A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burattini, C.; Bisegna, F.; De Santoli, L. Street luminance and night-time walking comfort: A new perspective for the urban lighting design. J. Urban Des. 2024, 1–19. [Google Scholar] [CrossRef]
- Wren, B.; Locke, S. Upgraded Rig Lighting Improves Night Time Visibility While Reducing Stray Light and the Threat to Dark Skies in West Texas. In All Days; SPE: Denver, CO, USA, 2015; p. SPE-173492-MS. [Google Scholar] [CrossRef]
- Fotios, S. A Revised Kruithof Graph Based on Empirical Data. Leukos 2017, 13, 3–17. [Google Scholar] [CrossRef]
- Dunbar, C. Necessary Values of Brightness Contrast in Artificially Lighted Streets. Light. Res. Technol. 1938, 3, 187–195. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y.; Sun, Y.; Zhu, X.; Lai, J.; Heynderickx, I. Model predicting discomfort glare caused by LED road lights. Opt. Express 2014, 22, 18056. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, B.; Luo, T.; Liu, Y.; Portnov, B.A.; Trop, T.; Jiao, W.; Liu, H.; Li, Y.; Liu, Q. Evaluating Street Lighting Quality in Residential Areas by Combining Remote Sensing Tools and a Survey on Pedestrians’ Perceptions of Safety and Visual Comfort. Remote Sens. 2022, 14, 826. [Google Scholar] [CrossRef]
- Fryc, I.; Czyżewski, D.; Fan, J.; Gălăţanu, C.D. The Drive towards Optimization of Road Lighting Energy Consumption Based on Mesopic Vision—A Suburban Street Case Study. Energies 2021, 14, 1175. [Google Scholar] [CrossRef]
- Fryc, I.; Tabaka, P. Outdoor Areas Lighting with LEDs—The Competition Between Scotopic Efficacy and Light Pollution. Photonics Lett. PL 2019, 11, 75. [Google Scholar] [CrossRef]
- Tatro, K. Light Energy: Our Wasted Resource. Consilience 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Fotios, S.; Robbins, C.; Uttley, J. A comparison of approaches for investigating the impact of ambient light on road traffic collisions. Light. Res. Technol. 2021, 53, 249–261. [Google Scholar] [CrossRef]
- CIE 88-1990; Guide for the Lighting of Road Tunnels and Underpasses. CIE: Vienna, Austria, 1990.
- CIE 115-2010; Lighting of Roads for Motor and Pedestrian Traffic. CIE: Vienna, Austria, 2010.
- EN 13201; Road Lighting-Part 2: Performance Requirements. CEN: Brussels, Belgium, 2015.
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Listowski, M.; Supronowicz, R. Color quality consideration when switching from FL to LED. Photonics Lett. PL 2022, 14, 56. [Google Scholar] [CrossRef]
- Sȩdziwy, A.; Basiura, A.; Wojnicki, I. Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction. Sustainability 2018, 10, 3925. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Baten, M.Z.; Alam, S.; Sikder, B.; Aziz, A. III-Nitride Light-Emitting Devices. Photonics 2021, 8, 430. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, M.; Yan, Y.; Huang, J.; Li, Y.; Feng, T.; Zhu, X.; Li, Z.; Xu, C.; Wang, J.; et al. High Luminous Efficacy Phosphor-Converted Mass-Produced White LEDs Achieved by AlN Prebuffer and Transitional-Refraction-Index Patterned Sapphire Substrate. Nanomaterials 2022, 12, 1638. [Google Scholar] [CrossRef]
- Xiao, P.; Yu, Y.; Cheng, J.; Chen, Y.; Yuan, S.; Chen, J.; Yuan, J.; Liu, B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials 2021, 11, 103. [Google Scholar] [CrossRef]
- Diouf, B.; Muley, A.; Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 2023, 16, 6498. [Google Scholar] [CrossRef]
- Weng, S.; Yu, G.; Zhou, C.; Lin, F.; Han, Y.; Wang, H.; Huang, X.; Liu, X.; Hu, H.; Liu, W.; et al. Challenges and Opportunities for the Blue Perovskite Quantum Dot Light-Emitting Diodes. Crystals 2022, 12, 929. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, Z.; Ma, D. Efficient and compact freeform optics design for customized LED lighting. Opt. Laser Technol. 2023, 167, 109775. [Google Scholar] [CrossRef]
- Huang, J.; Golubovic, D.S.; Koh, S.; Yang, D.; Li, X.; Fan, X.J.; Zhang, G.Q. Degradation Mechanisms of Mid-Power White-Light LEDs Under High-Temperature–Humidity Conditions. IEEE Trans. Device Mater. Relib. 2015, 15, 220–228. [Google Scholar] [CrossRef]
- Magielse, R.; Frens, J.W. Hyvve—A Modular and Flexible Light System. In Proceedings of the 2013 9th International Conference on Intelligent Environments, Athens, Greece, 16–17 July 2013; ISBN 978-0-7695-5038-1. [Google Scholar]
- Lee, S.H.; Kwon, J.K. Distributed dimming control for LED lighting. Opt. Express 2013, 21, A917. [Google Scholar] [CrossRef] [PubMed]
- Zielinska-Dabkowska, K.M.; Bobkowska, K. Rethinking Sustainable Cities at Night: Paradigm Shifts in Urban Design and City Lighting. Sustainability 2022, 14, 6062. [Google Scholar] [CrossRef]
- Abulkhanov, S.; Goryainov, D.; Strelkov, Y. The effect of vibration on the performance of lighting devices. In Proceedings of the 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM), Samara, Russia, 16–18 September 2020. [Google Scholar] [CrossRef]
- Meneghini, M.; Dal Lago, M.; Trivellin, N.; Meneghesso, G.; Zanoni, E. Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview. IEEE Trans. Ind. Appl. 2014, 50, 78–85. [Google Scholar] [CrossRef]
- Royer, M. Real Light Source SPDs and Color Data for Use in Research, Version 2; Figshare: Boston, MA, USA, 2023. [CrossRef]
- Jost, S.; Thorseth, A.; Poikonen, T.; Blattner, P.; Gerloff, T.; Kokka, A.; Dekker, P.; Smid, M.; Ferrero, A.; Kubarsepp, T.; et al. EMPIR 15SIB07 PhotoLED-Database of LED Product Spectra; Technical University of Denmark: Copenhagen, Denmark, 2021. [Google Scholar] [CrossRef]
- ANSI C78.377-2017; American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting (SSL) Products. American National Standards Institute: New York, NY, USA, 2017.
- Supronowicz, R.; Fan, J.; Listowski, M.; Watras, A.; Fryc, I. Application of different metrics for describing light color quality of white LED. Photonics Lett. PL 2021, 13, 31. [Google Scholar] [CrossRef]
- Arrêté du 27 Décembre 2018 Relatif à la Prévention, à la Réduction et à la Limitation des Nuisances Lumineuses. 2018. Available online: https://www.legifrance.gouv.fr/eli/arrete/2018/12/27/TREP1831126A/jo/texte (accessed on 10 November 2024).
- Code de l’environnement. Available online: https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006074220 (accessed on 10 November 2024).
- Kyba, C.C.M.; Altıntaş, Y.Ö.; Walker, C.E.; Newhouse, M. Citizen scientists report global rapid reductions in the visibility of stars from 2011 to 2022. Science 2023, 379, 265–268. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, P.; Zhang, Z.; Xu, Z.; Jia, D. A Review of the Characteristics of Light Pollution: Assessment Technique, Policy, and Legislation. Energies 2024, 17, 2750. [Google Scholar] [CrossRef]
- Bará, S.; Bao-Varela, C.; Kocifaj, M. Modeling the artificial night sky brightness at short distances from streetlights. J. Quant. Spectrosc. Radiat. Transf. 2023, 296, 108456. [Google Scholar] [CrossRef]
- Torres, D.; Tidau, S.; Jenkins, S.; Davies, T. Artificial skyglow disrupts celestial migration at night. Curr. Biol. 2020, 30, R696–R697. [Google Scholar] [CrossRef]
- Touzot, M.; Dumet, A.; Secondi, J.; Lengagne, T.; Henri, H.; Desouhant, E.; Duchamp, C.; Mondy, N. Artificial light at night triggers slight transcriptomic effects on melatonin signaling but not synthesis in tadpoles of two anuran species. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2023, 280, 111386. [Google Scholar] [CrossRef]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci. 2020, 14, 602796. [Google Scholar] [CrossRef]
- Méndez, A.; Prieto, B.; Aguirre, I.; Font, J.M.; Sanmartín, P. Better, not more, lighting: Policies in urban areas towards environmentally-sound illumination of historical stone buildings that also halts biological colonization. Sci. Total Environ. 2024, 906, 167560. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Q.; Pan, C.; Chen, J.; Xu, B.; Liu, K.; Pan, J.; Lagisz, M.; Nakagawa, S. Species sensitivities to artificial light at night: A phylogenetically controlled multilevel meta-analysis on melatonin suppression. Ecol. Lett. 2024, 27, e14387. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, A.L.; Hall, M.L.; Jones, T.M. The effect of natural and artificial light at night on nocturnal song in the diurnal willie wagtail. Sci. Total Environ. 2022, 808, 151986. [Google Scholar] [CrossRef]
- Lockett, M.T.; Jones, T.M.; Elgar, M.A.; Gaston, K.J.; Visser, M.E.; Hopkins, G.R. Urban street lighting differentially affects community attributes of airborne and ground-dwelling invertebrate assemblages. J. Appl. Ecol. 2021, 58, 2329–2339. [Google Scholar] [CrossRef]
- Gaston, K.J.; Visser, M.E.; Hölker, F. The biological impacts of artificial light at night: The research challenge. Philos. Trans. R. Soc. B 2015, 370, 20140133. [Google Scholar] [CrossRef]
- Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank Van Veen, F.J.; Gaston, K.J. Artificial nighttime light changes aphid-parasitoid population dynamics. Sci. Rep. 2015, 5, 15232. [Google Scholar] [CrossRef]
- Gaston, K.J.; Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 2014, 22, 323–330. [Google Scholar] [CrossRef]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef]
- Longcore, T. A compendium of photopigment peak sensitivities and visual spectral response curves of terrestrial wildlife to guide design of outdoor nighttime lighting. Basic Appl. Ecol. 2023, 73, 40–50. [Google Scholar] [CrossRef]
- Martinsons, C. Environmental quality of outdoor lighting—Qualité environnementale de l’éclairage public: Comprendre et dépasser la réglementation sur les nuisances lumineuses. In Proceedings of the 2nd Research and Innovation Day, Cluster Lumière, Lyon, France, 26 January 2021. [Google Scholar] [CrossRef]
- Figueiro, M. Disruption of Circadian Rhythms by Light During Day and Night. Curr. Sleep Med. Rep. 2017, 3, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Martinsons, C.; Veitch, J.; Loughran, S.; Nixon, A.; Mate, R.; Harris, R.; Shen, L. Solid-State Lighting: Review of Health Effects. Proceedings of International Lighting Seminar: Perspectives on Sustainability, Performance, Health & Smart Lighting, London, UK, 14 May 2024; ISBN 978-1-83654-223-0. [Google Scholar]
- Willis, J.P. Protection of Dark-Sky Areas in the United States Through Development and Implementation of Warm-Light LED Fixtures. JSPG 2023, 22. [Google Scholar] [CrossRef]
- Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 46–51. [Google Scholar] [CrossRef]
- Catalog LumiLEDs Products. Available online: https://otmm.lumileds.com/adaptivemedia/f5fbe66cb9d857d62d895f92b8d6be3cc5919925 (accessed on 10 November 2024).
- Esposito, T.; Radetsky, L.C. Specifying Non-White Light Sources in Outdoor Applications to Reduce Light Pollution. Leukos 2023, 19, 269–293. [Google Scholar] [CrossRef]
- Available online: https://www.kurtzon.com/SPECS/CLEANROOM/L/KURTZON_SPEC_TL-FGRS-LED-AMBER-TW.pdf (accessed on 10 November 2024).
- SAE J 578-2020; Chromaticity Requirements for Ground Vehicle Lamps and Lighting Equipment. SAE: New York, NY, USA, 2020.
- Datasheet Xlamp-XE-G CLD-DS275 REV 5. Available online: https://downloads.cree-led.com/files/ds/x/XLamp-XE-G.pdf (accessed on 10 November 2024).
- Houser, K.W.; Wei, M.; David, A.; Krames, M.R.; Shen, X.S. Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition. Opt. Express 2013, 21, 10393. [Google Scholar] [CrossRef]
- Fryc, I.; Bisegna, F.; Tabaka, P. Lighting of recreation grounds as a source of sky glow—The influence of luminaire type on this phenomenon. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Fryc, I.; Tabaka, P. The night sky light pollution created by outdoor luminaires. Przegląd Elektrotechniczny 2017, 1, 48–51. [Google Scholar] [CrossRef]
- Dark and Quiet Skies for Science and Society. Report and Recommendations. Available online: https://www.iac.es/system/files/documents/2021-02/dqskies-book-29-12-20.pdf (accessed on 10 November 2024).
- EN 13201; Road Lighting Standards—Part 1 and Part 5. CEN: Brussels, Belgium, 2015.
- Eloholma, M.; Viikari, M.; Halonen, L.; Walkey, H.; Goodman, T.; Alferdinck, J.; Freiding, A.; Bodrogi, P.; Várady, G. Mesopic models—From brightness matching to visual performance in night-time driving: A review. Light. Res. Technol. 2005, 37, 155–173. [Google Scholar] [CrossRef]
- Dong, L.; Qin, L.; Xu, W.; Zhang, L. The Impact of LED Correlated Color Temperature on Visual Performance Under Mesopic Conditions. IEEE Photonics J. 2017, 9, 1–16. [Google Scholar] [CrossRef]
- CIE 191-2010; Recommended System for Mesopic Photometry Based on Visual Performance. CIE: Vienna, Austria, 2010.
- Listowski, M. The Role of Standard and Supplementary Recommended System for Mesopic Photometry Based on Visual Performance Observers in Accurate Illuminance measurements. Photonics Lett. Pol. 2024, 16, 52–54. [Google Scholar] [CrossRef]
- Fotios, S.; Cheal, C. Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness. Light. Res. Technol. 2011, 43, 143–157. [Google Scholar] [CrossRef]
- Fryc, I.; Bará, S.; Aubé, M.; Barentine, J.C.; Zamorano, J. On the Relation between the Astronomical and Visual Photometric Systems in Specifying the Brightness of the Night Sky for Mesopically Adapted Observers. Leukos 2022, 18, 447–458. [Google Scholar] [CrossRef]
- Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design. Eng. Optim. 2016, 48, 1080–1089. [Google Scholar] [CrossRef]
- Valencia Pavón, N.G.; Aguila Téllez, A.; García Torres, M.; Rojas Urbano, J.; Krishnan, N. Optimal Selection of Distribution, Power, and Type of Luminaires for Street Lighting Designs Using Multi-Criteria Decision Model. Energies 2024, 17, 2194. [Google Scholar] [CrossRef]
- Peña-García, A.; Sędziwy, A. New considerations about light pollution in rural and protected areas based on a global perspective savings-pollution-safety: Impact on real installations. engrXiv 2017. [Google Scholar] [CrossRef]
- Czyżewski, D.; Fryc, I. The Influence of Luminaire Photometric Intensity Curve Measurements Quality on Road Lighting Design Parameters. Energies 2020, 13, 3301. [Google Scholar] [CrossRef]
- Rabaza, O.; Gómez-Lorente, D.; Pozo, A.M.; Pérez-Ocón, F. Application of a Differential Evolution Algorithm in the Design of Public Lighting Installations Maximizing Energy Efficiency. Leukos 2020, 16, 217–227. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Supronowicz, R.; Mozyrska, D.; Rosas, E.; Eppeldauer, G.; Csuti, P.; Ferrero, A. The spectral mismatch correction factor estimation using broadband photometer measurements and catalog parameters for tested white LED sources. Opt. Lasers Eng. 2025, 184, 108614. [Google Scholar] [CrossRef]
- Listowski, M. The real and modeled values of photometric and colorimetric parameters comparison of white LEDs operating at wide temperature range. Przegląd Elektrotechniczny 2022, 1, 59–63. [Google Scholar] [CrossRef]
- Supronowicz, R.; Fryc, I. The LED spectral power distribution modelled by different functions-how spectral matching quality affected computed LED color parameters. In Proceedings of the 2019 Second Balkan Junior Conference on Lighting (Balkan Light Junior), Plovdiv, Bulgaria, 19–21 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Supronowicz, R. Going beyond the 20th century color space to evaluate LED color consistency. Opt. Express 2023, 31, 38666. [Google Scholar] [CrossRef]
- Pattison, M.; Hansen, M.; Bardsley, N.; Thomson, G.; Gordon, K.; Wilkerson, A.; Lee, K.; Nubbe, V.; Donnelly, S. 2022 Solid-State Lighting R&D Opportunities; No. DOE/EE-2542; U.S. Department of Energy: Washington, DC, USA, 2022. Available online: https://www.energy.gov/sites/default/files/2022-02/2022-ssl-rd-opportunities.pdf (accessed on 10 November 2024).
Parameter | Value |
---|---|
Interdistance (S) [m] | 43.5 |
Luminaire mounting height (H) [m] | 8.50 |
Overhang (OH) [m] | 1.50 |
Lighting Class | Average Luminance Lav [cd/m2] (Minimum Maintained) | Overall Uniformity U0 [-] (Minimum) | Longitudinal Uniformity Ui [-] (Minimum) | Threshold Increment fTI [%] (Maximum) | Edge Illuminance REI [-] (Minimum) |
---|---|---|---|---|---|
M4 | 0.75 | 0.40 | 0.60 | 15 | 0.30 |
Technical Parameters | White pc-LED Luminaire | Amber pc-LED Luminaire | Amber de-LED Luminaire |
---|---|---|---|
Number of LEDs [pcs.] | 78 | 95 | 316 |
Luminaire luminous flux [lm] | 9002 | 9002 | 9002 |
Luminaire power [W] | 90 | 110 | 274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryc, I.; Listowski, M.; Martinsons, C.; Fan, J.; Czyżewski, D. A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings. Energies 2024, 17, 5727. https://doi.org/10.3390/en17225727
Fryc I, Listowski M, Martinsons C, Fan J, Czyżewski D. A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings. Energies. 2024; 17(22):5727. https://doi.org/10.3390/en17225727
Chicago/Turabian StyleFryc, Irena, Maciej Listowski, Christophe Martinsons, Jiajie Fan, and Dariusz Czyżewski. 2024. "A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings" Energies 17, no. 22: 5727. https://doi.org/10.3390/en17225727
APA StyleFryc, I., Listowski, M., Martinsons, C., Fan, J., & Czyżewski, D. (2024). A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings. Energies, 17(22), 5727. https://doi.org/10.3390/en17225727