation to obtain Equation (6). Where T is the sampling interval.Let:
- (4)
- The system’s differential equation is obtainable.Let:
- (5)
- Suppose that a, b, c, d, f are represented by (10)
- (6)
- The resistance and capacitance parameters , , , , and can be obtained by (11).
3. EKF with the Improved Sage–Husa Adaptive Method
3.1. EKF Algorithm
(1) Setting Equations |
(3) Prior estimation update (3.1) Prior state estimation update |
(4.1) Kalman gain |
END PREDICT The ideal estimate is denoted by the superscript ^ in the equation above |
3.2. Sage–Husa EKF Algorithm
3.3. Improved Sage–Husa EKF Algorithm
4. Simulation Verification and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global EV Outlook 2024. 2024. Available online: www.iea.org (accessed on 1 April 2024).
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Shang, B.; Li, G. Unbalanced Discharging and Aging Due to Temperature Differences among the Cells in a Lithium-Ion Battery Pack with Parallel Combination. J. Power Sources 2016, 306, 733–741. [Google Scholar] [CrossRef]
- Selvaraj, V.; Vairavasundaram, I. A Comprehensive Review of State of Charge Estimation in Lithium-Ion Batteries Used in Electric Vehicles. J. Energy Storage 2023, 72, 108777. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.-S.; Chen, Y.-P.; Hsieh, Y.-C. Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Tong, S.; Klein, M.P.; Park, J.W. On-Line Optimization of Battery Open Circuit Voltage for Improved State-of-Charge and State-of-Health Estimation. J. Power Sources 2015, 293, 416–428. [Google Scholar] [CrossRef]
- Li, M. Li-Ion Dynamics and State of Charge Estimation. Renew. Energy 2017, 100, 44–52. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Li, J.; Ye, M.; Meng, W.; Xu, X.; Jiao, S. A Novel State of Charge Approach of Lithium Ion Battery Using Least Squares Support Vector Machine. IEEE Access 2020, 8, 195398–195410. [Google Scholar] [CrossRef]
- Sun, B.; He, X.; Zhang, W.; Ruan, H.; Su, X.; Jiang, J. Study of Parameters Identification Method of Li-Ion Battery Model for EV Power Profile Based on Transient Characteristics Data. IEEE Trans. Intell. Transport. Syst. 2021, 22, 661–672. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Hu, C.; Youn, B.D.; Chung, J. A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and Capacity Estimation. Appl. Energy 2012, 92, 694–704. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, M.; Liu, W.; Zheng, M. A State of Charge Estimation Method for Lithium-Ion Batteries Based on Fractional Order Adaptive Extended Kalman Filter. Energy 2019, 187, 115880. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Zhao, X.; Wang, Y.; He, Z. Online State of Charge Estimation of Li-Ion Battery Based on an Improved Unscented Kalman Filter Approach. Appl. Math. Model. 2019, 70, 532–544. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z. A Framework for State-of-Charge and Remaining Discharge Time Prediction Using Unscented Particle Filter. Appl. Energy 2020, 260, 114324. [Google Scholar] [CrossRef]
- Faragher, R. Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation [Lecture Notes]. IEEE Signal Process. Mag. 2012, 29, 128–132. [Google Scholar] [CrossRef]
- Zhengxin, J.; Qin, S.; Yujiang, W.; Hanlin, W.; Bingzhao, G.; Lin, H. An Immune Genetic Extended Kalman Particle Filter Approach on State of Charge Estimation for Lithium-Ion Battery. Energy 2021, 230, 120805. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Gu, T. A Hierarchical Adaptive Extended Kalman Filter Algorithm for Lithium-Ion Battery State of Charge Estimation. J. Energy Storage 2023, 62, 106831. [Google Scholar] [CrossRef]
- Lv, J.; Bing, L.; Man, D. Indoor Tracking Algorithm Based on Simplified Sage-Husa Adaptive Filter. In Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies, New York, NY, USA, 4 January 2021; pp. 33–38. [Google Scholar]
- Wei, Z.; Zhao, J.; He, H.; Ding, G.; Cui, H.; Liu, L. Future Smart Battery and Management: Advanced Sensing from External to Embedded Multi-Dimensional Measurement. J. Power Sources 2021, 489, 229462. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Wu, J. State of Health Estimation of the LiFePO4 Power Battery Based on the Forgetting Factor Recursive Total Least Squares and the Temperature Correction. Energy 2023, 282, 128437. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B.; Zhang, W.; He, X.; Ma, S.; Zhang, J.; Liu, X. Error Theory Study on EKF-Based SOC and Effective Error Estimation Strategy for Li-Ion Batteries. Appl. Energy 2024, 353, 121992. [Google Scholar] [CrossRef]
- Monirul, I.M.; Qiu, L.; Ruby, R. Accurate SOC Estimation of Ternary Lithium-Ion Batteries by HPPC Test-Based Extended Kalman Filter. J. Energy Storage 2024, 92, 112304. [Google Scholar] [CrossRef]
Item | Values |
---|---|
Capacity | 200 Ah |
Charge/discharge cut-off voltage | 3.65 V/2.5 V |
Range of temperature | −20 °C–45 °C |
Cycle life | >3000 |
Battery test system | Chroma 17010 |
Step Number | Status |
---|---|
1 | Charge the battery to 100% SOC by the CC-CV method |
2 | Resting for 4 h |
3 | Discharge at 1.5 C for 30 s |
4 | Resting for 60 s |
5 | Charge at 1.2 C for 30 s |
6 | Resting for 15 min |
7 | Discharge 10% SOC at 1/3 C |
8 | Resting for 4 h |
9 | From step 3 to step 8, cycle until the test is complete |
(1) Gian Factor |
Item | EKF | SAEKF | ISAEKF |
---|---|---|---|
maximum estimation error | 3.51% | 2.48% | 0.72% |
average estimation error | 1.52% | 0.83% | 0.27% |
RMSE | 1.79% | 0.97% | 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Huang, H.; Zhong, X.; Wang, K.; Li, F.; Zhou, Y.; Dai, H. On-Line Parameter Identification and SOC Estimation for Lithium-Ion Batteries Based on Improved Sage–Husa Adaptive EKF. Energies 2024, 17, 5722. https://doi.org/10.3390/en17225722
Tang X, Huang H, Zhong X, Wang K, Li F, Zhou Y, Dai H. On-Line Parameter Identification and SOC Estimation for Lithium-Ion Batteries Based on Improved Sage–Husa Adaptive EKF. Energies. 2024; 17(22):5722. https://doi.org/10.3390/en17225722
Chicago/Turabian StyleTang, Xuan, Hai Huang, Xiongwu Zhong, Kunjun Wang, Fang Li, Youhang Zhou, and Haifeng Dai. 2024. "On-Line Parameter Identification and SOC Estimation for Lithium-Ion Batteries Based on Improved Sage–Husa Adaptive EKF" Energies 17, no. 22: 5722. https://doi.org/10.3390/en17225722
APA StyleTang, X., Huang, H., Zhong, X., Wang, K., Li, F., Zhou, Y., & Dai, H. (2024). On-Line Parameter Identification and SOC Estimation for Lithium-Ion Batteries Based on Improved Sage–Husa Adaptive EKF. Energies, 17(22), 5722. https://doi.org/10.3390/en17225722