Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage
Abstract
:1. Introduction
2. Approach and Method
3. Theoretical Considerations of Secondary (Rechargeable) Batteries
3.1. Principles of Operation
3.2. Key Battery Performance Indicators
3.3. State-of-the-Art: Lithium-Ion Batteries
4. Non-Lithium Batteries
4.1. Sodium-Ion Batteries
4.1.1. Cathode Materials
4.1.2. Anode Materials
4.1.3. Electrolyte
4.2. Potassium-Ion Batteries
4.2.1. Anode Materials
4.2.2. Cathode Materials
4.3. Zinc-Ion Batteries
4.3.1. Aqueous Zinc-Ion Batteries
4.3.2. Non-Aqueous Zinc-Ion Batteries
4.4. Aluminium-Ion Batteries
4.4.1. Non-Aqueous Aluminium-Ion Batteries
4.4.2. Aqueous Aluminium-Ion Batteries
4.4.3. Other Aluminium-Ion Battery Systems
4.5. Magnesium-Ion Batteries
4.5.1. Cathode Materials
4.5.2. Anode Materials
4.5.3. Electrolytes
4.6. Calcium-Ion Batteries
4.6.1. Cathode Materials
4.6.2. Anode Materials
4.6.3. Electrolyte
5. Discussion
5.1. Electrochemical Performance
5.2. Sustainable Growth
5.3. Safety Considerations
6. Conclusions and Future Outlook
- 1.
- Standardise electrochemical testing procedures and reporting. To aid the interpretability of the results, authors should report their electrochemical testing in terms of C-rate. Reporting based on current density can be inconsistent across publications as the mass used can vary from the mass of an active material (anode/cathode) to the mass of the entire battery.
- 2.
- Increase focus on full cell fabrication. While half cells are excellent tools to optimise conditions with respect to one electrode, full cells need to be tested to push the development of practical, real-world batteries.
- 3.
- Test batteries under real-world conditions. To translate the most promising batteries from laboratory to commercialisation, testing them in real applications entails varying charging and discharging rates, which is a good gauge in determining the suitability of the battery.
- 4.
- Decrease reliance on critical raw materials. Future beyond-lithium batteries must at least reduce our reliance on CRMs like cobalt to avoid the recurrence of resource scarcity in the short to medium term.
- 5.
- Develop scalable battery recycling procedures. To ensure the sustainability of our battery needs, we should reduce first-life battery waste by recovering the precious materials in a battery. The recovered materials could then be used to reproduce new battery electrodes, reducing strain on resource production.
- 6.
- Explore aqueous and solid-state electrolytes. These systems show promise to be safer and thus could promote easier adoption into real-world applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | Definition |
AAIB | Aqueous aluminium-ion battery |
AC | Activated carbon |
AFM | Atomic force microscopy |
AIB | Aluminium-ion battery |
AN | Acetonitrile |
APC | All-phenyl complex solvent |
AZIB | Aqueous zinc-ion battery |
BMS | Battery management system |
CIB | Calcium-ion battery |
COF | Covalent–organic framework |
CV | Cyclic voltammetry |
DEC | Diethyl carbonate |
DEG | Diethylene glycol |
DFT | Density functional theory |
DMC | Dimethyl carbonate |
DME | Dimethyl ether |
EC | Ethylene carbonate |
EDL | Electric double layer |
EG | Ethylene glycol |
EMC | Ethyl methyl carbonate |
[EmIm]Cl | 1-ethyl-3-methylimidazolium chloride |
ESW | Electrochemical stability window |
EV | Electric vehicle |
FEC | Fluoroethylene carbonate |
HC | Hard carbon |
HCF | Hexacyanoferrate |
HER | Hydrogen evolution reaction |
ICE | Initial coulombic efficiency |
KFSI | Potassium bis(fluorosulfonyl)imide |
KPB | Potassium Prussian blue |
KNHCF | Potassium nickel hexacyanoferrate |
LCO | Lithium cobalt oxide |
LFP | Lithium iron phosphate |
LIB | Lithium-ion battery |
MAB | Metal–air battery |
MIB | Magnesium-ion battery |
MOF | Metal–organic framework |
NASICON | Sodium (Na) super ionic conductor |
NC | Nitrogen-doped carbon |
NCA | Nickel cobalt aluminium oxide |
NMC | Nickel manganese cobalt oxide |
NSG | N/S dual-doped graphitic hollow architectures |
OER | Oxygen evolution reaction |
PANI | Polyaniline |
PBA | Prussian Blue analogue |
PC | Propylene carbonate |
PEDOT | Poly(3,4-ethylenedioxythiophene) |
PEG | Poly(ethylene glycol) |
PEGDA | Poly(ethylene glycol) diacrylate |
PIB | Potassium-ion battery |
PTCDA | Perylenetetracarboxylic dianhydride |
PTCDI | 3,4,9,10-perylenetetracarboxylic diimide |
rGO | Reduced graphene oxide |
RTIL | Room-temperature ionic liquid |
SC | Soft carbon |
SEI | Solid–electrolyte interface |
SEM | Scanning electron microscopy |
SHE | Standard hydrogen electrode |
SIB | Sodium-ion battery |
TEGDME | Tetraethylene glycol dimethyl ether |
TEP | Triethyl phosphate |
TFSI | Bis(trifluoromethanesulfonimide) |
THF | Tetrahydrofuran |
TMD | Transition metal dichalcogenides |
TMP | Trimethyl phosphate |
XRD | X-ray diffraction |
ZIB | Zinc-ion battery |
References
- Goodenough, J.B.; Park, K.S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Walvekar, H.; Beltran, H.; Sripad, S.; Pecht, M. Implications of the Electric Vehicle Manufacturers’ Decision to Mass Adopt Lithium-Iron Phosphate Batteries. IEEE Access 2022, 10, 63834–63843. [Google Scholar] [CrossRef]
- Smart, M.; Ratnakumar, B.; Whitcanack, L.; Chin, K.; Suramplndi, S.; Gitzendanner, R.; Puglia, F.; Byers, J.; Ratnakumar, B.V.; Whitcanack, L.D.; et al. Lithium-Ion Batteries for Aerospace. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 18–25. [Google Scholar] [CrossRef]
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-Ion Battery Technology for Grid Application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < −1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Yuan, L.X.; Wang, Z.H.; Zhang, W.X.; Hu, X.L.; Chen, J.T.; Huang, Y.H.; Goodenough, J.B. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Enviton. Sci. 2011, 4, 269–284. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Mlilo, N.; Brown, J.; Ahfock, T. Impact of Intermittent Renewable Energy Generation Penetration on the Power System Networks—A Review. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 25. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “beyond Li-Ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and Challenges in Using Sustainable Carbon Anodes in Rechargeable Metal-Ion Batteries. Prog. Energy Combust. Sci. 2021, 87, 100929. [Google Scholar] [CrossRef]
- Pimlott, J.L.; Street, R.J.; Down, M.P.; Banks, C.E. Electrochemical Overview: A Summary of ACoxMnyNizO2 and Metal Oxides as Versatile Cathode Materials for Metal-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2107761. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Niu, J.; Liu, Y.; Bridges, D.; Liu, X.; Pooran, J.; Zhang, Y.; Hu, A. Recent Progress of Metal-Air Batteries—A Mini Review. Appl. Sci. 2019, 9, 2787. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J. Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T.; Wilberforce, T.; Jamal, A.; Alami, A.H.; Elsaid, K.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Metal-Air Batteries—A Review. Energies 2021, 14, 7373. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, J.; Peng, Z. Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate. Angew. Chem. Int. Ed. 2018, 57, 3874–3886. [Google Scholar] [CrossRef]
- Bhar, M.; Ghosh, S.; Krishnamurthy, S.; Kaliprasad, Y.; Martha, S.K. A Review on Spent Lithium-Ion Battery Recycling: From Collection to Black Mass Recovery. RSC Sustain. 2023, 1, 1150–1167. [Google Scholar] [CrossRef]
- Standard Potentials in Aqueous Solution-AllenJ. Bard-Google Books. Available online: https://books.google.com.sg/books?hl=en&lr=&id=XoZHDwAAQBAJ&oi=fnd&pg=IA3&dq=Bard,+A.+J.%3B+Parsons,+B.%3B+Jordon,+J.,+eds.+Standard+Potentials+in+Aqueous+Solutions,+Dekker:+New+York,+1985&ots=K4L-krHywI&sig=A4BZEHzerQyrTkvsFQtqP9uqv5Y&redir_esc=y#v=onepage&q&f=false (accessed on 8 July 2024).
- McCafferty, E. Standard Electrode Potentials of the Elements as a Fundamental Periodic Property of Atomic Number. Electrochim. Acta 2007, 52, 5884–5890. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Duffner, F.; Wentker, M.; Greenwood, M.; Leker, J. Battery Cost Modeling: A Review and Directions for Future Research. Renew. Sustain. Energy Rev. 2020, 127, 109872. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Duh, Y.S.; Sun, Y.; Lin, X.; Zheng, J.; Wang, M.; Wang, Y.; Lin, X.; Jiang, X.; Zheng, Z.; Zheng, S.; et al. Characterization on Thermal Runaway of Commercial 18650 Lithium-Ion Batteries Used in Electric Vehicles: A Review. J. Energy Storage 2021, 41, 102888. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2024; U.S. Geological Survey: Reston, VA, USA, 2024. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply Risks Associated with Lithium-Ion Battery Materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.S.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-Ion Batteries Paving the Way for Grid Energy Storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Singh, A.N.; Islam, M.; Meena, A.; Faizan, M.; Han, D.; Bathula, C.; Hajibabaei, A.; Anand, R.; Nam, K.W. Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage. Adv. Funct. Mater. 2023, 33, 2304617. [Google Scholar] [CrossRef]
- Wang, W.; Gang, Y.; Hu, Z.; Yan, Z.; Li, W.; Li, Y.; Gu, Q.F.; Wang, Z.; Chou, S.L.; Liu, H.K.; et al. Reversible Structural Evolution of Sodium-Rich Rhombohedral Prussian Blue for Sodium-Ion Batteries. Nat. Commun. 2020, 11, 980. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, Y.; Wang, Q.C.; Xu, J.; Zhou, Y.N.; Bao, J.; Shen, J.; Zhou, X. A Yolk–Shell-Structured FePO4 Cathode for High-Rate and Long-Cycling Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 17504–17510. [Google Scholar] [CrossRef]
- Li, Y.; Qian, J.; Zhang, M.; Wang, S.; Wang, Z.; Li, M.; Bai, Y.; An, Q.; Xu, H.; Wu, F.; et al. Co-Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium-Ion Batteries. Adv. Mater. 2020, 32, e2005802. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Zhao, S.; Liu, Y.; Yang, Y.; Yu, H.; Lee, S.; Lee, G.H.; Kang, Y.M.; Liu, R.; et al. Tuning Local Chemistry of P2 Layered-Oxide Cathode for High Energy and Long Cycles of Sodium-Ion Battery. Nat. Commun. 2021, 12, 2256. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.Y.; Guo, J.Z.; Cao, J.M.; Wang, X.T.; Zhao, X.X.; Zheng, X.Y.; Li, W.H.; Sun, Z.H.; Liang, H.J.; Wu, X.L. An Advanced High-Entropy Fluorophosphate Cathode for Sodium-Ion Batteries with Increased Working Voltage and Energy Density. Adv. Mater. 2022, 34, 2110108. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Wang, P.F.; Wang, Q.C.; Zhu, K.; Deng, T.; Zhang, J.; Zhang, W.; Yang, X.Q.; Jiao, L.; Wang, C. Realizing Complete Solid-Solution Reaction in High Sodium Content P2-Type Cathode for High-Performance Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 14511–14516. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Le, P.M.L.; Gao, P.; Xu, Y.; Xiao, B.; Engelhard, M.H.; Cao, X.; Vo, T.D.; Hu, J.; Zhong, L.; et al. Low-Solvation Electrolytes for High-Voltage Sodium-Ion Batteries. Nat. Energy 2022, 7, 718–725. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Cui, J.; Yao, S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Quattrocchi, E.; Ciucci, F.; Kim, J.K. Dual-Phase MoS2 as a High-Performance Sodium-Ion Battery Anode. J. Mater. Chem. A Mater. 2020, 8, 2114–2122. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, M.; Zhang, L.; Li, Y.; Li, Y.; Tan, C.; Zheng, F.; Huang, Y.; Wang, H.; Li, Q. FeSe2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. ACS Nano 2020, 14, 17683–17692. [Google Scholar] [CrossRef]
- Cao, J.; Wang, L.; Li, D.; Yuan, Z.; Xu, H.; Li, J.; Chen, R.; Shulga, V.; Shen, G.; Han, W. Ti3C2Tx MXene Conductive Layers Supported Bio-Derived Fex−1Sex/MXene/Carbonaceous Nanoribbons for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries. Adv. Mater. 2021, 33, e2101535. [Google Scholar] [CrossRef]
- Tang, Y.; Li, W.; Feng, P.; Zhou, M.; Wang, K.; Wang, Y.; Zaghib, K.; Jiang, K. High-Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1908754. [Google Scholar] [CrossRef]
- Liu, T.; Wu, H.; Wang, H.; Jiao, Y.; Du, X.; Wang, J.; Fu, G.; Zhang, Y.; Zhao, J.; Cui, G. A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries. Nanomicro Lett. 2024, 16, 144. [Google Scholar] [CrossRef]
- Cai, T.; Cai, M.; Mu, J.; Zhao, S.; Bi, H.; Zhao, W.; Dong, W.; Huang, F. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries. Nanomicro Lett. 2024, 16, 10. [Google Scholar] [CrossRef]
- Cao, S.; Xu, X.; Liu, Q.; Zhu, H.; Wang, J.; Zizheng, Z.; Hu, T. Superlong Cycle-Life Sodium-Ion Batteries Supported by Electrode/Active Material Interaction and Heteroatom Doping: Mechanism and Application. J. Colloid. Interface Sci. 2024, 674, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Xu, C.; Zhang, D.; Che, S.; Wang, Y.; Yang, J.; Chen, K.; Sun, Y.; Liu, S.; Fu, J.; et al. Exploration of Electrochemical Behavior of Sb-Based Porous Carbon Composites Anode for Sodium-Ion Batteries. J. Colloid. Interface Sci. 2024, 673, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, L.; Wang, X.; Lv, H.; Zhu, B.; Yu, J.; Zhang, L. Heterostructured MnSe/FeSe Nanorods Encapsulated by Carbon with Enhanced Na+ Diffusion as Anode Materials for Sodium-Ion Batteries. J. Colloid. Interface Sci. 2024, 672, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, X.; Yang, Y.; Liu, L.; Xiao, Y.; Han, L. A High-Entropy-Designed Cathode with V5+-V2+ Multi-Redox for High Energy Density Sodium-Ion Batteries. J. Energy Chem. 2024, 97, 429–437. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, T.; Wang, Y.; Guo, L.; Chen, Y. In-Situ Constructing Co/Mo Co-Doped Na3V2(PO4)3 with Coral Cluster Porous Structure Boosting High Performance for Sodium Ion Batteries. Appl. Surf. Sci. 2024, 669, 160456. [Google Scholar] [CrossRef]
- Sun, X.; Yang, J.; Chen, Y.; Luo, F. Interconnected MoO2/MoS2@NC Nanosheets as Anodes with High-Rate and Long-Life for Lithium-Ion and Sodium-Ion Batteries. Chem. Eng. J. 2024, 495, 153418. [Google Scholar] [CrossRef]
- Zeng, Z.; Abulikemu, A.; Zhang, J.; Peng, Z.; Zhang, Y.; Uchimoto, Y.; Han, J.; Wang, Q.C. High-Entropy O3-Type Cathode Enabling Low-Temperature Performance for Sodium-Ion Batteries. Nano Energy 2024, 128, 109813. [Google Scholar] [CrossRef]
- Song, J.; Lee, C.; Kim, J. Constructing Ti-O-C Bond in Na0.23TiO2@N-Doped Carbon Sphere Using Dihydroxybenzene as an Anode Material for Sodium-Ion Batteries. J. Power Sources 2024, 613, 234868. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhu, J.; Pan, J.; Fang, G.; Liang, S.; Cao, X. A Multicationic-Substituted Configurational Entropy-Enabled Nasicon Cathode for High-Power Sodium-Ion Batteries. Nano Energy 2024, 128, 109812. [Google Scholar] [CrossRef]
- PlotDigitizer, Version 3.1.5. Available online: https://plotdigitizer.com (accessed on 23 July 2024).
- Jia, G.; Chao, D.; Tiep, N.H.; Zhang, Z.; Fan, H.J. Intercalation Na-Ion Storage in Two-Dimensional MoS2-XSex and Capacity Enhancement by Selenium Substitution. Energy Storage Mater. 2018, 14, 136–142. [Google Scholar] [CrossRef]
- Kim, H.S.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3-x. Nat. Mater. 2017, 16, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.; Liang, P.; Chen, Z.; Bai, L.; Shen, H.; Liu, X.; Xia, X.; Zhao, Y.; Savilov, S.V.; Lin, J.; et al. Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. ACS Nano 2016, 10, 10211–10219. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; He, T.; Chen, B.; Feng, Y.; Zu, L.; Wang, Z.; Zhang, Q.; Hao, T.; Meng, R.; Che, R.; et al. Covalent Assembly of MoS2 Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 14621–14627. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Gao, X.; Zhang, B.; Ou, X.; Zhang, J.; Luo, W. Bin Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 14, 3610–3620. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Zhang, L.; Wei, M.; Jiang, C.; Li, Z.; Wu, M. Heterostructure CoSe2/Sb2Se3 Nanocrystals Embedded into Nanocage-in-Nanofiber Carbon Framework for Ultralong-Life Sodium-Ion Batteries. J. Alloys Compd. 2024, 999, 175014. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.W.; He, F.; Zhang, J.; Feng, Y.; Zhao, L.; Wang, B.; He, L.; Zhang, Q.; Yu, Y. Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. Nano Lett. 2020, 20, 758–767. [Google Scholar] [CrossRef]
- Lv, T.; Suo, L. Water-in-Salt Widens the Electrochemical Stability Window: Thermodynamic and Kinetic Factors. Curr. Opin. Electrochem. 2021, 29, 100818. [Google Scholar] [CrossRef]
- Yan, T.S.; Li, T.X.; Xu, J.X.; Wang, R.Z. Water Sorption Properties, Diffusion and Kinetics of Zeolite NaX Modified by Ion-Exchange and Salt Impregnation. Int. J. Heat. Mass. Transf. 2019, 139, 990–999. [Google Scholar] [CrossRef]
- Yu, X.; Chen, R.; Gan, L.; Li, H.; Chen, L. Battery Safety: From Lithium-Ion to Solid-State Batteries. Engineering 2023, 21, 9–14. [Google Scholar] [CrossRef]
- Chu, S.; Guo, S.; Zhou, H. Advanced Cobalt-Free Cathode Materials for Sodium-Ion Batteries. Chem. Soc. Rev. 2021, 50, 13189–13235. [Google Scholar] [CrossRef]
- Lee, E.; Lu, J.; Ren, Y.; Luo, X.; Zhang, X.; Wen, J.; Miller, D.; DeWahl, A.; Hackney, S.; Key, B.; et al. Layered P2/O3 Intergrowth Cathode: Toward High Power Na-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400458. [Google Scholar] [CrossRef]
- Katcho, N.A.; Carrasco, J.; Saurel, D.; Gonzalo, E.; Han, M.; Aguesse, F.; Rojo, T. Origins of Bistability and Na Ion Mobility Difference in P2- and O3-Na2/3Fe2/3Mn1/3O2 Cathode Polymorphs. Adv. Energy Mater. 2017, 7, 1601477. [Google Scholar] [CrossRef]
- Wang, P.F.; You, Y.; Yin, Y.X.; Guo, Y.G. Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance. Adv. Energy Mater. 2018, 8, 1701912. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Sun, Z.H.; Zhao, X.X.; Li, W.H.; Yang, X.; Liang, H.J.; Zhao, C.D.; Wu, X.L. Carbon-Coating-Increased Working Voltage and Energy Density towards an Advanced Na3V2(PO4)2F3@C Cathode in Sodium-Ion Batteries. Sci. Bull. 2020, 65, 702–710. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Zhao, X.; He, L.; Liu, H.; Song, Y.; Sun, S.; Li, Q.; Xing, X.; Chen, J. A Novel NASICON-Type Na4MnCr(PO4)3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium-Ion Batteries. Adv. Mater. 2020, 32, 1906348. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, P.; Chen, S.; Liu, X.; Feng, G.; Zuo, M.; Xing, W.; Zhang, B.; Fan, W.; Zhang, H.; et al. Architecting O3/P2 Layered Oxides by Gradient Mn Doping for Sodium-Ion Batteries. J. Colloid. Interface Sci. 2024, 674, 1–8. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Y.; Wang, S.; Huang, Z.; Li, J.; Gong, C.; Zhang, G.; Sun, B.; Gao, H.; Li, H.; et al. Surface Engineering of P2-Type Cathode Material Targeting Long-Cycling and High-Rate Sodium-Ion Batteries. J. Energy Chem. 2024, 97, 444–452. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, P.; Sun, K.; Wu, L.; Zheng, J. Stabilizing NASICON-Type Na4MnCr(PO4)3 by Ti-Substitution toward a High-Voltage Cathode Material for Sodium Ion Batteries. J. Colloid. Interface Sci. 2024, 671, 385–393. [Google Scholar] [CrossRef]
- El Kacemi, Z.; Fkhar, L.; El Maalam, K.; Aziam, H.; Ben Youcef, H.; Saadoune, I.; Ait Ali, M.; Boschini, F.; Mahmoud, A.; Mounkachi, O.; et al. Unveiling the Potential of Na2FePO4F@PEG Composite as Cathode Material for Sodium-Ion Batteries. J. Mol. Struct. 2024, 1312, 138524. [Google Scholar] [CrossRef]
- Guo, Y.; Ou, J.; Sun, Y.; Zhang, H.; He, Y.; Huang, B.; Chen, Q. Electrochemical Performance of Na4P2O7 Decorated Na4MnV(PO4)3/C Cathode Material for Sodium-Ion Batteries. Mater. Lett. 2024, 370, 136785. [Google Scholar] [CrossRef]
- Smith, A.; Stüble, P.; Leuthner, L.; Hofmann, A.; Jeschull, F.; Mereacre, L. Potential and Limitations of Research Battery Cell Types for Electrochemical Data Acquisition. Batter. Supercaps 2023, 6, e202300080. [Google Scholar] [CrossRef]
- Liu, X.M.; Arnold, C.B. Effects of Current Density on Defect-Induced Capacity Fade through Localized Plating in Lithium-Ion Batteries. J. Electrochem. Soc. 2020, 167, 130519. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Zhang, Z.; Tang, Y.; Jia, C.; Ji, X.; Wang, H. Understanding Crystal Structures, Ion Diffusion Mechanisms and Sodium Storage Behaviors of NASICON Materials. Energy Storage Mater. 2021, 34, 171–193. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Adv. Mater. 2019, 31, e1806236. [Google Scholar] [CrossRef]
- Hao, Z.; Shi, X.; Zhu, W.; Yang, Z.; Zhou, X.; Wang, C.; Li, L.; Hua, W.; Ma, C.Q.; Chou, S. Boosting Multielectron Reaction Stability of Sodium Vanadium Phosphate by High-Entropy Substitution. ACS Nano 2024, 18, 9354–9364. [Google Scholar] [CrossRef]
- Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yang, Y.; Chen, J.; Jing, M.; Li, F.; Banks, C.E. First Exploration of Na-Ion Migration Pathways in the NASICON Structure Na3V2(PO4)3. J. Mater. Chem. A Mater. 2014, 2, 5358–5362. [Google Scholar] [CrossRef]
- Fang, T.; Guo, S.; Jiang, K.; Zhang, X.; Wang, D.; Feng, Y.; Zhang, X.; Wang, P.; He, P.; Zhou, H. Revealing the Critical Role of Titanium in Layered Manganese-Based Oxides toward Advanced Sodium-Ion Batteries via a Combined Experimental and Theoretical Study. Small Methods 2019, 3, 1800183. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, L.; Sushko, M.L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.V.; Yang, Z.; Liu, J. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Xiao, B.; Rojo, T.; Li, X. Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges. ChemSusChem 2019, 12, 133–144. [Google Scholar] [CrossRef]
- Dou, X.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry. Mater. Today 2019, 23, 87–104. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, C.; He, X.X.; Zhao, J.; Yang, Z.; Li, L.; Wu, X.; Li, L.; Chou, S.L. Boosting the Development of Hard Carbon for Sodium-Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Adv. Funct. Mater. 2024, 34, 2302277. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. Small Methods 2019, 3, 1800323. [Google Scholar] [CrossRef]
- Zhao, G.; Yu, D.; Zhang, H.; Sun, F.; Li, J.; Zhu, L.; Sun, L.; Yu, M.; Besenbacher, F.; Sun, Y. Sulphur-Doped Carbon Nanosheets Derived from Biomass as High-Performance Anode Materials for Sodium-Ion Batteries. Nano Energy 2020, 67, 104219. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, K.; Feng, P.; Zhang, Z.; Cheng, S.; Jiang, K. Surface-Dominated Storage of Heteroatoms-Doping Hard Carbon for Sodium-Ion Batteries. Energy Storage Mater. 2020, 27, 43–50. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-Reinforced Nb2CTxMXene/MoS2Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, Y.; Wang, H.; Zhu, Z.; Quan, J.; Chang, Y.; Li, P.; Yu, D.; Jiang, Y. Ultrafast Kinetics Net Electrode Assembled via MoSe2/MXene Heterojunction for High-Performance Sodium-Ion Batteries. Chem. Eng. J. 2020, 385, 123839. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, S.; Wen, B.; Xiao, J.; Yang, G.; Ding, S. Waste Tire-Derived Graphene Modified Carbon as Anodes for Sodium-Ion Batteries. Mater. Today Sustain. 2024, 27, 100874. [Google Scholar] [CrossRef]
- Leng, Y.; Dong, S.; Chen, Z.; Sun, Y.; Xu, Q.; Ma, L.; He, X.; Hai, C.; Zhou, Y. Preparation of High-Performance Anode Materials for Sodium-Ion Batteries Using Bamboo Waste: Achieving Resource Recycling. J. Power Sources 2024, 613, 234826. [Google Scholar] [CrossRef]
- Palchoudhury, S.; Ramasamy, K.; Han, J.; Chen, P.; Gupta, A. Transition Metal Chalcogenides for Next-Generation Energy Storage. Nanoscale Adv. 2023, 5, 2724–2742. [Google Scholar] [CrossRef]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703–A1719. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Wishart, J.F.; Abraham, D.P. What Makes Fluoroethylene Carbonate Different? J. Phys. Chem. C 2015, 119, 14954–14964. [Google Scholar] [CrossRef]
- Parker, R.L. Composition of the Earth’s Crust; U.S. Geological Survey: Reston, VA, USA, 1967. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Pham, T.A.; Kweon, K.E.; Samanta, A.; Lordi, V.; Pask, J.E. Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. C 2017, 121, 21913–21920. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, T.; He, B.; Feng, S.; Wang, X.; Wei, L.; Mai, L. Recent Advances and Perspectives in Aqueous Potassium-Ion Batteries. Energy Environ. Sci. 2022, 15, 3750–3774. [Google Scholar] [CrossRef]
- Ge, J.; Fan, L.; Rao, A.M.; Zhou, J.; Lu, B. Surface-Substituted Prussian Blue Analogue Cathode for Sustainable Potassium-Ion Batteries. Nat. Sustain. 2022, 5, 225–234. [Google Scholar] [CrossRef]
- Cui, R.C.; Xu, B.; Dong, H.J.; Yang, C.C.; Jiang, Q. N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries. Adv. Sci. 2020, 7, 1902547. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Sun, M.; Wang, W.; Chen, C.; Altunkaya, M.; Emwas, A.H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H.N. Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. Adv. Mater. 2020, 32, 2000732. [Google Scholar] [CrossRef]
- Ji, B.; Yao, W.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Tunmee, S.; Sattayaporn, S.; Cheng, H.M.; He, H.; Tang, Y. A Fluoroxalate Cathode Material for Potassium-Ion Batteries with Ultra-Long Cyclability. Nat. Commun. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Liu, S.; Mao, J.; Zhang, L.; Pang, W.K.; Du, A.; Guo, Z. Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassium-Ion Batteries. Adv. Mater. 2021, 33, 2006313. [Google Scholar] [CrossRef]
- Liao, J.; Yuan, Z.; Hu, Q.; Sheng, X.; Song, L.; Xu, Y.; Du, Y.; Zhou, X. Heat-Resistant Carbon-Coated Potassium Magnesium Hexacyanoferrate Nanoplates for High-Performance Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202409145. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wang, B.; Jing, Z.; Chen, M.; Zhai, Y.; Kong, Z.; Iqbal, S.; Zeng, S.; Sun, X.; et al. Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries. Adv. Funct. Mater. 2024, 34, 2406988. [Google Scholar] [CrossRef]
- Jeong, Y.; Son, H.; Baek, J.; Kim, M.; Lee, G. Relationship between Functionalization and Structural Defect Density of Graphite for Application in Potassium-Ion Batteries. Inorg. Chem. Commun. 2024, 167, 112788. [Google Scholar] [CrossRef]
- Chen, B.C.; Lu, X.; Zhong, H.Y.; Huang, P.W.; Wu, Y.N.; Xu, S.Y.; Tan, X.Y.; Wu, X.H. Constructing FeSe2 Nanorods Supported on Ketjenblack with Superior Cyclability for Potassium-Ion Batteries. J. Mater. Chem. A Mater. 2024, 12, 19995–20005. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, Y.; Wang, S. Interfacial Strategies for Suppression of Mn Dissolution in Rechargeable Battery Cathode Materials. ACS Appl. Mater. Interfaces 2022, 14, 23022–23032. [Google Scholar] [CrossRef] [PubMed]
- Bruce, F.N.O.; He, R.; Xuan, R.; Xin, B.; Ma, Y.; Li, Y. An Experimental and Kinetic Modeling Study of the Auto-Ignition Delay Times of Trimethyl Phosphate-in-Air Mixtures. Appl. Energy Combust. Sci. 2024, 17, 100237. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, W.; Carter, M.; Zhou, L.; Dai, J.; Fu, K.; Lacey, S.; Li, T.; Wan, J.; Han, X.; et al. Organic Electrode for Non-Aqueous Potassium-Ion Batteries. Nano Energy 2015, 18, 205–211. [Google Scholar] [CrossRef]
- Moriwake, H.; Kuwabara, A.; Fisher, C.A.J.; Ikuhara, Y. Why Is Sodium-Intercalated Graphite Unstable? RSC Adv. 2017, 7, 36550–36554. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Electrochemical Intercalation of Potassium into Graphite. Adv. Funct. Mater. 2016, 26, 8103–8110. [Google Scholar] [CrossRef]
- Lenchuk, O.; Adelhelm, P.; Mollenhauer, D. New Insights into the Origin of Unstable Sodium Graphite Intercalation Compounds. Phys. Chem. Chem. Phys. 2019, 21, 19378–19390. [Google Scholar] [CrossRef]
- Huang, H.; Xu, R.; Feng, Y.; Zeng, S.; Jiang, Y.; Wang, H.; Luo, W.; Yu, Y. Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Adv. Mater. 2020, 32, 1904320. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.X.; Xu, Y.S.; Meng, Q.S.; Gao, J.C.; Sun, Y.G.; Hu, Y.S.; Chang, B.B.; Liu, C.T.; Cao, A.M. Pitch-Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Adv. Mater. 2020, 32, 2000505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Di, H.; Hui, X.; Zhao, D.; Wang, R.; Wang, C.; Yin, L. Self-Assembled Ti3C2 MXene and N-Rich Porous Carbon Hybrids as Superior Anodes for High-Performance Potassium-Ion Batteries. Energy Environ. Sci. 2020, 13, 246–257. [Google Scholar] [CrossRef]
- Tao, L.; Yang, Y.; Wang, H.; Zheng, Y.; Hao, H.; Song, W.; Shi, J.; Huang, M.; Mitlin, D. Sulfur-Nitrogen Rich Carbon as Stable High Capacity Potassium Ion Battery Anode: Performance and Storage Mechanisms. Energy Storage Mater. 2020, 27, 212–225. [Google Scholar] [CrossRef]
- Lu, C.; Sun, Z.; Yu, L.; Lian, X.; Yi, Y.; Li, J.; Liu, Z.; Dou, S.; Sun, J. Enhanced Kinetics Harvested in Heteroatom Dual-Doped Graphitic Hollow Architectures toward High Rate Printable Potassium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001161. [Google Scholar] [CrossRef]
- Nason, C.A.F.; Vijaya Kumar Saroja, A.P.; Lu, Y.; Wei, R.; Han, Y.; Xu, Y. Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode. Nanomicro Lett. 2024, 16, 1. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, X.; Zhao, Y.; Zhao, Q.; Zhao, X.; Wei, G.; Chen, H. Multi-Geometric Carbon Encapsulated SnP3 Composite for Superior Lithium/Potassium Ion Batteries. Dalton Trans. 2024, 53, 13364–13369. [Google Scholar] [CrossRef]
- Kaur, H.; Konkena, B.; McCrystall, M.; Synnatschke, K.; Gabbett, C.; Munuera, J.; Smith, R.; Jiang, Y.; Bekarevich, R.; Jones, L.; et al. Liquid-Phase Exfoliation of Arsenic Trisulfide (As2S3) Nanosheets and Their Use as Anodes in Potassium-Ion Batteries. ACS Nano 2024, 18, 20213–20225. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Luo, Q.; Dai, J.; Liu, G.; Huang, Z.; Liu, L. Nanosheets Assembled Ca0.5Ti2(PO4)3 Submicron Cubes Embedded in Carbon Nanofibers as Excellent Anode for Potassium-Ion Batteries. J. Energy Storage 2024, 97, 112899. [Google Scholar] [CrossRef]
- Wang, B.; Deng, T.; Liu, J.; Sun, B.; Su, Y.; Ti, R.; Shangguan, L.; Zhang, C.; Tang, Y.; Cheng, N.; et al. Scaly MoS2/RGO Composite as an Anode Material for High-Performance Potassium-Ion Battery. Molecules 2024, 29, 2977. [Google Scholar] [CrossRef]
- Huang, Y.; Haider, R.; Xu, S.; Liu, K.; Ma, Z.F.; Yuan, X. Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage Mater. 2022, 51, 327–360. [Google Scholar] [CrossRef]
- Chen, X.; Hao, C.; Shang, M.; Li, X.; Wang, S.; Zhang, W. Enhanced Surface Stability of K0.27MnO2·0.54 H2O Cathode Materials with LiF/LixPFyOz Coating for Potassium-Ion Batteries. Colloids Surf. A Physicochem. Eng. Asp. 2024, 700, 134772. [Google Scholar] [CrossRef]
- Xu, Y.; Du, Y.; Chen, H.; Chen, J.; Ding, T.; Sun, D.; Kim, D.H.; Lin, Z.; Zhou, X. Recent Advances in Rational Design for High-Performance Potassium-Ion Batteries. Chem. Soc. Rev. 2024, 53, 7202–7298. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Adv. Funct. Mater. 2020, 30, 1909486. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z. Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 2861–2865. [Google Scholar] [CrossRef]
- Bayaguud, A.; Luo, X.; Fu, Y.; Zhu, C. Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries. ACS Energy Lett. 2020, 5, 3012–3020. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, R.; Peng, C.; Chen, W.; Wu, T.; Hu, B.; Weng, W.; Yao, Y.; Zeng, J.; Chen, Z.; et al. Horizontally Arranged Zinc Platelet Electrodeposits Modulated by Fluorinated Covalent Organic Framework Film for High-Rate and Durable Aqueous Zinc Ion Batteries. Nat. Commun. 2021, 12, 6606. [Google Scholar] [CrossRef]
- Yuksel, R.; Buyukcakir, O.; Seong, W.K.; Ruoff, R.S. Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 1904215. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Huang, R.; Wei, G.; Liu, A.; Li, L.; Chen, R. Ultrathin Surface Coating of Nitrogen-Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2101649. [Google Scholar] [CrossRef]
- He, H.; Tong, H.; Song, X.; Song, X.; Liu, J. Highly Stable Zn Metal Anodes Enabled by Atomic Layer Deposited Al2O3 Coating for Aqueous Zinc-Ion Batteries. J. Mater. Chem. A Mater. 2020, 8, 7836–7846. [Google Scholar] [CrossRef]
- Yan, H.; Li, S.; Nan, Y.; Yang, S.; Li, B. Ultrafast Zinc–Ion–Conductor Interface toward High-Rate and Stable Zinc Metal Batteries. Adv. Energy Mater. 2021, 11, 2100186. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Z.; Sun, Y.; Li, Y.; Zhang, H.; Li, G.; Zeng, H.; Wang, X. Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc-Ion Batteries. Nanomicro Lett. 2024, 16, 96. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Wang, Y.; Lv, T.; Rong, M.; Dong, X.; Chen, D.; Meng, C.; Zhang, Y. Surface Engineering of Zinc Plate by Self-Growth Three-Dimensional-Interconnected Zinc Silicate Nanosheets Effectively Guiding the Deposition of Zinc Ion for Aqueous Zn Metal Battery. J. Colloid. Interface Sci. 2024, 673, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Zhao, T.; Lai, Q.; Zhao, J.; Grigoriev, S.A.; Liang, Y. In Situ Preparation of MOF-74 for Compact Zincophilic Surfaces Enhancing the Stability of Aqueous Zinc-Ion Battery Anodes. J. Alloys Compd. 2024, 1002, 175448. [Google Scholar] [CrossRef]
- Sun, Z.; Jiao, X.; Chu, S.; Li, Z. Waste Peanut Shell Derived Porous Carbon for Dendrites-Free Aqueous Zinc-Ion Batteries. Chem. Eng. Sci. 2024, 298, 120358. [Google Scholar] [CrossRef]
- Liu, H.; Sui, B.B.; Wang, P.F.; Gong, Z.; Zhang, Y.H.; Wu, Y.H.; Tang, J.J.; Shi, F.N. In Situ Construction of Hydrogel Coatings on Zinc Foil Surfaces to Improve the Stability of Aqueous Zinc-Ion Batteries. Solid. State Ion. 2024, 413, 116604. [Google Scholar] [CrossRef]
- Deng, S.; Yuan, Z.; Tie, Z.; Wang, C.; Song, L.; Niu, Z. Electrochemically Induced Metal–Organic-Framework-Derived Amorphous V2O5 for Superior Rate Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 22002–22006. [Google Scholar] [CrossRef]
- Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C.C. Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1907684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z.; Chen, J. A Chemically Self-Charging Aqueous Zinc-Ion Battery. Nat. Commun. 2020, 11, 2199. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zhao, X.; Shen, Q.; Zhao, W.; Tan, Q.; Zhang, N.; Li, P.; Jiao, L.; Qu, X. Sandwich-Like Heterostructures of MoS2/Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2007480. [Google Scholar] [CrossRef]
- Bin, D.; Huo, W.; Yuan, Y.; Huang, J.; Liu, Y.; Zhang, Y.; Dong, F.; Wang, Y.; Xia, Y. Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. Chem 2020, 6, 968–984. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J. Electrochemically Induced Cationic Defect in MnO Intercalation Cathode for Aqueous Zinc-Ion Battery. Energy Storage Mater. 2020, 24, 394–401. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Ni, Z.; Gu, Y.; Wang, B.; Guo, Z.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long-Life Aqueous Zinc–Organic Batteries. Adv. Mater. 2020, 32, 2000338. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, G.; Wang, X.; Li, X.; Zhang, J.; Wu, X.; Yuan, Y.; Xi, Y.; Yang, X.; Li, M.; et al. Protons Intercalation Induced Hydrogen Bond Network in δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries. J. Colloid Interface Sci. 2024, 675, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Liu, C.; Wang, Z.; Huang, D.; Cao, G. Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries. Nanomicro Lett. 2024, 16, 129. [Google Scholar] [CrossRef]
- Song, A.; Zhao, J.; Qiao, C.; Ding, Y.; Tian, G.; Fan, Y.; Ma, Z.; Dai, L.; Shao, G.; Liu, Z. High-Capacity K+-Pillared Layered Manganese Dioxide as Cathode Material for High-Rate Aqueous Zinc-Ion Battery. J. Colloid Interface Sci. 2024, 674, 336–344. [Google Scholar] [CrossRef]
- Hu, X.; Liao, Y.; Wu, M.; Zheng, W.; Long, M.; Chen, L. Mesoporous Copper-Doped δ-MnO2 Superstructures to Enable High-Performance Aqueous Zinc-Ion Batteries. J. Colloid Interface Sci. 2024, 674, 297–305. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, L.; Jiang, Y.; Sun, L.; Wang, Q.; Zhao, J.; Chen, P.; Wang, X.; Liu, H.; Liu, W.; et al. Research of the Transition from a Aqueous Zinc Ion Battery to an Aqueous Hydrogen Proton Battery Triggered by the Cu@Cu31S16 Cathode Material Development. J. Colloid Interface Sci. 2024, 673, 628–637. [Google Scholar] [CrossRef]
- Long, B.; Liang, X.; Pei, Y.; Wu, X.; Wang, X.; Law, M.K. Free-standing BiOI@MWCNTs Photoelectrodes for Photo-rechargeable Zinc-ion Batteries. J. Mater. Sci. Technol. 2024, 198, 137–142. [Google Scholar] [CrossRef]
- Ge, Y.; Li, T. The Flexibility of Pre-Embedding Na+ and PO43− in Layered V2O5 for High Capacity and Stability Zinc Ion Batteries. J. Alloys Compd. 2024, 1002, 175347. [Google Scholar] [CrossRef]
- Su, L.; Chen, J.; Li, Y.; Li, X.; Zheng, Q.; Lin, D. V2O3/VO2@NC@GO Ultrathin Nanosheets as a High-Performance Cathode for Aqueous Zinc-Ion Batteries. J. Alloys Compd. 2024, 1002, 175414. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, W.; Ni, J.; Li, L. High Areal Energy Zinc-Ion Micro-Batteries Enabled by 3D Printing. J. Mater. Sci. Technol. 2024, 196, 183–189. [Google Scholar] [CrossRef]
- Silapasom, W.; Kao-ian, W.; Wannapaiboon, S.; Opchoei, M.; Kheawhom, S. Enhancing Zinc-Ion Batteries: PEDOT-MnO2 Cathodes for Superior Stability and Capacity. Radiat. Phys. Chem. 2024, 223, 111935. [Google Scholar] [CrossRef]
- Xuan Tran, M.; Liu, G.; Lee, S.W.; Kee Lee, J. New Insights into the Interfacial Characteristics of Poly (Acrylic acid) Binder and Hydrated V2O5 Cathode Material for Zinc-Ion Secondary Batteries. Appl. Surf. Sci. 2024, 669, 160523. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Hardianto, Y.P.; Hussain, A.; Ganiyu, S.A.; Gondal, M.A.; Aziz, M.A. Laser Modified MnO2 Cathode for Augmented Performance Aqueous Zinc Ion Batteries. Appl. Surf. Sci. 2024, 669, 160472. [Google Scholar] [CrossRef]
- Liu, S.; Mao, J.; Pang, W.K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z. Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2104281. [Google Scholar] [CrossRef]
- Huang, S.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries. Adv. Mater. 2022, 34, 2110140. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, J.; Zheng, X.; Emwas, A.H.; Lei, Y.; Mohammed, O.F.; Cui, Y.; Alshareef, H.N. Concentrated Dual-Cation Electrolyte Strategy for Aqueous Zinc-Ion Batteries. Energy Environ. Sci. 2021, 14, 4463–4473. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, K.; Han, J.; Wang, F.; Xing, Y.; Tao, F.; Li, H.; Xu, B.; Ji, J.; Li, H. Regulation of Zn2+ Solvation Shell by a Novel N-Methylacetamide Based Eutectic Electrolyte toward High-Performance Zinc-Ion Batteries. J. Mater. Sci. Technol. 2024, 211, 53–61. [Google Scholar] [CrossRef]
- Xia, Y.; Tong, R.; Zhang, J.; Xu, M.; Shao, G.; Wang, H.; Dong, Y.; Wang, C.A. Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc-Ion Batteries. Nanomicro Lett. 2024, 16, 82. [Google Scholar] [CrossRef]
- Wang, L.; Shen, H.; Sun, W.; Zheng, T.; Li, H.; Yan, J.; Ding, L.; Sun, Z.; Sun, J.; Li, C. Harnessing Eco-Friendly Additives to Manipulate Zinc-Ion Solvation Structures towards Stable Zinc Metal Batteries. J. Energy Chem. 2024, 98, 114–122. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Wang, X.; Wang, S.; Zhang, X.; Qin, J.; Wu, Z.S. Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-Free Zinc Ion Batteries. Adv. Energy Mater. 2021, 11, 2101299. [Google Scholar] [CrossRef]
- Song, Y.; Ruan, P.; Mao, C.; Chang, Y.; Wang, L.; Dai, L.; Zhou, P.; Lu, B.; Zhou, J.; He, Z. Metal–Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries. Nanomicro Lett. 2022, 14, 218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, M.; Tian, Q.; Chen, J.; Xu, X.; Wong, C.P. Cotton-Derived Cellulose Film as a Dendrite-Inhibiting Separator to Stabilize the Zinc Metal Anode of Aqueous Zinc Ion Batteries. Energy Storage Mater. 2022, 44, 57–65. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.; Park, Y.; Choi, J.W. Aqueous Zinc Ion Batteries: Focus on Zinc Metal Anodes. Chem. Sci. 2020, 11, 2028–2044. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; He, G. Opportunities and Challenges of Zinc Anodes in Rechargeable Aqueous Batteries. J. Mater. Chem. A Mater. 2023, 11, 11987–12001. [Google Scholar] [CrossRef]
- Beverskogt, B.; Puigdomenech, I. Revised pourbaix diagrams for zinc at 25–300 °C. Corros. Sci. 1997, 39, 107–114. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Ao, H.; Liu, D.; Shi, L.; Wang, C.; Zhu, Y.; Qian, Y. Appropriately Hydrophilic/Hydrophobic Cathode Enables High-Performance Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2020, 30, 337–345. [Google Scholar] [CrossRef]
- Li, B.; Zeng, Y.; Zhang, W.; Lu, B.; Yang, Q.; Zhou, J.; He, Z. Separator Designs for Aqueous Zinc-Ion Batteries. Sci. Bull. 2024, 69, 688–703. [Google Scholar] [CrossRef]
- Zong, Y.; He, H.; Wang, Y.; Wu, M.; Ren, X.; Bai, Z.; Wang, N.; Ning, X.; Dou, S.X. Functionalized Separator Strategies toward Advanced Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 2300403. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Wen, Y.; Chen, H.; Ni, X.; Liu, G.; Huang, J.; Peng, S. MnO2 Cathode Materials with the Improved Stability via Nitrogen Doping for Aqueous Zinc-Ion Batteries. J. Energy Chem. 2022, 64, 23–32. [Google Scholar] [CrossRef]
- Wang, L.; Huang, K.-W.; Chen, J.; Zheng, J. Ultralong Cycle Stability of Aqueous Zinc-Ion. Batteries with Zinc Vanadium Oxide Cathodes. Sci. Adv. 2019, 5, eaax4279. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhao, J.; Manalastas, W.; Kumar, S.; Srinivasan, M. Emerging Rechargeable Aqueous Aluminum Ion Battery: Status, Challenges, and Outlooks. Nano Mater. Sci. 2020, 2, 248–263. [Google Scholar] [CrossRef]
- Xu, X.; Hui, K.S.; Hui, K.N.; Shen, J.; Zhou, G.; Liu, J.; Sun, Y. Engineering Strategies for Low-Cost and High-Power Density Aluminum-Ion Batteries. Chem. Eng. J. 2021, 418, 129385. [Google Scholar] [CrossRef]
- Das, S.K.; Mahapatra, S.; Lahan, H. Aluminium-Ion Batteries: Developments and Challenges. J. Mater. Chem. A Mater. 2017, 5, 6347–6367. [Google Scholar] [CrossRef]
- Reboul, M.C.; Baroux, B. Metallurgical Aspects of Corrosion Resistance of Aluminium Alloys. Mater. Corros. 2011, 62, 215–233. [Google Scholar] [CrossRef]
- Wang, S.; Huang, S.; Yao, M.; Zhang, Y.; Niu, Z. Engineering Active Sites of Polyaniline for AlCl2+ Storage in an Aluminum-Ion Battery. Angew. Chem. Int. Ed. 2020, 59, 11800–11807. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, Z.; Li, Q.; Li, H.; Zhang, X.; Zhuang, Y.; Wang, F.; Yu, G. Designing Two-Dimensional WS2 Layered Cathode for High-Performance Aluminum-Ion Batteries: From Micro-Assemblies to Insertion Mechanism. Nano Today 2020, 32, 100870. [Google Scholar] [CrossRef]
- Yoo, D.J.; Heeney, M.; Glöcklhofer, F.; Choi, J.W. Tetradiketone Macrocycle for Divalent Aluminium Ion Batteries. Nat. Commun. 2021, 12, 2386. [Google Scholar] [CrossRef]
- Kong, D.; Cai, T.; Fan, H.; Hu, H.; Wang, X.; Cui, Y.; Wang, D.; Wang, Y.; Hu, H.; Wu, M.; et al. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, 2114681. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Li, J.; Liu, J.; Huo, X.; Kang, F. SnSe Nano-Particles as Advanced Positive Electrode Materials for Rechargeable Aluminum-Ion Batteries. Chem. Eng. J. 2021, 403, 126377. [Google Scholar] [CrossRef]
- Xing, L.; Owusu, K.A.; Liu, X.; Meng, J.; Wang, K.; An, Q.; Mai, L. Insights into the Storage Mechanism of VS4 Nanowire Clusters in Aluminum-Ion Battery. Nano Energy 2021, 79, 105384. [Google Scholar] [CrossRef]
- Shen, X.; Sun, T.; Yang, L.; Krasnoslobodtsev, A.; Sabirianov, R.; Sealy, M.; Mei, W.N.; Wu, Z.; Tan, L. Ultra-Fast Charging in Aluminum-Ion Batteries: Electric Double Layers on Active Anode. Nat. Commun. 2021, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, L.; Zhang, H.; Liu, Y.; Yang, L.; Li, F.; Liu, W.; Dong, X.; Li, X.; Li, Z.; et al. Revealing the Multiple Cathodic and Anodic Involved Charge Storage Mechanism in an FeSe2cathode for Aluminium-Ion Batteries by: In Situ Magnetometry. Energy Environ. Sci. 2022, 15, 311–319. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, R.; Chen, Y.P. Expanded Graphite with Boron-Doping for Cathode Materials of High-Capacity and Stable Aluminum Ion Batteries. RSC Adv. 2024, 14, 23902–23909. [Google Scholar] [CrossRef]
- Wei, G.; Qiao, J.; Li, X.; Tao, F.; Xue, W.; Hu, S.; Luo, Z.; Yang, J. High Performance Rechargeable Aluminium Ion Batteries Enabled by Full Utilization and Understanding of Polyaniline Cathodes. Chem. Eng. J. 2024, 496, 153827. [Google Scholar] [CrossRef]
- Almodóvar, P.; Rey-Raap, N.; Flores-López, S.L.; Sotillo, B.; Santos, L.; Tinoco, M.; Ramírez-Castellanos, J.; Álvarez-Serrano, I.; López, M.L.; Cameán, I.; et al. Enhancing Aluminium-Ion Battery Performance with Carbon Xerogel Cathodes. Batter. Supercaps 2024, 7, e202400114. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Luo, P.; Xin, Y.; Ge, Y.; Tian, H. An Artificial Aluminum-Tin Alloy Layer on Aluminum Metal Anodes for Ultra-Stable Rechargeable Aluminum-Ion Batteries. Nanoscale 2024, 16, 13171–13182. [Google Scholar] [CrossRef]
- Lei, H.; Wei, T.; Tu, J.; Li, S.; Jiao, S. Enhancing Electrochemical Performance of Aluminum-Ion Batteries with Fluorinated Graphene Cathode. ChemSusChem 2024, 17, e202400423. [Google Scholar] [CrossRef]
- Schoetz, T.; Leung, O.; de Leon, C.P.; Zaleski, C.; Efimov, I. Aluminium Deposition in EMImCl-AlCl 3 Ionic Liquid and Ionogel for Improved Aluminium Batteries. J. Electrochem. Soc. 2020, 167, 040516. [Google Scholar] [CrossRef]
- Jiang, T.; Chollier Brym, M.J.; Dubé, G.; Lasia, A.; Brisard, G.M. Electrodeposition of Aluminium from Ionic Liquids: Part I-Electrodeposition and Surface Morphology of Aluminium from Aluminium Chloride (AlCl3)-1-Ethyl-3-Methylimidazolium Chloride ([EMIm]Cl) Ionic Liquids. Surf. Coat. Technol. 2006, 201, 1–9. [Google Scholar] [CrossRef]
- Ramohlola, K.E.; Modibane, K.D.; Ndipingwi, M.M.; Iwuoha, E.I. Polyaniline-Based Electrocatalysts for Electrochemical Hydrogen Evolution Reaction. Eur. Polym. J. 2024, 213, 113125. [Google Scholar] [CrossRef]
- Chen, H.; Xu, H.; Zheng, B.; Wang, S.; Huang, T.; Guo, F.; Gao, W.; Gao, C. Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Appl. Mater. Interfaces 2017, 9, 22628–22634. [Google Scholar] [CrossRef] [PubMed]
- Almodóvar, P.; Giraldo, D.; Díaz-Guerra, C.; Ramírez-Castellanos, J.; González Calbet, J.M.; Chacón, J.; López, M.L. H-MoO3/AlCl3-Urea/Al: High Performance and Low-Cost Rechargeable Al-Ion Battery. J. Power Sources 2021, 516, 230656. [Google Scholar] [CrossRef]
- Angell, M.; Pan, C.J.; Rong, Y.; Yuan, C.; Lin, M.C.; Hwang, B.J.; Dai, H. High Coulombic Efficiency Aluminum-Ion Battery Using an AlCl3-Urea Ionic Liquid Analog Electrolyte. Proc. Natl. Acad. Sci. USA 2017, 114, 834–839. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, H.; Wang, X.; Bai, Y.; Zhu, N.; Guo, S.; Suo, L.; Li, H.; Xu, H.; Wu, C. The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries. ChemSusChem 2020, 13, 732–740. [Google Scholar] [CrossRef]
- Yang, X.; Gu, H.; Chai, L.; Chen, S.; Zhang, W.; Yang, H.Y.; Li, Z. Construction of V2O5@MXene Cathodes toward a High Specific Capacity Aqueous Aluminum-Ion Battery. Nano Lett. 2024, 24, 8542–8549. [Google Scholar] [CrossRef]
- Hu, E.; Jia, B.E.; Nong, W.; Zhang, C.; Zhu, B.; Wu, D.; Liu, J.; Wu, C.; Xi, S.; Xia, D.; et al. Boosting Aluminum Adsorption and Deposition on Single-Atom Catalysts in Aqueous Aluminum-Ion Battery. Adv. Energy Mater. 2024, 14, 2401598. [Google Scholar] [CrossRef]
- Du, K.; Liu, Y.; Zhao, Y.; Li, H.; Liu, H.; Sun, C.; Han, M.; Ma, T.; Hu, Y. High-Entropy Prussian Blue Analogues Enable Lattice Respiration for Ultrastable Aqueous Aluminum-Ion Batteries. Adv. Mater. 2024, 36, 2404172. [Google Scholar] [CrossRef]
- Xu, T.; Yu, J.; Ma, J.; Ren, W.; Hu, M.; Li, X. The Critical Role of Water Molecules in the Development of Aqueous Electrolytes for Rechargeable Metal-Ion Batteries. J. Mater. Chem. A Mater. 2024, 12, 13551–13575. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.; Sun, J.; Liu, Y.; Hou, L. Recent Progress in “Water-in-Salt” Electrolytes Toward Non-Lithium Based Rechargeable Batteries. Front. Chem. 2020, 8, 595. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiang, K.; Xing, W.; Carter, W.C.; Chiang, Y.M. Reversible Aluminum-Ion Intercalation in Prussian Blue Analogs and Demonstration of a High-Power Aluminum-Ion Asymmetric Capacitor. Adv. Energy Mater. 2015, 5, 1401410. [Google Scholar] [CrossRef]
- Ru, Y.; Zheng, S.; Xue, H.; Pang, H. Potassium Cobalt Hexacyanoferrate Nanocubic Assemblies for High-Performance Aqueous Aluminum Ion Batteries. Chem. Eng. J. 2020, 382, 122853. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Sasirajan Little Flower, S.R.; Hanamantrao, D.P.; Kasiviswanathan, K.; Sesu, D.C.; Muthu, K.; Elumalai, V.; Vediappan, K. Starch Gel Electrolyte and Its Interaction with Trivalent Aluminum for Aqueous Aluminum-Ion Batteries: Enhanced Low Temperature Electrochemical Performance. Small 2024, 20, 2402245. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N. Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Yue, S.; Jia, S.; Wang, C.; Zhang, D. Electrolytes for Aluminum-Ion Batteries: Progress and Outlook. Chem. A Eur. J. 2024, 30, e202402017. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, F.; Tao, B.; Wang, Z.; Wang, Y.; Sheng, J.; Tang, G.; Wang, Y.; Guo, X.; Li, J.; et al. Anode-Free Aqueous Aluminum Ion Batteries. Small 2024, 20, 2402025. [Google Scholar] [CrossRef]
- Das, A.; Balakrishnan, N.T.M.; Sreeram, P.; Fatima, M.J.J.; Joyner, J.D.; Thakur, V.K.; Pullanchiyodan, A.; Ahn, J.H.; Raghavan, P. Prospects for Magnesium Ion Batteries: A Compreshensive Materials Review. Coord. Chem. Rev. 2024, 502, 215593. [Google Scholar] [CrossRef]
- Liang, Y.; Dong, H.; Aurbach, D.; Yao, Y. Current Status and Future Directions of Multivalent Metal-Ion Batteries. Nat. Energy 2020, 5, 646–656. [Google Scholar] [CrossRef]
- Medina, A.; Pérez-Vicente, C.; Alcántara, R. Advancing towards a Practical Magnesium Ion Battery. Materials 2021, 14, 7488. [Google Scholar] [CrossRef]
- Lei, X.; Zheng, Y.; Zhang, F.; Wang, Y.; Tang, Y. Highly Stable Magnesium-Ion-Based Dual-Ion Batteries Based on Insoluble Small-Molecule Organic Anode Material. Energy Storage Mater. 2020, 30, 34–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.M.; Yuan, Z.; Xu, H.; Li, D.; Li, Y.; Han, W.; Wang, L. TiVCTx MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. Small 2022, 18, 2202313. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Xiao, Y.; Pan, X.; Xiong, F.; Zhang, W.; Long, J.; Dong, S.; An, Q.; Luo, P. Organic-Inorganic Superlattices of Vanadium Oxide@Polyaniline for High-Performance Magnesium-Ion Batteries. ChemSusChem 2021, 14, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Tang, W.; Lan, B.; Xiong, F.; Tang, H.; Dong, S.; Zhang, W.; Tang, C.; Li, J.; Ruan, Y.; et al. Unexpected Discovery of Magnesium-Vanadium Spinel Oxide Containing Extractable Mg2+ as a High-Capacity Cathode Material for Magnesium Ion Batteries. Chem. Eng. J. 2021, 405, 127005. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Gao, H.; Shao, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L. VS4 Anchored on Ti3C2 MXene as a High-Performance Cathode Material for Magnesium Ion Battery. J. Power Sources 2022, 518, 230731. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Zhang, G.; Jiang, Y.; Yin, Y.; Xiong, F.; Li, Q.; Huang, D.; Zhang, Q.; Gu, L.; et al. Fast and Stable Mg2+ Intercalation in a High Voltage NaV2O2(PO4)2F/RGO Cathode Material for Magnesium-Ion Batteries. Sci. China Mater. 2020, 63, 1651–1662. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Wang, D.; Chen, A.; Li, X.; Huang, Z.; Liang, G.; Wang, Y.; Zhi, C. Tellurium: A High-Performance Cathode for Magnesium Ion Batteries Based on a Conversion Mechanism. ACS Nano 2022, 16, 5349–5357. [Google Scholar] [CrossRef]
- Ye, Z.; Li, P.; Wei, W.; Huang, C.; Mi, L.; Zhang, J.; Zhang, J. In Situ Anchoring Anion-Rich and Multi-Cavity NiS2 Nanoparticles on NCNTs for Advanced Magnesium-Ion Batteries. Adv. Sci. 2022, 9, 2200067. [Google Scholar] [CrossRef]
- Luo, P.; Xiao, Y.; Yang, J.; Zuo, C.; Xiong, F.; Tang, C.; Liu, G.; Zhang, W.; Tang, W.; Wang, S.; et al. Polyaniline Nanoarrays/Carbon Cloth as Binder-Free and Flexible Cathode for Magnesium Ion Batteries. Chem. Eng. J. 2022, 433, 133772. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, J.; Zhang, X.; Wang, K.; Zhang, Y. Highly Cycle-Stable VOPO4-Based Cathodes for Magnesium Ion Batteries: Insight into the Role of Interlayer Engineering in Batteries Performance. Nano Res. 2024, 17, 6127–6138. [Google Scholar] [CrossRef]
- Chai, X.; Xin, Y.; He, B.; Zhang, F.; Xie, H.; Tian, H. High-Efficiency Electrodeposition of Magnesium Alloy-Based Anodes for Ultra-Stable Rechargeable Magnesium-Ion Batteries. Nanoscale 2024, 16, 9123–9135. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ge, Y.; Xu, H.; Bao, S.; Wang, L.; Xue, X.; Yu, Q.; Xing, Y.; Wu, Z.; Xie, K.; et al. Ternary Eutectic Electrolyte-Assisted Formation and Dynamic Breathing Effect of the Solid-Electrolyte Interphase for High-Stability Aqueous Magnesium-Ion Full Batteries. J. Am. Chem. Soc. 2024, 146, 7018–7028. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Lu, G.; Wang, Z.; Tan, S.; Huang, X.; Li, R.; Li, M.; Wang, R.; Xu, C.; Huang, G.; et al. Catalyzing Desolvation at Cathode-Electrolyte Interface Enabling High-Performance Magnesium-Ion Batteries. Small 2024, 20, 2311587. [Google Scholar] [CrossRef]
- Kou, W.; Fang, Z.; Ding, H.; Luo, W.; Liu, C.; Peng, L.; Guo, X.; Ding, W.; Hou, W. Valence Engineering Boosts Kinetics and Storage Capacity of Layered Double Hydroxides for Aqueous Magnesium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2406423. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhao, B.Q.; Liu, H.; Tan, J.; Li, H.Y.; Zhang, X.; Diao, J.; Yue, J.; Huang, G.; Wang, J.; et al. H2O-Mg2+ Waltz-Like Shuttle Enables High-Capacity and Ultralong-Life Magnesium-Ion Batteries. Adv. Sci. 2024, 11, 2401005. [Google Scholar] [CrossRef]
- Yang, T.; Ma, F.; Zhang, X.; Yang, Y.; Lv, J.; Jin, Z.; Wang, L.; Gao, H.; Wang, X.; Chen, N. High-Rate Aqueous Magnesium Ion Battery Enabled by Li/Mg Hybrid Superconcentrated Electrolyte. Appl. Surf. Sci. 2024, 660, 159995. [Google Scholar] [CrossRef]
- Man, Y.; Jaumaux, P.; Xu, Y.; Fei, Y.; Mo, X.; Wang, G.; Zhou, X. Research Development on Electrolytes for Magnesium-Ion Batteries. Sci. Bull. 2023, 68, 1819–1842. [Google Scholar] [CrossRef]
- Shterenberg, I.; Salama, M.; Gofer, Y.; Aurbach, D. Hexafluorophosphate-Based Solutions for Mg Batteries and the Importance of Chlorides. Langmuir 2017, 33, 9472–9478. [Google Scholar] [CrossRef]
- Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. J. Electrochem. Soc. 2008, 155, A103. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Zhang, C.; Chi, Q.; Zhang, T.; Feng, Y.; Zhu, K.; Zhang, Y.; Chen, Q.; Cao, D. Low-Cost MgFexMn2-XO4 Cathode Materials for High-Performance Aqueous Rechargeable Magnesium-Ion Batteries. Chem. Eng. J. 2020, 392, 123652. [Google Scholar] [CrossRef]
- Levi, E.; Gershinsky, G.; Aurbach, D.; Isnard, O.; Ceder, G. New Insight on the Unusually High Ionic Mobility in Chevrel Phases. Chem. Mater. 2009, 21, 1390–1399. [Google Scholar] [CrossRef]
- Xu, B.; Qian, D.; Wang, Z.; Meng, Y.S. Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries. Mater. Sci. Eng. R Rep. 2012, 73, 51–65. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule 2019, 3, 27–52. [Google Scholar] [CrossRef]
- Zheng, K.; Yu, B.; Ma, W.; Fei, X.; Cheng, G.; Song, M.; Zhang, Z. Dealloying Induced Porous Bi Anodes for Rechargeable Magnesium-Ion Batteries. J. Power Sources 2024, 613, 234943. [Google Scholar] [CrossRef]
- Yan, L.; Yang, W.; Yu, H.; Zhang, L.; Shu, J. Recent Progress in Rechargeable Calcium-Ion Batteries for High-Efficiency Energy Storage. Energy Storage Mater. 2023, 60, 102822. [Google Scholar] [CrossRef]
- Taghavi-Kahagh, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Powering the Future: A Comprehensive Review on Calcium-Ion Batteries. J. Energy Chem. 2024, 90, 77–97. [Google Scholar] [CrossRef]
- Staniewicz, R.J. A Study of the Calcium-Thionyl Chloride Electrochemical System. J. Electrochem. Soc. 1980, 127, 782. [Google Scholar] [CrossRef]
- Lipson, A.L.; Pan, B.; Lapidus, S.H.; Liao, C.; Vaughey, J.T.; Ingram, B.J. Rechargeable Ca-Ion Batteries: A New Energy Storage System. Chem. Mater. 2015, 27, 8442–8447. [Google Scholar] [CrossRef]
- Ponrouch, A.; Tchitchekova, D.; Frontera, C.; Bardé, F.; Arroyo-de Dompablo, M.E.; Palacín, M.R. Assessing Si-Based Anodes for Ca-Ion Batteries: Electrochemical Decalciation of CaSi2. Electrochem. Commun. 2016, 66, 75–78. [Google Scholar] [CrossRef]
- Barbarich, T.J.; Driscoll, P.F.; Yun, J.-G.; Ji, H.-H.; Oh, S.-Y. The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes. J. Electrochem. Soc. 1991, 138, 3536. [Google Scholar]
- Zhao-Karger, Z.; Xiu, Y.; Li, Z.; Reupert, A.; Smok, T.; Fichtner, M. Calcium-Tin Alloys as Anodes for Rechargeable Non-Aqueous Calcium-Ion Batteries at Room Temperature. Nat. Commun. 2022, 13, 3849. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.N.; Hur, J.; Kim, I.T. Enabling High Performance Calcium-Ion Batteries from Prussian Blue and Metal-Organic Compound Materials. ACS Sustain. Chem. Eng. 2020, 8, 2596–2601. [Google Scholar] [CrossRef]
- Biria, S.; Pathreeker, S.; Genier, F.S.; Hosein, I.D. A Highly Conductive and Thermally Stable Ionic Liquid Gel Electrolyte for Calcium-Ion Batteries. ACS Appl. Polym. Mater. 2020, 2, 2111–2118. [Google Scholar] [CrossRef]
- Wang, C.-F.; Zhang, S.-W.; Huang, L.; Zhu, Y.-M.; Liu, F.; Wang, J.-C.; Tan, L.-M.; Zhi, C.-Y.; Han, C.-P. Constructing Highly Safe and Long-Life Calcium Ion Batteries Based on Hydratedvanadium Oxide Cathodes Featuring a Pillar Structure. Rare Met. 2024, 43, 2597–2612. [Google Scholar] [CrossRef]
- Bu, H.; Lee, H.; Hyoung, J.; Heo, J.W.; Kim, D.; Lee, Y.J.; Hong, S.T. (NH4)2V7O16 as a Cathode Material for Rechargeable Calcium-Ion Batteries: Structural Transformation and Co-Intercalation of Ammonium and Calcium Ions. Chem. Mater. 2023, 35, 7974–7983. [Google Scholar] [CrossRef]
- Duy Anh, C.; Kim, Y.J.; Ngoc Vo, T.; Kim, D.; Hur, J.; Khani, H.; Kim, I.T. Three-Dimensional Electrodes in Hybrid Electrolytes for High-Loading and Long-Lasting Calcium-Ion Batteries. Chem. Eng. J. 2023, 471, 144631. [Google Scholar] [CrossRef]
- Adil, M.; Sarkar, A.; Roy, A.; Panda, M.R.; Nagendra, A.; Mitra, S. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage. ACS Appl. Mater. Interfaces 2020, 12, 11489–11503. [Google Scholar] [CrossRef]
- Cang, R.; Zhao, C.; Ye, K.; Yin, J.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. Aqueous Calcium-Ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. ChemSusChem 2020, 13, 3911–3918. [Google Scholar] [CrossRef]
- Zhou, R.; Hou, Z.; Liu, Q.; Du, X.; Huang, J.; Zhang, B. Unlocking the Reversible Selenium Electrode for Non-Aqueous and Aqueous Calcium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2200929. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Y.L.; Ren, S.; Li, C.; Chen, X.B.; Li, Z.; Han, Y.; Shi, Z.; Feng, S. Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries. J. Am. Chem. Soc. 2023, 145, 17309–17320. [Google Scholar] [CrossRef]
- Xu, F.; Shi, Z.; Wu, J.; Liu, H.; Li, J.; Zan, F.; Xia, H. Cobalt Doped K-Birnessite as Ultrastable Cathode for Aqueous Calcium-Ion Batteries. J. Power Sources 2024, 602, 234342. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Zhu, Y.; Wang, Y.; Lin, Y.; Zhong, L.; Chen, H.; Tang, Z.; Li, H.; Liu, F.; et al. A Pyrazine-Pyridinamine Covalent Organic Framework as a Low Potential Anode for Highly Durable Aqueous Calcium-Ion Batteries. Adv. Energy Mater. 2024, 14, 2302495. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, J.; Yu, R.; Huang, M.; Zhang, L.; Yang, W.; Wang, H.; Wu, J.; Zhang, L.; Jiang, Y.; et al. Aromatic Organic Small-Molecule Material with (020) Crystal Plane Activation for Wide-Temperature and 68000 Cycle Aqueous Calcium-Ion Batteries. ACS Nano 2023, 17, 23046–23056. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Wang, J.; Yu, R.; Pi, Y.; Huang, M.; Cui, L.; Liu, Z.; An, Q. K3v2(Po4)3/C as a New High-Voltage Cathode Material for Calcium-Ion Batteries with a Water-In-Salt Electrolyte. Small Methods 2024, 8, 2300865. [Google Scholar] [CrossRef]
- Chae, M.S.; Kwak, H.H.; Hong, S.T. Calcium Molybdenum Bronze as a Stable High-Capacity Cathode Material for Calcium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 5107–5112. [Google Scholar] [CrossRef]
- Xiang, L.; Yang, W.; Wang, Y.; Sun, X.; Xu, J.; Cao, D.; Li, Q.; Li, H.; Wang, X. Layered BaV6O16·3H2O@GO as a High Performance Cathode Material for Calcium Ion Batteries. Chem. Commun. 2024, 60, 5459–5462. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Zheng, L.; Fan, L.; Yi, Y.; Zhang, G.; Han, C.; Li, B. 3d-Orbital Regulation of Transition Metal Intercalated Vanadate as Optimized Cathodes for Calcium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2309753. [Google Scholar] [CrossRef]
- Chae, M.S.; Heo, J.W.; Hyoung, J.; Hong, S.T. Double-Sheet Vanadium Oxide as a Cathode Material for Calcium-Ion Batteries. ChemNanoMat 2020, 6, 1049–1053. [Google Scholar] [CrossRef]
- Dong, L.W.; Xu, R.G.; Wang, P.P.; Sun, S.C.; Li, Y.; Zhen, L.; Xu, C.Y. Layered Potassium Vanadate K2V6O16 Nanowires: A Stable and High Capacity Cathode Material for Calcium-Ion Batteries. J. Power Sources 2020, 479, 228793. [Google Scholar] [CrossRef]
- Tang, H.; Peng, Z.; Wu, L.; Xiong, F.; Pei, C.; An, Q.; Mai, L. Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochem. Energy Rev. 2018, 1, 169–199. [Google Scholar] [CrossRef]
- An, Q.; Li, Y.; Deog Yoo, H.; Chen, S.; Ru, Q.; Mai, L.; Yao, Y. Graphene Decorated Vanadium Oxide Nanowire Aerogel for Long-Cycle-Life Magnesium Battery Cathodes. Nano Energy 2015, 18, 265–272. [Google Scholar] [CrossRef]
- Zuo, C.; Shao, Y.; Li, M.; Zhang, W.; Zhu, D.; Tang, W.; Hu, J.; Liu, P.; Xiong, F.; An, Q. Layered Na2Ti3O7 as an Ultrastable Intercalation-Type Anode for Non-Aqueous Calcium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 33733–33739. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Xu, G.; Barnes, M.; Li, Y.; Tseng, C.P.; Zhang, Z.; Zhang, J.J.; Zhu, Y.; Khalil, S.; Rahman, M.M.; et al. Covalent Organic Frameworks for Batteries. Adv. Funct. Mater. 2021, 31, 2100505. [Google Scholar] [CrossRef]
- Kandambeth, S.; Kale, V.S.; Shekhah, O.; Alshareef, H.N.; Eddaoudi, M. 2D Covalent-Organic Framework Electrodes for Supercapacitors and Rechargeable Metal-Ion Batteries. Adv. Energy Mater. 2022, 12, 2100177. [Google Scholar] [CrossRef]
- Sun, T.; Xie, J.; Guo, W.; Li, D.S.; Zhang, Q. Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Adv. Energy Mater. 2020, 10, 1904199. [Google Scholar] [CrossRef]
- Chen, X.; Geng, K.; Liu, R.; Tan, K.T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions. Angew. Chem. 2020, 132, 5086–5129. [Google Scholar] [CrossRef]
- Datta, U.; Kalam, A.; Shi, J. A Review of Key Functionalities of Battery Energy Storage System in Renewable Energy Integrated Power Systems. Energy Storage 2021, 3, e224. [Google Scholar] [CrossRef]
- Rostami, F.; Patrizio, P.; Jimenez, L.; Pozo, C.; Mac Dowell, N. Assessing the Realism of Clean Energy Projections. Energy Environ. Sci. 2024, 17, 5241–5259. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The Future of Transportation in Sustainable Energy Systems: Opportunities and Barriers in a Clean Energy Transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Critical Raw Materials. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 11 September 2024).
- Sharma, S.S.; Manthiram, A. Towards More Environmentally and Socially Responsible Batteries. Energy Environ. Sci. 2020, 13, 4087–4097. [Google Scholar] [CrossRef]
- Nurohmah, A.R.; Nisa, S.S.; Stulasti, K.N.R.; Yudha, C.S.; Suci, W.G.; Aliwarga, K.; Widiyandari, H.; Purwanto, A. Sodium-Ion Battery from Sea Salt: A Review. Mater. Renew. Sustain. Energy 2022, 11, 71–89. [Google Scholar] [CrossRef]
- Easley, A.D.; Ma, T.; Lutkenhaus, J.L. Imagining Circular beyond Lithium-Ion Batteries. Joule 2022, 6, 1743–1749. [Google Scholar] [CrossRef]
- Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustain. Chem. 2021, 2, 167–205. [Google Scholar] [CrossRef]
- Farmer, A.; Watkins, E. Managing Waste Batteries from Electric Vehicles: The case of the European Union and the Republic of Korea; Institute for European Environmental Policy: London, UK, 2023. [Google Scholar]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Waste Statistics—Recycling of Batteries and Accumulators. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics_-_recycling_of_batteries_and_accumulators (accessed on 12 September 2024).
- Gaines, L.; Zhang, J.; He, X.; Bouchard, J.; Melin, H.E. Tracking Flows of End-of-Life Battery Materials and Manufacturing Scrap. Batteries 2023, 9, 360. [Google Scholar] [CrossRef]
- Ma, X.; Chen, M.; Zheng, Z.; Bullen, D.; Wang, J.; Harrison, C.; Gratz, E.; Lin, Y.; Yang, Z.; Zhang, Y.; et al. Recycled Cathode Materials Enabled Superior Performance for Lithium-Ion Batteries. Joule 2021, 5, 2955–2970. [Google Scholar] [CrossRef]
- Al-Shammari, H.; Farhad, S. Performance of Cathodes Fabricated from Mixture of Active Materials Obtained from Recycled Lithium-Ion Batteries. Energies 2022, 15, 410. [Google Scholar] [CrossRef]
- Rautela, R.; Yadav, B.R.; Kumar, S. A Review on Technologies for Recovery of Metals from Waste Lithium-Ion Batteries. J. Power Sources 2023, 580, 233428. [Google Scholar] [CrossRef]
- Mishra, G.; Jha, R.; Meshram, A.; Singh, K.K. A Review on Recycling of Lithium-Ion Batteries to Recover Critical Metals. J. Env. Chem. Eng. 2022, 10, 108534. [Google Scholar] [CrossRef]
- Cao, S.; Ma, Y.; Yang, L.; Lin, L.; Wang, J.; Xing, Y.; Lu, F.; Cao, T.; Zhao, Z.; Liu, D. Designing Low-Cost, Green, and Recyclable Deep Eutectic Solvents for Selective Separation and Recovery of Valuable Metals from Spent Li-Ion Batteries. ACS Sustain. Chem. Eng. 2023, 11, 16984–16994. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.T.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, N.; Wang, X. Upcycling Spent Alkaline Batteries into Rechargeable Zinc Metal Batteries. Nano Energy 2022, 102, 107724. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Yue, Y.; Jia, Z.; Li, Y.; Wen, Y.; Lei, Q.; Duan, Q.; Sun, J.; Wang, Q. Thermal Runaway Hazards Comparison between Sodium-Ion and Lithium-Ion Batteries Using Accelerating Rate Calorimetry. Process Saf. Environ. Prot. 2024, 189, 61–70. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for Lithium-Ion Battery Safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef]
- Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. J. Electrochem. Soc. 2015, 162, A3084–A3097. [Google Scholar] [CrossRef]
- Astbury, G.R.; Bugand-Bugandet, J.; Grollet, E.; Stell, K.M. Flash points of aqueous solutions of flammable solvents. Inst. Chem. Eng. Symp. Ser. 2004, 150, 1–18. [Google Scholar]
- Sigma Aldrich. Available online: https://www.sigmaaldrich.com/SG/en (accessed on 9 September 2024).
- Zhu, D.; Ren, Y.; Yu, Y.; Zhang, L.; Wan, Y.; Wang, H.; Gao, W.; Han, B.; Zhang, L. Flame-Retardant Additive/Co-Solvent Contained in Organic Solution for Safe Second Batteries: A Review. ChemElectroChem 2023, 10, 2300009. [Google Scholar] [CrossRef]
- Shen, M.; Gao, Q. A Review on Battery Management System from the Modeling Efforts to Its Multiapplication and Integration. Int. J. Energy Res. 2019, 43, 5042–5075. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Krishna, T.N.V.; Kumar, S.V.S.V.P.D.; Srinivasa Rao, S.; Chang, L. Powering the Future: Advanced Battery Management Systems (BMS) for Electric Vehicles. Energies 2024, 17, 3360. [Google Scholar] [CrossRef]
- Lelie, M.; Braun, T.; Knips, M.; Nordmann, H.; Ringbeck, F.; Zappen, H.; Sauer, D.U. Battery Management System Hardware Concepts: An Overview. Appl. Sci. 2018, 8, 534. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
Challenge | Affected Battery Component(s) | Mechanism of Failure of Battery |
---|---|---|
Overcharging or discharging below optimal level | Anode, cathode |
|
Dendritic growth on electrodes | Anode, cathode, separator |
|
Passivation | Anode, cathode |
|
Parasitic side reactions | Anode, cathode, electrolyte |
|
Phase change of electrode material | Anode, cathode |
|
Decomposition of electrolyte | Electrolyte |
|
Performance Indicator | Definition |
---|---|
Initial reversible capacity (mAh g−1) | Charge per unit mass stored by the battery or electrode, after accounting for irreversible losses caused by the formation of the solid–electrolyte interface (SEI). |
Capacity retention (%/number of cycles/rate) | Percentage of the initial reversible capacity obtained after a certain number of cycles at a given cycling rate. |
Cycle life | Number of charge/discharge cycles for the reversible capacity to fade to 80% of the initial value. |
Initial Coulombic efficiency (%) | For cells manufactured in the discharged state, this is the percentage of Coulombic charge produced during discharge (Qdischarge) to that required to charge the battery (Qcharge) in the first cycle. For cells manufactured in the charged state: |
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Na1.73Fe[Fe(CN)6]·3.8H2O | Hard carbon (HC) | 1 M NaClO4 in ethylene carbonate (EC)/diethyl carbonate (DEC)/propylene carbonate (PC)/fluoroethylene carbonate (FEC) | − | 78/1000/1C | 820 * | 99.3 * | [30] |
Amorphous FePO4 yolk-shell nanospheres | Hierarchical porous carbon fibres | 1 M NaClO4 in EC/DEC/FEC | 146.9/20 | 81/300/20 | >300 | 85 | [31] |
P2-Na2/3Ni1/3Mn1/3O2 | WS2−x/ZnS @ C | 1 M NaPF6 in diglyme | 200 */1000 | 44.7/500/1000 | 40 * | 88 * | [32] |
Na0.612K0.056MnO2 | Pre-sodiated HC | 1 M NaPF6 in PC/FEC | 230.6/50 | 80/60/50 | 60 * | 50 * | [33] |
High-entropy Na3V1.9(Ca,Mg,Al,Cr,Mn)0.1(PO4)2F3 | HC | 3.04 M NaPF6 in DEG/DME/1,3-dioxolane | 111 */1C | 90.7/300/1C | >300 | 96.2 * | [34] |
P2-Na0.85Li0.12Ni0.22Mn0.66O2 | HC | 1M NaClO4 in EC/PC/FEC | 286 */0.2C | 85.6/100/0.2C | >100 | 86.5 * | [35] |
NaNMC | HC | 1.5 M sodium bis(fluorosulfonyl)imide in dimethyl carbonate (DMC) and tris (2,2,2-trifluoroethyl) Phosphate | 153 */0.2C | 94.8/300/0.2C | >300 | 84.49 | [36] |
Na3V2(PO4)3 | Dual-phase MoS2 | 1 M NaCF3SO3 in diglyme | 210/500 | 77.1 */100/500 | 89 * | 84.5 * | [37] |
Na3V2(PO4)3 | FeSe2 @ NC (nitrogen-doped carbon) microrods | 1 M NaCF3SO3 in diglyme | 292 */500 | 87.7 */150/500 | >500 | − | [38] |
Na3V2(PO4)3 | Fex−1Sex/MXene/FCR hybrid aerogel | 1 M NaClO4 in EC/DMC | 315/100 | 82.1 */400/100 | >400 | 96.5 * | [39] |
Cubic NaxMnFe(CN)6 | TiO2 | 1 M NaPF6 in PC/FEC | 95.8 */100 | 67.1 */100/200 | 17 * | 76.3 | [40] |
Na2MnFe(CN)6 | NaTi2(PO4)3 | 2 mol kg−1 sodium trifluoromethanesulfonate (aq) | 25.4 */1C | 94.9/200/1C | >200 | 83.4 * | [41] |
O3-Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2 | Na metal | Polyvinylidene fluoride hexafluoropropylene-based gel as polymer solid electrolyte | 92.1/5C | 96/400/5C | >400 | 98.8 | [42] |
Na3V2(PO4)3/C | Manganese-doped copper sulfide three-dimensional (3D) hollow flower-like sphere | 1 M NaPF6 in diglyme | 457/100 | 78.3/100/100 | 89 * | 92.5 | [43] |
Na3V2(PO4)3 | Sb/Sb2O3 nanoparticles embedded in N-doped porous carbon | 1 M NaPF6 in DMC/EC/FEC | 113 */1C | 86.8/100/1C | >100 | 87.1 | [44] |
Na3V2(PO4)3 | Carbon-encapsulated MnSe-FeSe nanorods | NaPF6 in dimethyl ether (DME) | 226 */1000 | 110 */900/1000 | >900 | − | [45] |
Na3V1.7(GaCrAlFeIn)0.06(PO4)3 | HC | 1 M NaClO4 in EC/diethyl carbonate (DEC)/FEC | 114 */1C | 94.2 */300/1C | >300 | 98.1 * | [46] |
Na3V1.83Co0.15Mo0.02(PO4)3 | HC | 1M NaClO4 in EC/DEC/FEC | 163/0.1C | 69.8 */50/0.1C | 10 * | 99.3 | [47] |
NaNi1/3Fe1/3Mn1/3O2 | MoO2/MoS2@NC-15 | 1M NaClO4 in EC/DEC/FEC | 427 */100 | 77.5/20/100 | 11 * | 70.1 * | [48] |
O3-Na[FeCoNiTi]1/6Mn1/4Zn1/12O2 | HC | 1M NaClO4 in DME | 112 */30 | 79/50/30 | 45 * | 76.3 * | [49] |
Na3V2(PO4)3 | Na0.23TiO2 particles coated on a nitrogen-doped carbon sphere with resorcinol | 1M NaClO4 in EC/PC | 229 */100 | 72.4 */100/100 | 57 * | 57.4 * | [50] |
Na3V1.8(CrMnFeZnAl)0.2(PO4)3 | HC | 1M NaPF6 in PC/FEC | 99.5 */5C | 88.9 */550/5C | >550 | 98.5 * | [51] |
Cathode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|
Rhombohedral Na1.73Fe[Fe(CN)6]3.8H2O | 1 M NaClO4 in EC/DEC/PC/FEC | 97.3 */100 | 71/500/100 | 240 * | 97.4 | [30] |
Cubic Na1.53Fe[Fe(CN)6]·4.2H2O | 1 M NaClO4 in EC/DEC/PC/FEC | 104 */100 | 66/200/100 | 110 * | 120 | |
Amorphous Na0.9FePO4 yolk-shell nanospheres | 1 M NaClO4 in EC/DEC/FEC | 145.1/20 | 91.3/1000/100 | >1000 | 86.1 * | [31] |
Na0.612K0.056MnO2 | 1 M NaPF6 in PC/FEC | 240.5/50 | 98.2/100/50 | >100 | 54.8 * | [33] |
Na3V2(PO4)2F3@C | 1 M NaClO4 in PC/FEC | 108 */0.5C | 86.5 */200/0.5C | >200 | − | [67] |
Pristine Na3V2(PO4)2F3 | 1 M NaClO4 in PC/FEC | 86.1 */0.5C | 85.2 */200/0.5C | >200 | − | |
High-entropy Na3V1.9(Ca,Mg,Al,Cr,Mn)0.1(PO4)2F3 | 1 M NaClO4 in PC/FEC | 113 */0.5C | 90.2/400/0.5C | >400 | 91.2 * | [34] |
94.6 */20C | 80.4/2000/20C | >2000 | 85.8 * | |||
P2-Na0.85Li0.12Ni0.22Mn0.66O2 | 1 M NaClO4 in EC/PC/FEC | 94.7/5C | 85.4/500/5C | >500 | 99.6 * | [35] |
(NASICON)-type Na4MnCr(PO4)3 | 1 M NaClO4 in PC/FEC | 54.6 */5C | 86.5/600/5C | >600 | 80.9 * | [68] |
Cubic NaxMnFe(CN)6 | 1 M NaPF6 in PC/FEC | 120/200 | 70/500/200 | 110 * | 97.8 * | [40] |
O3-Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2 | 1 M NaClO4 in PC/FEC | 111.4/8C | 83.2/500/8C | >500 | 87.6 * | [42] |
85.8/20C | 85.1/1000/20C | >1000 | 74.5 * | |||
Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 | 1 M NaPF6 in PC/FEC | 133.3/1C | 71.4/300/1C | 134 * | − | [69] |
High-entropy Na3V1.7(GaCrAlFeIn)0.06(PO4)3 | 1 M NaClO4 in EC/DEC/FEC | 109/30C | 90.97/5000/30C | >5000 | 98.2 * | [46] |
P2-Na0.55Ni0.1Co0.1Mn0.8O2 | 1 M NaClO4 in EC/DEC/FEC | 120 */100 | 78.4/200/100 | 183 * | ~ 100 * | [70] |
Na3V1.83Co0.15Mo0.02(PO4)3 | 1 M NaClO4 in EC/DEC/FEC | 96.3/5C | 77.2 */1200/5C | 889 * | 99.6 * | [47] |
93.8/10C | 68.1 */1500/10C | 752 * | 94.7 * | |||
90.7/50C | 75.5/2000/50C | 592 * | 99.2 * | |||
Na3.4Mn0.7Ti0.3Cr(PO4)3/C | 1 M NaPF6 in PC/FEC | 81.0/10C | 91.0/500/10C | >500 | − | [71] |
Na2FePO4F (15% PEG-coated) | 1 M NaPF6 in PC/FEC | >50 | − | [72] | ||
Na4P2O7 decorated Na4MnV(PO4)3/C composite | 1 M NaClO4 in EC/DMC/ethyl methyl carbonate (EMC)/FEC | 105.4/0.1C | 89.4/50/0.1C | >50 | − | [73] |
93/5C | 93.2/100/5C | >100 | − | |||
High-entropy O3-Na[FeCoNiTi]1/6Mn1/4Zn1/12O2 | 1 M NaClO4 in DME | 127.3/0.1C | 80/100/0.1C | 100 | 83.0 | [49] |
Na3V1.8(CrMnFeZnAl)0.2(PO4)3 | 1 M NaPF6 in PC/FEC | 119.8/1C | 86.8 */450/1C | >450 | 92.4 * | [51] |
102 */10C | 78.5 */3000/10C | 1770 * | 90.2 * |
Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|
Sb2S@FeS2/N-doped graphene | 1 M NaCF3SO3 in diethylene glycol (DEG)/DME | 534.8/5000 | 85.7/1000/5000 | >1000 | 82.4 | [57] |
WS2−x/ZnS @ C | 1 M NaPF6 in diglyme | 303 */5000 | 57.1 */5000/5000 | 100 * | 65.4 * | [32] |
Nb2CTx@MoS2@C | 1 M NaClO4 in EC/DEC/FEC | 600 */100 | 78.1 */200/100 | 125 * | 53.8 * | [88] |
510 */1000 | 74.1 */2000/1000 | 920 * | 97.3 * | |||
349 */20,000 | 55.6 */1000/20,000 | 495 * | 92.7 * | |||
Carbon particles doped with N and S | 1 M NaClO4 in EC/DEC/FEC | 203 */1000 | 110 */2000/1000 | >2000 | − | [87] |
Dual-phase MoS2 | 1 M NaCF3SO3 in diglyme | 279 */500 | 109 */200/500 | >200 | ~100 * | [37] |
181 */2000 | 140 */500/2000 | >500 | 77.0 * | |||
MoSe2/MXene | 1 M NaClO4 in PC/EC/FEC | 493 */1000 | 87.6 */200/1000 | >200 | 70.3 * | [89] |
398 */2000 | 69.5 */400/2000 | 170 * | 81.2 * | |||
3D scaffolding framework of carbon nanosheets heavily doped with sulphur | 1 M NaClO4 in EC/DEC/FEC | 228 */5000 | 94/2000/5000 | >2000 | 58 | [86] |
FeSe2@NC microrods | 1 M NaCF3SO3 in diglyme | 443 */5000 | 91.4 */2000/5000 | >2000 | ~100 * | [38] |
MoS2/SnS hollow superassembly | NaClO4 in PC/FEC | 600 */500 | 85.8 */150/500 | >150 | − | [56] |
Fex−1Sex/MXene/FCR hybrid aerogels | 1 M NaClO4 in EC/DMC | 781 */100 | 77.5 */100/100 | 65 * | 52.4 | [39] |
436 */10,000 | 79.6 */2000/10,000 | 1920 * | − | |||
Bi@Void@C-2 nanosphere | 1 M NaPF6 in DME | 252 */1000 | ~100 */500/1000 | >500 | 46 | [59] |
236 */20,000 | 95.3 */10,000/20,000 | >10,000 | 75.8 * | |||
Manganese-doped copper sulfide 3D hollow flower-like sphere | 1 M NaPF6 in DME | 673 */100 | ~100 */100/100 | >100 | ~100 * | [43] |
605 */2000 | 99.2 */1000/2000 | >1000 | 80.9 * | |||
600 */10,000 | 83.8 */10,000/10,000 | >10,000 | 88.4 * | |||
Sb/Sb2O3 nanoparticles embedded in N-doped porous carbon | 1 M NaPF6 in DMC/EC/FEC | 340.3/1000 | 86.7/1000/1000 | >1000 | 97.3 * | [44] |
MnSe-FeSe@C nanorods | NaPF6 in DME | 550 */1000 | 81.4 */700/1000 | >700 | 77.3 * | [45] |
CoSe2/Sb2Se3@C@CNF | 1 M NaClO4 in EC/DEC/FEC | 310 */1000 | 97/2000/1000 | >2000 | 47.9 * | [58] |
223 */5000 | 103/12,000/5000 | >12,000 | 50.2 * | |||
MoO2/MoS2@NC-15 | 1 M NaClO4 in EC/DEC/FEC | 550 */100 | 63.6 */50/100 | 11 * | − | [48] |
3D vertical graphene composite (from waste tyres) | 1 M NaClO4 in EC/DMC/EMC/FEC | 320 */200 | 78.9 */100/200 | 18 * | 32.3 * | [90] |
130 */1000 | 103 */1900/1000 | >1900 | 85.5 * | |||
OHC-1400 (pre-treated bamboo waste) | 1 M NaPF6 in EC/DMC | 280/0.1C | 101 */100/0.1C | >100 | 68.9 * | [91] |
Na0.23TiO2 particles coated on a nitrogen-doped carbon sphere with resorcinol | 1 M NaClO4 in EC/PC | 213 */100 | 91.4 */300/100 | >300 | 40.9 * | [50] |
132 */1000 | 86.3 */2000/1000 | >2000 | − |
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
K1.82Mn[Fe(CN)6]0.96·0.47H2O | 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) | 0.2 M Fe(CF3SO3)3 in 21 M KCF3SO3 (aq) | 68.8 */1500 | 82.5/6500/1500 | >6500 | ~100 | [99] |
Potassium Prussian blue (KPB) | N/O dual-doped hard carbon | 0.8 M KPF6 in EC/DEC | 255.8/100 | 52.3/100/100 | 15 * | 53.2 * | [100] |
Perylenetetracarboxylic Dianhydride (PTCDA) | 3D N-doped turbostratic carbon | 0.8 M KPF6 in EC/DEC | 316 */200 | 76.4 */100/200 | 77 * | 97.8 * | [101] |
KFeC2O4F | Soft carbon (SC) | 1 M KPF6 in PC/EC | 77.7 */100 | ~100/200/100 | >200 | 100 * | [102] |
PTCDA | Graphite | 3:8 potassium bis(fluorosulfonyl)imide: trimethyl phosphate (KFSI:TMP) | 111.3 */20 | 72.6 */200/20 | 9 * | 72.2 * | [103] |
KMgHCF nanoplates | Dipotassium terephthalate | 3 M KFSI in TEP | 73.4/100 | 86.1/1000/100 | >1000 | 93.1 * | [104] |
KMgHCF nanoplates | Graphite | 3 M KFSI in TEP | 65.6/100 | 90.1/1000/100 | >1000 | 95 * | |
PTCDA | Amorphous iron oxide/(BiO)2CO3 composite on reduced graphene oxide (rGO) | 5 M KFSI in DEG/DME | 203 */80 | 56.2 */115/80 | 42 * | 99.8 * | [105] |
PTCDA | Acid-treated graphite | 3 M KFSI in EC/DEC | 99.7/0.5C | 82.6/25/0.5C | >25 * | 79.8 * | [106] |
PTCDA | FeSe2 nanorods within a ketjenblack carbon matrix | 1 M KFSI in EC/DEC | 120 */100 | 89.2 */200/100 | >200 | 36.5 * | [107] |
Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|
N-doped 3D mesoporous carbon nanosheet | 0.7 M KPF6 in EC/DEC | 449 */2000 | 79.7 */700/2000 | ~700 | 63.4 * | [114] |
329 */5000 | 109 */5500/5000 | >5500 | 72.2 * | |||
Pitch-derived soft carbon | 0.8 M KPF6 in EC/DEC | 296 */0.1C | 93.2/50/0.1C | >50 | − | [115] |
92.9 */1C | 93.1/1000/1C | >1000 | 65 | |||
PDDA-NPCN (N-rich porous carbon nanosheets)/Ti3C2 | 0.8 M KPF6 in EC/DEC | 584/100 | 61.4/300/100 | 19 * | 73 * | [116] |
487 */1000 | 51.7 */2000/1000 | 22 * | 66 * | |||
389 */2000 | 40.3 */2000/2000 | 22 * | − | |||
S-doped N-rich carbon | 0.8 M KPF6 in EC/DEC | 188/2000 | 75/3000/2000 | 198 * | 94.3 * | [117] |
N/O dual-doped hard carbon | 0.8 M KPF6 in EC/DEC | 398.2/100 | 76.1 */100/100 | 24 * | 40.8 | [100] |
335 */1000 | 56.4 */5000/1000 | 226 * | 73.6 * | |||
3D N-doped turbostratic carbon | 0.8 M KPF6 in EC/DEC | 288 */1000 | 93.1/500/1000 | >500 | 83.6 * | [101] |
N/S dual-doped graphitic hollow architectures (NSG) | 0.8 M KPF6 in EC/DEC | 111 */5000 | 90.2/5000/5000 | >5000 | 56 * | [118] |
Graphite | 3:8 KFSI:TMP | 274 */0.2C | 74/2000/0.2C | 894 * | 57.8 * | [103] |
Layered KTiNbO5/rGO nanocomposite | 1 M KFSI in EC/DEC | 128.1/20 | 76.1/500/20 | 58 * | 53.4 * | [119] |
SnP3—CNT/KB (ketjenblack) | 1 M KFSI in EC/DEC | 223 */1000 | 87.8 */200/1000 | >200 * | 64.05 | [120] |
As2S3@CNT | 2 M KFSI in TEP | 253/500 | 94/1000/500 | >1000 | − | [121] |
Ca0.5Ti2(PO4)3 submicron cubes embedded in carbon nanofibers | 1 M KFSI in EC/PC | 148 */1000 | 83 */1000/1000 | >1000 * | 87.2 * | [122] |
Amorphous iron oxide/(BiO)2CO3 composite on rGO | 5 M KFSI in DEG/DME | 388 */100 | ~100 */1550/100 | >1550 | 67.1 * | [105] 1 |
Acid-treated graphite | 3 M KFSI in EC/DEC | 193 */200 | 114 */100/200 | >100 | 61.9 * | [106] |
FeSe2 nanorods within a ketjenblack carbon matrix | 1 M KFSI in EC/DEC | 501 */100 | 96.9 */100/100 | >100 | 88.8 * | [107] |
357 */1000 | 80.7 */3500/1000 | >3500 * | − | |||
MoS2/rGO | 1 M KFSI in EMC | 272.49/500 | 98.9/100/500 | >100 | − | [123] |
128 */1000 | 85.5 */500/1000 | >500 * |
Cathode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|
K1.82Mn[Fe(CN)6]0.96·0.47H2O | 0.2M Fe(CF3SO3)3 in 21M KCF3SO3 (aq) | 114 */2500 | 107 */130,000/2500 | >130,000 | 89.2 * | [99] |
KFeC2O4F | 1M KPF6 in PC/EC | 97.3 */200 | 107 */2000/200 | >2000 | 70.9 * | [102] |
KMgHCF/C nanoplates | 3M KFSI in TEP | 61.3 */500 | 84.0/15,000/500 | >15,000 | 98.5 * | [104] |
LiF/LixPFyOz-coated K0.27MnO2⋅0.54H2O microspheres | 0.8M KPF6 in EC/DEC | 100.2/50 | 66.3/100/50 | 28 * | − | [125] |
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
α-MnO2 | MXene-coated Zn foil | 2 M ZnSO4/0.2M MnSO4 | 252.8/1000 | 81/500/1000 | >500 | 100 * | [128] |
α-MnO2 | 3D porous Zn | 2 M ZnSO4/0.1M MnSO4/0.05 mM TBA2SO4 | 223 */1000 | 94/300/1000 | >300 | 99.0 * | [129] |
δ-MnO2 | Ultrathin, fluorinated two-dimensional porous covalent organic framework (FCOF) film @Zn | 2 M ZnSO4 | 133 */3C | 73.1 */3C | 800 * | 97.5 * | [130] |
MnO2 nanowire | Metal–organic framework (MOF)-modified Zn | 2 M ZnSO4/0.1 M MnSO4 | 237 */0.1C | 81.2 */100/0.1C | >100 * | 94.2 * | [131] |
60 */1C | 83.3 */5000/1C | >5000 * | 87.7 * | ||||
LiMn2O4 (LMO) | Zn-metal anode with ultrathin N-doped graphene oxide (NGO@Zn) | 1 M ZnSO4 + 2 M Li2SO4 | 124 */1C | 78.3 */180/1C | 63 * | 92 * | [132] |
δ-MnO2 | Al2O3@Zn | 3 M Zn(SO3CF3)2/0.1 M Mn(SO3CF3)2 | 177/3.33C | 89.4/1000/3.33C | >1000 | − | [133] |
304.9 */0.33C | 74.3 */200/0.33C | 140 * | 99.5 * | ||||
Montmorillonite (MMT)-MnO2 | MMT-coated Zn foil | 2 M ZnSO4/0.1 M MnSO4 | 210/2C | 91.2/1100/2C | >1100 | 98.1 * | [134] |
I2/activated carbon (AC) | Zn@ZnS | 2 M ZnSO4/0.1 M MnSO4 | 106 */1000 | 62.3 */900/1000 | 270 * | 92.3 * | [135] |
α-MnO2 | Zn@ZnS | 2 M ZnSO4/0.1 M MnSO4 | 172 */500 | 75.2 */1200/500 | 893 * | 100 * | |
NH4V4O10 | ZnSiO3 nanosheet @Zn | 2 M ZnSO4 | 253/1000 | 38.7/1000/1000 | 312 * | 99.9 * | [136] |
α-MnO2 | Zn coated with MOF-74 | Weakly acidic ZnSO4 | 202 */200 | 79.5 */1000/200 | 871 * | 97.9 * | [137] |
α-MnO2 | Zn foil coated with activated peanut red skin-derived carbon | 2 M ZnSO4/0.1 M MnSO4 | 108 */1000 | 56.7/1000/1000 | 377 * | 96.5 * | [138] |
Na-doped VO 2 | Zn coated with sodium carboxymethyl cellulose in hydrogel | 1 M ZnSO4 | 145 */500 | 82.3 */1500/500 | >1500 * | 105 * | [139] |
Amorphous V2O5 in carbon framework | Zn foil | 3 M Zn(CF3SO3)2 | 271 */40,000 | 91.4/20,000/40,000 | >20,000 | 96.8 * | [140] |
Mn0.15V2O5.nH2O | Zn | 1 M Zn(ClO4)2 in PC | 98.6 */10,000 | 155 */8000/10,000 | >8000 * | 92.2 * | [141] |
CaVO nanoribbons | Zn foil | 4 M Zn(CF3SO3)2 | 107 */10,000 | 161 */10,000/10,000 | >10,000 * | 90.1 * | [142] |
MoS2/graphene nanocomposite | Zn foil | 3 M Zn(CF3SO3)2 | 224 */1000 | 88.2/1800/1000 | >1800 * | 91.4 * | [143] |
Poly(3,4-ethylenedioxythiophene) (PEDOT) intercalated into NH4V4O10 | Zn foil | 3 M Zn(CF3SO3)2 | 104 */10,000 | 154 */5000/10,000 | >5000 * | 92.8 * | [144] |
Carbon-coated MnO | Zn foil | 2 M ZnSO4/0.1M MnSO4 | 117.2/1000 | 99.3/1500/1000 | >1500 | 66.7 * | [145] |
Sulphur heterocyclic quinone dibenzo[b,i]thianthrene- 5,7,12,14-tetraone (DTT) | Zn foil | 2 M ZnSO4 | 94.3 */2000 | 83.8/23,000/2000 | >23,000 | 82.8 * | [146] |
Proton-intercalated MnO2 (H-MnO2−x) | Zn foil | 2 M ZnSO4/0.1M MnSO4 | 281 */1000 | 86.6 */160/1000 | >160 * | − | [147] |
127.5/3000 | 73.2 */960/3000 | 547 * | − | ||||
[C6H6N(CH3)3]1.08V8O20·0.06H2O | Zn | 3 M Zn(CF3SO3)2 | 329/4000 | 87/2000/4000 | >2000 | 100 * | [148] |
δ-K0.25MnO2 nanospheres | Zn foil | 2 M ZnSO4/0.1 M MnSO4 | 258 */1000 | 69.4 */500/1000 | 242 * | 94.2 * | [149] |
194 */3000 | 64.8 */1000/3000 | 488 * | 99.5 * | ||||
Cu0.05K0.11Mn0.84O2⋅0.54H2O | Zn foil | 2 M Zn(CF3SO3)2/0.2 M MnSO4 | 113.4/1000 | 75.1/1000/1000 | 807 * | 111 * | [150] |
270 */100 | 207 */100/100 | >100 * | 95.4 * | ||||
Cu@Cu31S16 | Zn foil | 2 M ZnSO4 | 288 */500 | 97/2000/500 | >2000 | 99.5 * | [151] |
BiOI@MWCNTs (N-doped multi-walled CNTs) | Zn foil | 2 M Zn(CF3SO3)2 | 231 */2000 | 68.1 */600/2000 | 22 * | 88.5 * | [152] |
Na+ and PO43− co-embedded layered V2O5 | Zn foil | 2 M Zn(CF3SO3)2 | 255.3/4000 | 100/2000/4000 | >2000 | 100 * | [153] |
V2O3/VO2@NC@GO nanosheets | Zn | 2 M Zn(CF3SO3)2 | 429 */5000 | 87.9 */1000/5000 | >1000 * | 100 * | [154] |
V2O5 with CNTs | Zn powder | Polyacrylamide hydrogel containing EG | 0.53 * mAh cm−2/0.4 mA | 77.4 */500/0.4 mA | 440 * | 100 * | [155] |
PEDOT-MnO2 | Zn foil | 0.3 M Zn(CF3SO3)2 in DMSO/10% H2O | 177.57/100 | 94.0/50/100 | >50 | 98.93 | [156] |
V2O5 with poly(acrylic acid) (PAA) binder | Zn | 3 M Zn(CF3SO3)2 | 250/1000 | 80.8/2500/1000 | >2500 | 101 * | [157] |
Laser-modified MnO2 | Zn sheet | 2 M ZnSO4/0.1 M MnSO4 | 233/1000 | 71.6/1000/1000 | 740 * | 107 * | [158] |
V2O5 | Zn | 0.5 M Zn(CF3SO3)2/triethyl phosphate (TEP):H2O (1:1) | 250/5000 | ~100/1000/5000 | >1000 | 87.4 * | [159] |
Polyaniline/carbon cloth | Zn/carbon cloth | Dual network hydrogel | 105 */5000 | 76.8 */2000/5000 | 31 * | 94.5 * | [160] |
Na2V6O16·nH2O | Zn | 0.5 m Zn(ClO4)2 with 18 m NaClO4 | 70 */4000 | 126 */2000/4000 | >2000 * | 84.2 * | [161] |
NH4V4O10 | Zn | Eutectic Zn(ClO4)2·6H2O-N-methylacetamide | 295 */500 | 51.5 */1000/500 | 137 * | 101 * | [162] |
227 */1000 | 61.8 */1000/1000 | 380 * | 93 * | ||||
NH4V4O10 | Zn | 2 M ZnSO4 + penta-sodium diethylene-triaminepentaacetic acid salt (1.5 wt% DTPA-Na) | 292 */1000 | 79.4 */600/1000 | 570 * | 103 * | [163] |
200 */3000 | 64.1 */1200/3000 | 467 * | 93.5 * | ||||
KVOH | Zn | 2 M ZnSO4/γ-Valerolactone-3% | 304.98/3000 | 78.7/90/3000 | 74 * | 102 * | [164] |
242 */5000 | 74.7/1000/5000 | 900 * | 98.2 * | ||||
V2O5 | Zn | 2 M Zn(CF3SO3)2 | 88.1 */1000 | 95.3/800/1000 | >800 | 97.8 * | [165] 1 |
MnO2/graphite | Zn | 2 M ZnSO4/0.5 M MnSO4 | 80.2 */1000 | 87.5/1000/1000 | >1000 | 100 * | |
α-MnO2 | Zn foil | 2 M ZnSO4/0.1 M MnSO4 | 219 */1000 | 85/1000/1000 | >1000 | 100 * | [166] 2 |
Lignin-derived porous carbon/α-MnO2 | Zn | 2 M ZnSO4/0.2 M MnSO4 | 197 */1000 | 89.2 */1000/1000 | >1000 * | − | [167] 3 |
Activated carbon | Zn | 2 M ZnSO4 | 88 */1000 | 125 */5000/1000 | >5000 * | 89.8 * |
Challenge | Explanation |
---|---|
Passivation of Al anode |
|
Difficulty in electrodeposition/electro-stripping of Al onto anode |
|
Unstable cathode material |
|
Poor electrochemical properties of cathode materials relative to Al anode |
|
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention(%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Protonated polyaniline (PANI)/single-walled CNTs | Al | [EmIm]AlxCly | 107 */10,000 | 87.6/8000/10,000 | >8000 | 90.6 * | [181] |
2D WS2microsheets | Al | AlCl3/[EmIm]Cl (1.3:1) | 232 */1000 | 51.3 */500/1000 | 72 * | 99.4 * | [182] |
Tetradiketone macrocycle | Al | AlCl3/[EmIm]Cl (1.5:1) | 213 */100 | 79.5 */300/100 | 293 * | − | [183] |
91.4 */1000 | 78/8000/1000 | 7643 * | 94.5 * | ||||
Anthracene | Al | AlCl3/[EmIm]Cl (1.3:1) | 157/100 | 82.8/800/100 | >800 | 75.8 * | [184] |
SnSe nanoparticles | Al | AlCl3/[EmIm]Cl (1.3:1) | 584/300 | 18.4/100/300 | 9 * | 83.27 | [185] |
VS4 nanowire clusters | Al | AlCl3/[EmIm]Cl (1.3:1) | 45.8 */400 | 283 */120/400 | >120 | 58.7 * | [186] |
3D graphene | Al with Galinstan | AlCl3/[EmIm]Cl | 147 */− | 101 */50/− | >50 | 96.4 * | [187] |
FeSe2@GO(graphene oxide) | Al | AlCl3/[EmIm]Cl (1.3:1) | 168 */1000 | 66 */500/1000 | 253 * | 85.9 * | [188] |
B-doped expanded graphite | Al | AlCl3/[EmIm]Cl (1.1:1) | 78.2 */500 | 112 */300/500 | >300 | − | [189] |
Emeraldine-based PANI on multi-walled CNTs | Al | [EmIm]AlxCly | 284/1000 | 91.19/5000/1000 | >5000 | 97.3 * | [190] |
N-doped carbon xerogel | Al | AlCl3/urea (1.5:1) | 455 */100 | 73.5 */300/100 | 30 * | 90.8 * | [191] |
Mo6S8 | AlSn@Cu | AlCl3/[EmIm]Cl (1.3:1) | 60.5 */100 | 85 */1400/100 | >1400 | − | [192] |
Fluorinated graphene | Al | AlCl3/[EmIm]Cl | 97.8 */200 | 105 */300/200 | >300 | 72.8 * | [193] |
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Potassium nickel hexacyanoferrate (KNHCF) | Al | 5 M Al(CF3SO3)3 | 46.5/20 | 51.6 */500/20 | 33 * | 97.2 * | [200] |
V2O5@MXene | Al | 5 M Al(CF3SO3)3 | 336 */400 | 23.3 */100/400 | 6 * | 74 * | [201] |
KNHCF | Sn single-atom catalyst on Al | 0.5 M Al2(SO4)3 | 90.1 */100 | 67.3 */300/100 | 42 * | 91.3 * | [202] |
AlxMnO2 | Sn single-atom catalyst on Al | 0.5 M Al2(SO4)3/0.15M MnSO4 additive | 344 */100 | 34.9 */120/100 | 7 * | 79.9 * | |
High-entropy PBA-Cu | Al pre-treated with ionic liquid | 2 M Al(CF3SO3)3/0.2M Mn(CF3SO3)2 | 139 */200 | 84.4 */500/200 | >500 | − | [203] |
Challenge | Explanation |
---|---|
Sluggish kinetics due to a lack of suitable cathode materials |
|
Incompatibility of electrolyte with electrodes |
|
Passivation of Mg anode |
|
Cathode | Anode | Electrolyte | Initial reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Expanded graphite | PTCDI | 0.4 M Mg(TFSI)2 in Pyr14TFSI ionic liquid | 51.3 */5C | 95.7/500/5C | >500 | 90.9 * | [215] |
NiSe2-CoSe2@TiVCTx | Mg | 0.4 M APC (2PhMgCl-AlCl3 in THF) | 25.2 */500 | 288 */500/500 | >500 | 79.8 * | [216] |
V2O5 intercalated with PANI | AC | 0.3 M Mg(TFSI)2 in acetonitrile (AN) | 249 */100 | 119 */50/100 | >50 | 92.9 * | [217] |
94.4 */4000 | 87.5 */500/4000 | >500 | 98.4 * | ||||
V2O5 intercalated with PANI | Mg | 0.2 M Mg(CF3SO3)2-MgCl2-AlCl3 in DME | 91.5 */100 | 70.4 */50/100 | 44 * | 99.3 * | |
Mg(Mg0.5V1.5)O4 | AC | 0.3 M Mg(TFSI)2 in AN | 250/100 | 92.1/100/100 | >100 | 93.6 * | [218] |
141 */1000 | 68.9 */500/1000 | 372 * | 100 * | ||||
Mg(Mg0.5V1.5)O4 | Na2Ti3O7 | 0.3 M Mg(TFSI)2 in AN | 113 */50 | 90.2 */100/50 | >100 | 71.3 * | |
VS4@Ti3C2/C | Mg | 0.25 M methylpyrrolidinium chloride in 0.25 M APC | 184/500 | 80/900/500 | 900 | 80.6 * | [219] |
NaV2O2(PO4)2F/rGO | Mg0.79NaTi2(PO4)3 | 0.3 M Mg(TFSI)2 in AN | 48.3 */100 | 85/200/100 | >200 | 91.1 * | [220] |
NaV2O2(PO4)2F/rGO | AC | 0.3 M Mg(TFSI)2 in AN | 83.8 */100 | 97.5/1000/100 | >1000 | 98.0 * | |
60.2 */500 | 76/9500/500 | 6783 * | 96.7 * | ||||
Te @ carbon spheres | Mg | 0.4 M APC | 298/500 | 77.1/500/500 | 237 * | 91.7 * | [221] |
NiS2/Ni-based CNTs | Polished Mg | APC | 164.3/200 | 58/2000/200 | 431 * | 80.4 * | [222] |
PANI/carbon cloth | AC cloth | 0.3 M Mg(TFSI)2 in AN | 197 */200 | 80 */300/200 | ~300 * | 108 * | [223] |
111 */1000 | 93.6 */1500/1000 | >1500 | 100 * | ||||
PANI/carbon cloth | MgNaTi3O7 | 0.3 M Mg(TFSI)2 in AN | 75/50 | 66.7/30/50 | 13 * | 45.8 * | |
VOPO4·2H2O pre-intercalated with triethylene glycol | Mg | 0.5 M Mg(TFSI)2 in DME | 215 */100 | 89.8 */1000/100 | >1000 | 100 * | [224] |
Mo6S8 | Mg–Sn@Mg | 0.4 M APC | 92.2/1C | 85.9/1000/1C | >1000 | 102 * | [225] |
56.1 */10C | 87.0 */5000/10C | >5000 | 100 * | ||||
Mo6S8 | Mg–Bi@Mg | 0.4 M APC | 85.7/1C | 87.0/1000/1C | >1000 | 103 * | |
54.7 */10C | 83.4 */5000/10C | >5000 | 100 * | ||||
CuHCF | Mn-doped NaVO3 | 1:1:7 MgCl2·6H2O: acetamide: urea | 39.0 */1000 | 99.2 */800/1000 | >800 | 70.0 * | [226] |
V2O5·xH2O/MoS2 quantum dots/multi-walled CNTs | AC | 0.5 M Mg(TFSI)2 in DME | 146/1000 | 77.1/1000/1000 | 14 * | 91.7 * | [227] |
135 */2000 | 35.2 */15,000/2000 | 27 * | 84.3 * | ||||
NiCoMg-layered double hydroxide | AC | 3 M MgSO4 (aq) | 80 */1000 | 78.8 */2000/1000 | 1935 * | 94.2 * | [228] |
NiCoMg-layered double hydroxide | PTCDI | 3 M MgSO4 (aq) | 55.4 */2000 | 82/1500/2000 | >1500 | 88.9 * | |
Mg0.75V10O24·nH2O | PTCDA | 2 M Mg(CF3SO3)2 (aq) in PEG/H2O | 58/4000 | 62/5000/4000 | 1804 * | 100 * | [229] |
MnO2/GO | PTCDA | 20 M LiTFSI + 2 M Mg(TFSI)2 (aq) | 150/1000 | 85/2000/1000 | >2000 | 78.9 * | [230] |
Cathode | Anode | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
1,4-polyanthraquinone | CaxSn | 0.2 5M Ca[B(hfip)4]2 in DME | 269 */0.5C | 54.3 */1200/0.5C | 22 * | 102 * | [245] |
234 */1C | 33.8 */5000/1C | 39 * | 101 * | ||||
Prussian blue | Ni(OH)-[C6H4(COOH)(COO)] (Nidbc) | 1 M Ca(ClO4)2 in AN | 82/100 | 62/100/100 | 39 * | ~100 | [246] |
Prussian blue | Ni[C6H4(NH2)(COO)2](NidbcNH2) | 1 M Ca(ClO4)2 in AN | 86/100 | 77/100/100 | 72 * | − | |
Ca3Co4O9 | V2O5 | Ca(TFSI)2 in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, polymerised with PEGDA | 137 */C/14 | 14.6 */25/C/14 | 3 * | − | [247] |
H2V3O8 with Zn2+ pre-insertion | PTCDA | 1 M Ca(ClO4)2 in tetraethylene glycol dimethyl ether (TEGDME: H2O = 4:1) | 65.7/1000 | 82.5 */730/1000 | >730 * | 99.5 * | [248] |
(NH4)2V7O16 | Ca | 0.5 M Ca(ClO4)2 in AN | 74.0 */20 | 78.5/20/20 | 18 * | 133 * | [249] |
2D-Prussian green | NidbcNH2 | Ca(ClO4)2/(H2O)4.0(AN)4.8 | 59.5 */100 | 92.3 */350/100 | >350 * | 68.3 * | [250] |
CuHCF | PANI/carbon cloth | 2.5 M Ca(NO3)2 (aq) | 125/800 | 95/200/800 | >200 | 97.1 * | [251] |
Ca2MnO4 | Mesoporous silica @ poly-PTCDI | 1 M Ca(NO3)2 (aq) | 139 */100 | 81.9 */800/100 | >800 | 85.0 * | [252] |
Ca0.3CuHCF | Se/mesoporous carbon (CMK-3) | 6.25 M Ca(TFSI)2 (aq) | 31.2 */100 | 97.2 */50/100 | >50 * | 50.9 * | [253] |
CaxCuHCF | Nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) | 3.4 M CaCl2 (aq) | 174 */5000 | 73.5/3000/5000 | 1710 * | 92.5 * | [254] |
K0.11Co0.02Mn0.98O2⋅1.4H2O @ carbon cloth | Polyimide | 2 M Ca(NO3)2 (aq) | 32.9 */1000 | 114 */1000/1000 | >1000 | 99.7 * | [255] |
MnHCF | Covalent organic framework with repeated pyrazine and pyridinamine units (PTHAT-COF) | 6.67 M CaCl2 (aq) | 60.1 */20,000 | 85.1 */10,000/20,000 | >10,000 | 99.8 * | [256] |
CuHCF | PTCDI | 5 M Ca(OTF)2 (aq) | 73.5 */1000 | 89.7 */30,000/1000 | >30,000 | 100 * | [257] |
K3V2(PO4)3/C | PTCDI | 5 M Ca(OTF)2 (aq) | 80.7 */100 | 75.3/100/100 | 62 * | 1.2 * | [258] |
62.0 */500 | 86.2/200/500 | >200 | 0.2 * |
Cathode | Counter//Reference | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Ca0.13MoO3·(H2O)0.41 | AC | 0.5 M Ca(ClO4)2 in AN | 90.7/2C | 94/50/2C | >50 | 108 * | [259] |
BaV6O16.3H2O@GO | AC cloth | 0.8 M Ca(TFSI)2 in EC/DMC/PC/EMC | 151 */300 | 20.3 */1000/300 | 36 * | 89.6 * | [260] |
H2V3O8 with Zn2+ pre-insertion | Pt//Ag/AgCl | 1 M Ca(ClO4)2 in TEGDME: H2O = 4:1 | 76.4/5000 | 78.3/1000/5000 | 877 * | 100 * | [248] |
V2O5 pre-intercalated with Ni2+ | Pt//Ag/AgCl | 1 M Ca(ClO4)2 in TEGDME: H2O = 4:1 | 147 */1000 | 64.7 */600/1000 | 144 * | 94.6 * | [261] |
(NH4)2V7O16 | AC//Ag/Ag+ | 0.5 M Ca(ClO4) in AN | 116 */20 | 49.7 */50/20 | 7 * | 103 * | [249] |
V2O5·0.63H2O | AC//Ag/AgCl | 1 M Ca(NO3)2·4H2O (aq) | 115 */5C | 80.1 */350/5C | ~350 * | 99.5 * | [262] |
K2V6O16⋅2.7H2O | Pt//Ag/AgCl | 5 M Ca(NO3)2 (aq) | 94.0/50 | 78.3/100/50 | 94 * | 104 * | [263] |
60.0/100 | 66.5/200/100 | 106 * | 104 * | ||||
K0.11Co0.02Mn0.98O2⋅1.4H2O @ carbon cloth | Pt//Ag/AgCl | 2 M Ca(NO3)2 (aq) | 103 */2000 | 93.5 */1000/2000 | >1000 | 103 * | [255] |
K3V2(PO4)3/C | AC cloth | 5 M Ca(OTF)2 (aq) | 102 */100 | 91.6/500/100 | >500 | 49.7 | [258] |
89.1/500 | 71/6000/500 | 668 * | 55.7 * |
Anode | Counter/Reference | Electrolyte | Initial Reversible Capacity (mAh g−1/mA g−1 or C Rate) | Capacity Retention (%/Number of Cycles/Rate) | Cycle Life | Initial Coulombic Efficiency (%) | Source |
---|---|---|---|---|---|---|---|
Na2Ti3O7 | AC | 0.5 M Ca(TFSI)2 in DME | 165/100 | 80.1 */300/100 | ~300 * | 96.3 * | [266] |
74.7 */500 | 77.2 */2000/500 | 267 * | 92.4 * | ||||
Se/CMK-3 | AC | 0.25 M Ca(TFSI)2 in EC/DMC | 265 */500 | 56 */300/500 | 12 * | 89.6 * | [253] |
Se/CMK-3 | AC | 6.25 M Ca(TFSI)2 (aq) | 354 */300 | 53.6 */50/100 | 9 * | 47.9 * | |
Nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) | AC//Ag/AgCl | 1 M CaCl2 (aq) | 183/5000 | 69.9/3000/5000 | 1543 * | 99.6 * | [254] |
Covalent organic framework with repeated pyrazine and pyridinamine units (PTHAT-COF) | AC//Ag/AgCl | 6.67 M CaCl2 (aq) | 82.2/20,000 | 89.9/10,000/20,000 | >10,000 | 100 * | [256] |
PTCDI | AC cloth | 5 M Ca(OTF)2 (aq) | 131 */100 | 95.8/4500/100 | >4500 | 99.5 * | [257] |
106 */1000 | 72.7/68,000/1000 | 29763 * | 31.6 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, A.K.X.; Paul, S. Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage. Energies 2024, 17, 5768. https://doi.org/10.3390/en17225768
Tan AKX, Paul S. Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage. Energies. 2024; 17(22):5768. https://doi.org/10.3390/en17225768
Chicago/Turabian StyleTan, Alan K. X., and Shiladitya Paul. 2024. "Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage" Energies 17, no. 22: 5768. https://doi.org/10.3390/en17225768
APA StyleTan, A. K. X., & Paul, S. (2024). Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage. Energies, 17(22), 5768. https://doi.org/10.3390/en17225768