Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt
Abstract
:1. Introduction
2. Literature Review
3. Study Area, Materials and Methods
3.1. Study Area
3.2. Research Methodology
3.2.1. Calculation of Building Carbon Emissions
3.2.2. Spatial Autocorrelation Analysis
3.2.3. The Geographically and Temporally Weighted Regression (GTWR) Model
3.3. Data Sources
3.3.1. Night Lighting Data
3.3.2. Statistical Data
4. Analysis of Results
4.1. Carbon Emissions from Buildings in Urban Agglomerations
4.2. Global Spatial Autocorrelation Analysis
4.3. Local Spatial Autocorrelation Analysis
4.4. Analysis of Spatial Heterogeneity of Impact Factors
5. Conclusions
5.1. Conclusions
5.2. Policies
5.3. Limitations and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Environment Programme. Emissions Gap Report 2023[EB/OL]. UN Environment Programme. 2023. Available online: https://www.unep.org/resources/emissions-gap-report-2023 (accessed on 13 November 2024).
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- International Energy Agency. Tracking Clean Energy Progress 2023[EB/OL]. IEA. 2022. International Energy Agency. Available online: https://www.iea.org/data-and-statistics (accessed on 13 November 2024).
- China Building Energy Efficiency Association. Research Report on Energy Consumption and Carbon Emission of Buildings in China in 2022; China Building Energy Efficiency Association: Beijing, China, 2022. [Google Scholar]
- Chen, L.; Ma, M.; Xiang, X. Decarbonizing or illusion? How carbon emissions of commercial building operations change worldwide. Sustain. Cities Soc. 2023, 96, 104654. [Google Scholar] [CrossRef]
- Camarasa, C.; Mata, É.; Navarro, J.P.J.; Reyna, J.; Bezerra, P.; Angelkorte, G.B.; Feng, W.; Filippidou, F.; Forthuber, S.; Harris, C.; et al. A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets. Nat. Commun. 2022, 13, 3077. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Liu, J.; Wang, J.; Mei, H.; Ji, J. Key cutting-edge basic science issues of carbon neutrality in buildings. China Sci. Found. 2023, 37, 348–352. [Google Scholar]
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, W.; Chen, K.; Zhang, L.; Zhang, Z.; Li, Y.; Hu, Z. Carbon Emissions Assessment for Building Decoration Based on Life Cycle Assessment: A Case Study of Office Buildings. Sustainability 2023, 15, 14055. [Google Scholar] [CrossRef]
- Li, B.; Pan, Y.; Li, L.; Kong, M. Life Cycle Carbon Emission Assessment of Building Refurbishment: A Case Study of Zero-Carbon Pavilion in Shanghai Yangpu Riverside. Appl. Sci. 2022, 12, 9989. [Google Scholar] [CrossRef]
- Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.-S. Green construction for low-carbon cities: A review. Environ. Chem. Lett. 2023, 21, 1627–1657. [Google Scholar] [CrossRef]
- Cheng, S.; Zhou, X.; Zhou, H. Study on Carbon Emission Measurement in Building Materialization Stage. Sustainability 2023, 15, 5717. [Google Scholar] [CrossRef]
- Feng, H.; Wang, R.; Zhang, H. Research on Carbon Emission Characteristics of Rural Buildings Based on LMDI-LEAP Model. Energies 2022, 15, 9269. [Google Scholar] [CrossRef]
- Johnsona, M.; Edwards, R.; Frenk, C.A. In-field Greenhouse Gas Emissions from Cookstoves in Rural Mexican Households. Atmos. Environ. 2008, 42, 1206–1222. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Gallaway, T.; Olsen, R.N.; Mitchell, D.M. The economics of global light pollution. Ecol. Econ. 2010, 69, 658–665. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, D.; Ali, S.H.; Ma, R.; Cheng, J. Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference. Energies 2019, 12, 3154. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Q.; He, L.; Guo, J.; Huang, J.; Zhong, L. The estimation of building carbon emission using nighttime light images: A comparative study at various spatial Sustainable Cities and Society. Sustain. Cities Soc. 2024, 101, 105066. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Song, J. Multi-scale analysis of China’s transportation carbon emissions based on nighttime light data. Environ. Sci. Pollut. Res. 2023, 30, 52266–52287. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, M.; Cai, Y.; Fu, M.; Yang, K.; Wei, C. Spatio-temporal pattern evolution of carbon emissions at the city-county-town scale in Fujian Province based on DMSP/OLS and NPP/VIIRS nighttime light data. J. Clean. Prod. 2024, 442, 140958. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F. Assessment of Embodied Carbon Emissions for Building Construction in China: Comparative Case Studies Using Alternative Methods. Energy Build. 2016, 130, 330–340. [Google Scholar] [CrossRef]
- Lu, F.; Hao, H.; Bi, H. Evaluation on the development of urban low-carbon passenger transportation structure in Tianjin. Res. Transp. Bus. Manag. 2024, 55, 101142. [Google Scholar] [CrossRef]
- Li, K.; Ma, M.; Xiang, X.; Feng, W.; Ma, Z.; Cai, W.; Ma, X. Carbon reduction in commercial building operations: A provincial retrospection in China. Appl. Energy 2022, 306, 118098. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, H. Research on carbon emission peak prediction and path of China’s public buildings: Scenario analysis based on LEAP model. Energy Build. 2023, 289, 113053. [Google Scholar] [CrossRef]
- Huo, T.; Du, Q.; Xu, L.; Shi, Q.; Cong, X.; Cai, W. Timetable and roadmap for achieving carbon peak and carbon neutrality of China’s building sector. Energy 2023, 274, 127330. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Q.; Zhao, H. Spatial characteristics and influencing factors of provincial carbon emissions in China. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2018, 20, 9–16. [Google Scholar]
- Wang, Y.; He, Y. Spatial and temporal patterns of carbon dioxide emissions and influencing factors in Chinese provinces. World Geogr. Res. 2020, 29, 512–522. [Google Scholar]
- Du, H.; Wei, W.; Zhang, X.; Ji, X. Evolution of spatial and temporal patterns of carbon emissions from energy consumption in the Yellow River Basin and the factors affecting them—Based on DMSP/OLS and NPP/VIIRS nighttime lighting data. Geogr. Res. 2021, 40, 2051–2065. [Google Scholar]
- Song, M.; Hao, X.; Liu, J. Study on the spatial and temporal evolution characteristics of carbon balance and the decoupling effect of economic growth in the Yellow River Basin. Urban Issues 2021, 7, 91–103. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Wang, J.; Feng, Y.; Wu, Q. Spatial and temporal heterogeneity of urban carbon emissions and their influencing factors in the Yangtze River Economic Zone. Yangtze River Basin Resour. Environ. 2023, 32, 525–536. [Google Scholar]
- Zhang, N.; Sun, F.; Hu, Y. Spatial and temporal evolution, regional differences and influencing factors of carbon emission efficiency in the Yangtze River Economic Zone. Yangtze River Basin Resour. Environ. 2024, 33, 1325–1339. [Google Scholar]
- Wang, Y.; Dong, H. Digital economy and urban carbon emission performance: Mechanisms and spatial effects[J/OL]. J. Dalian Univ. Technol. (Soc. Sci. Ed.) 2024, 45, 27–39. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, X. Coupling degree and coupling path between carbon emission efficiency and industrial structure upgrading in China. J. Nat. Resour. 2019, 34, 2305–2316. [Google Scholar]
- Han, C.; Song, F.; Teng, M. Spatial and temporal characteristics, spatial clustering and governance strategies of carbon emissions in the Yangtze River Delta. East China Econ. Manag. 2022, 36, 24–33. [Google Scholar]
- Feng, X.; Li, Y.; Yu, X.; Yang, J.; Lei, K. Coupled relationship between urban land development and carbon emission performance in Jiangsu Province. Econ. Geogr. 2024, 44, 161–171. [Google Scholar]
- Yu, Y.; You, K.; Cai, W.; Feng, W.; Li, R.; Liu, Q.; Chen, L.; Liu, Y. City-level building operation and end-use carbon emissions dataset from China for 2015–2020. Sci. Data 2024, 11, 138. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a series of consistent night-time light data (1992–2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Li, R.; Yu, Y.; Cai, W.; Liu, Q.; Liu, Y.; Zhou, H. Interprovincial differences in the historical peak situation of building carbon emissions in China: Causes enlightenments. J. Environ. Manag. 2023, 332, 117347. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, National Bureau of Statistics. Announcement of the Ministry of Ecology and Environment and the National Bureau of Statistics on the Release of CO2 Emission Factors for Electricity in 2021; Ministry of Ecology and Environment, National Bureau of Statistics: Beijing, China, 2024. [Google Scholar]
- Zhang, C.Y.; Zhao, L.; Zhang, H.; Chen, M.; Fang, R.; Yao, Y.; Zhang, Q.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Ma, X.; Ji, Y.; Yuan, Y.; Van Oort, N.; Jin, Y.; Hoogendoorn, S. A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data. Transp. Res. Part A Policy Pract. 2020, 139, 148–173. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Shi, K.F.; Chen, Z.Q.; Liu, S.; Chang, Z. Developing improved time-series DMSP-OLS-Like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1109–1121. [Google Scholar] [CrossRef]
- Xu, J.; Guan, Y.; Oldfield, J.; Guan, D.; Shan, Y. China carbon emission accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, Y.; Zhu, T. Estimating Urban Green Space Irrigation for 286 Cities in China: Implications for Urban Land Use and Water Management. Sustainability 2023, 15, 8379. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Z.; Gao, J.; She, X. Evaluation of heat absorption and cooling benefits of green space vegetation in Shanghai. J. Nat. Resour. 2021, 36, 1334–1345. [Google Scholar]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
Typology | LCV (PJ/10 m83) | EF (tC/GJ) | COF (%) |
---|---|---|---|
petroleum | 3.89 | 0.0153 | 99 |
Provinces | Electricity Carbon Emission Factor (kgCO2/kWh) |
---|---|
Shanghai | 0.583 |
Jiangsu Province | 0.645 |
Zhejiang Province | 0.542 |
Anhui | 0.708 |
Hubei Province | 0.367 |
Hunan | 0.514 |
Jiangxi | 0.584 |
Chongqing | 0.474 |
Sichuan Province | 0.126 |
2012 | 2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|
Moran’s I | 0.33 | 0.35 | 0.34 | 0.35 | 0.36 |
P | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z | 4.80 | 5.05 | 4.93 | 5.00 | 5.10 |
2017 | 2018 | 2019 | 2020 | 2021 | |
Moran’s I | 0.37 | 0.38 | 0.36 | 0.37 | 0.36 |
P | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z | 5.35 | 5.33 | 5.07 | 5.21 | 5.06 |
Variable | Min | Max | Average |
---|---|---|---|
GDP | −0.0975 | 0.4663 | 0.1962 |
PPS | 0.0701 | 2.7124 | 1.0347 |
ABD | −4.5221 | 4.6414 | −0.6410 |
IS | −43.8568 | 29.3992 | 1.4063 |
R2 | 0.971 | ||
R2 Adjusted | 0.971 | ||
AICc | 10,179.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Lu, J.; Zhang, K.; Niu, H.; Long, Y.; Xu, X. Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt. Energies 2024, 17, 5752. https://doi.org/10.3390/en17225752
Yuan R, Lu J, Zhang K, Niu H, Long Y, Xu X. Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt. Energies. 2024; 17(22):5752. https://doi.org/10.3390/en17225752
Chicago/Turabian StyleYuan, Ruiqing, Jiayi Lu, Kai Zhang, Hongying Niu, Ying Long, and Xiangyang Xu. 2024. "Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt" Energies 17, no. 22: 5752. https://doi.org/10.3390/en17225752
APA StyleYuan, R., Lu, J., Zhang, K., Niu, H., Long, Y., & Xu, X. (2024). Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt. Energies, 17(22), 5752. https://doi.org/10.3390/en17225752