Hydrogen, Methane, Brine Flow Behavior, and Saturation in Sandstone Cores During H2 and CH4 Injection and Displacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup and Test Procedures
2.2.1. Experimental Setup
2.2.2. Test Procedures
Permeability Tests
Brine Displacement Tests
Gas Displacement Tests
2.3. Test Layout
3. Results and Discussion
3.1. Gas Recovery Volume in Baseline Testing
3.2. Brine Displacement by Methane and the Initial CH4 Saturation in Sandstone Cores
3.3. Injection Pressure
3.4. Hydrogen Displacing Methane—Influence of Flow Rate and Sandstone Core
3.5. Methane Displacing Hydrogen vs. Hydrogen Displacing Methane
3.6. Gas Flow Through Brine-Saturated Core: CH4 vs. H2
3.7. Vertical and Horizontal Flow Comparison
3.8. Initial Hydrogen Saturation
4. Conclusions
- Higher permeability and porosity rock showed quicker breakthrough in brine displacement and a higher initial gas saturation.
- A higher gas injection rate resulted in faster gas breakthrough measured by PV and sharper concentration curves.
- Hydrogen showed similar flow behavior and performance to those of methane in the sandstone cores when the flow was in the horizontal and downward vertical directions.
- Overriding was observed in brine displacements by gasses when the flow was horizontal; hydrogen showed a higher degree of overriding than methane.
- Downward vertical gas injection induced a higher efficiency of brine displacement compared to horizontal displacement, resulting in a higher initial gas saturation in the sandstone cores.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Pathak, M.; Slade, R.; Pichs-Madruga, R.; Urge-Vorsatz, D.; Shukla, P.R.; Shea, J. Climate Change 2022: Mitigation of Climate Change. In Working Group III Contribution to the IPCC Sixth Assessment Report: Technical Summary; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; pp. 51–148. [Google Scholar]
- Samsatli, S.; Samsatli, N.J. The role of renewable hydrogen and inter-seasonal storage in decarbonising heat–comprehensive optimisation of future renewable energy value chains. Appl. Energy 2019, 233–234, 854–893. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore geological storage of hydrogen: Is this our best option to achieve net-zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Seo, S.-K.; Yun, D.-Y.; Lee, C.-J. Design and optimization of a hydrogen supply chain using a centralized storage model. Appl. Energy 2020, 262, 114452. [Google Scholar] [CrossRef]
- Bauer, S.; Beyer, C.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Feeser, V.; Görke, U.; Köber, R.; Kolditz, O.; et al. Impacts of the use of the geological subsurface for energy storage: An investigation concept. Environ. Earth Sci. 2013, 70, 3935–3943. [Google Scholar] [CrossRef]
- Sørensen, B. Underground hydrogen storage in geological formations, and comparison with other storage solutions. In Hydrogen Power Theoretical and Engineering International Symposium; Merida Technical University: Merida, Mexico, 2007. [Google Scholar]
- Uliasz-Misiak, B.; Przybycin, A. Present and future status of underground space use in Poland. Environ. Earth Sci. 2016, 75, 1430. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Bezdek, R.H. The hydrogen economy and jobs of the future. Renew. Energy Environ. Sustain. 2019, 4. [Google Scholar] [CrossRef]
- Baek, S.; Hibbard, L.E.; Huerta, N.J.; Lackey, G.; Goodman, A.; White, J.A. Enhancing Site Screening for Underground Hydrogen Storage: Qualitative Site Quality Assessment-SHASTA: Subsurface Hydrogen Assessment, Storage, and Technology Acceleration Project; PNNL-35719; Pacific Northwest National Laboratory: Richland, WA, USA, 2024. [Google Scholar] [CrossRef]
- Goodman, A.; Kutchko, B.; Lackey, G.; Gulliver, D.; Strazisar, B.R.; Tinker, K.A.; Wright, R.; Haeri, F.; Huerta, N.; Baek, S. Subsurface Hydrogen and Natural Gas Storage: State of Knowledge and Research Recommendations Report; U.S. Department of Energy, Office of Fossil Energy and Carbon Management: Washington, DC, USA, 2022. [CrossRef]
- Oldenburg, C.M. Carbon dioxide as cushion gas for natural gas storage. Energy Fuels 2003, 17, 240–246. [Google Scholar] [CrossRef]
- Scanziani, A.; Singh, K.; Blunt, M.J.; Guadagnini, A. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two phase flow in porous media. J. Colloid. Interface Sci. 2017, 496, 51–59. [Google Scholar] [CrossRef]
- Yekta, A.; Manceau, J.C.; Gaboreau, S.; Pichavant, M.; Audigane, P. Determination of hydrogen–water relative permeability and capillary pressure in sandstone: Application to underground hydrogen injection in sedimentary formations. Transp. Porous Media 2018, 122, 333–356. [Google Scholar] [CrossRef]
- Chow, Y.T.F.; Maitland, G.C.; Trusler, J.P.M. Interfacial tensions of (H2O + H2) and (H2O + CO2 + H2) systems at temperatures of (298–448) K and pressures up to 45 MPa. Fluid. Phase Equilibria 2018, 475, 37–44. [Google Scholar] [CrossRef]
- Jha, N.K.; Al-Yaseri, A.; Ghasemi, M.; Al-Bayati, D.; Lebedev, M.; Sarmadivaleh, M. Pore scale investigation of hydrogen injection in sandstone via X-ray microtomography. Int. J. Hydrogen Energy 2021, 46, 34822–34829. [Google Scholar] [CrossRef]
- Paterson, L. The implications of fingering in underground hydrogen storage. Int. J. Hydrogen Energy 1983, 8, 53–59. [Google Scholar] [CrossRef]
- Boon, M.; Hajibeygi, H. Experimental characterization of H2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS). Sci. Rep. 2022, 12, 14604. [Google Scholar] [CrossRef]
- Liu, X.J.; Xiong, J.; Liang, L.X.; Yuan, W. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow. Prog. Geophys. 2017, 32, 1019–1028, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.; Liu, K.; Zhang, C.; Yan, H.; Yu, J.; Yu, B.; Liu, J.; Jiang, T.; Dan, W.; Hu, C. Integral Effects of Porosity, Permeability, and Wettability on Oil–Water Displacement in Low-Permeability Sandstone Reservoirs—Insights from X-ray CT-Monitored Core Flooding Experiments. Processes 2023, 11, 2786. [Google Scholar] [CrossRef]
- Webb, S.W. Gas Transport Mechanisms. In Gas Transport in Porous Media; Ho, C., Webb, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Chapter 2; pp. 5–26. [Google Scholar]
- Gheshmi, M.S.; Fatahiyan, S.M.; Khanesary, N.T.; Sia, C.W.; Momeni, M.S. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network. IOP Conf. Ser. Mater. Sci. Eng. 2018, 328, 012021. [Google Scholar] [CrossRef]
- Costanza-Robinson, M.S.; Brusseau, M. Gas-phase Dispersion in Porous Media. In Gas Transport in Porous Media; Ho, C., Webb, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; Chapter 7; pp. 121–132. [Google Scholar]
- Costanza-Robinson, M.S.; Brusseau, M. Gas phase advection and dispersion in unsaturated porous media. Water Resour. Res. 2002, 38, 7-1–7-9. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Connolly, P.; Robinson, N.; May, E.F.; Mahmoud, M.; El-Husseiny, A.; Johns, M.L. Miscible Fluid Displacement in Rock Cores Evaluated with NMR T2 Relaxation Time Measurements. Ind. Eng. Chem. Res. 2020, 59, 18280–18289. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C. Enabling large-scale hydrogen storage in porous media–the scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Stone, H.L. Vertical, Conformance in an Alternating Water-Miscible Gas Flood. SPE-11130-MS. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 26–29 September 1982. [Google Scholar] [CrossRef]
- Shojaei, M.J.; Osei-Bonsu, K.; Grassia, P.; Shokri, N. Foam flow investigation in 3D-printed porous media: Fingering and gravitational effects. Ind. Eng. Chem. Res. 2018, 57, 7275–7281. [Google Scholar] [CrossRef]
- Shi, J.; Rossen, W. Improved Surfactant-Alternating-Gas Foam Process to Control Gravity Override; Society of Petroleum Engineers: Richardson, TX, USA, 1998. [Google Scholar]
- Buscheck, T.A.; Goodman, A.; Lackey, G.; Camargo, J.D.T.; Huerta, N.; Haeri, F.; Freeman, G.M.; White, J.A. Underground storage of hydrogen and hydrogen/methane mixtures in porous reservoirs: Influence of reservoir factors and engineering choices on deliverability and storage operations. Int. J. Hydrogen Energy 2024, 49 Pt D, P1088–P1107. [Google Scholar] [CrossRef]
- Baek, S.; Bacon, D.H.; Huerta, N.J. NRAP-Open-IAM Analytical Reservoir Model-Development and Testing; PNNL-31418; Pacific Northwest National Laboratory: Richland, WA, USA, 2021. [CrossRef]
- Adebayo, A.R.; Assad, A.B.; Muhammad, S.K. Effect of Flow Direction on Relative Permeability Curves in Water/Gas Reservoir System: Implications in Geological CO2 Sequestration. Geofluids 2017, 2017, 1958463. [Google Scholar] [CrossRef]
- Homsy, G.M. Viscous Fingering in Porous Media. Annu. Rev. Fluid. Mech. 1987, 19, 271–311. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Yekeen, N.; Mahmoud, M.; Kakati, A.; Xie, Q.; Giwelli, A. Thermodynamic characterization of H2-brineshale wettability: Implications for hydrogen storage at subsurface. Int. J. Hydrogen Energy 2022, 47, 22510–22521. [Google Scholar] [CrossRef]
- Jangda, Z.; Menke, H.; Busch, A.; Geiger, S.; Bultreys, T.; Lewis, H.; Singh, K. Singh Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability. J. Colloid. Interface Sci. 2023, 629, 316–325. [Google Scholar] [CrossRef]
- Peksa, A.E.; Wolf, K.H.A.; Zitha, P.L. Bentheimer sandstone revisited for experimental purposes. Mar. Pet. Geol. 2015, 67, 701–719. [Google Scholar] [CrossRef]
- Roshan, H.; Sari, M.; Arandiyan, H.; Hu, Y.; Mostaghimi, P.; Sarmadivaleh, M.; Masoumi, H.; Veveakis, M.; Iglauer, S.; Regenauer-Lieb, K. Total porosity of tight rocks: A welcome to the heat transfer technique. Energy Fuels 2016, 30, 10072–10079. [Google Scholar] [CrossRef]
- Shahrokhi, O.; Jahanbakhsh, A.; Bakhshi, P.; Andresen, J.M.; Mercedes Maroto-Valer, M. Understanding Multiphase Flow Mechanisms of Hydrogen Storage in Sandstones. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–24 October 2022. [Google Scholar] [CrossRef]
Test Name | Rock Core | Q (mL/m) | CH.dis. B | H.dis. CH | CH.dis. H | H.dis. B | Flow Hori. | Flow Vert. |
---|---|---|---|---|---|---|---|---|
Test-01 | Berea SS | 2.0 | x | x | x | |||
Test-02 | Bent. SS | 2.0 | x | x | x | |||
Test-03 | Berea SS | 2.0 | x | x | ||||
Test-04 | Berea SS | 3.0 | x | x | x | x | ||
Test-05 | Bent. SS | 3.0 | x | x | x | x | ||
Test-06 | Berea SS | 3.0 | x | x | x | x | ||
Test-07 | Berea SS | 3.0 | x | x | x | |||
Test-08 | Berea SS | 3.0 | x | x | x |
Porous Media | Flow Direction; Flow Rate; Injected PV | Saturation Values (%) | References |
---|---|---|---|
Berea sandstone (SS) ϕ = 18.08% k = 41.93 × 10−15 m2 Surface area (SA) = 0.93 m2/g (7.5 PV injection) | Horizontal; 2 mL/min (Test-01) Horizontal; 3 mL/min (Test-04) Vertical (downward); 3 mL/min (Test-07) Eff. at ambient conditions | 25.80 32.71 37.19 | This study |
Fontainebleau SS ϕ = 10.2% k = 200 × 10−15 m2 SA = 0.11 m2/g (10 PV injection) | Vertical (upward) Under 58 psig pressure | 4.5 | Al-Yaseri et al., 2022 [35] |
Bentheimer SS ϕ = 23–27% k = 1480 × 10−15 m2 SA = 0.45 m2/g. | Vertical (downward) Under 1450 psig pressure | ~36 | Jangda et al., 2023 [36] Peksa et al., 2015 [37] |
Gosford SS ϕ = 5% k (unknown) SA (unknown) | Orientation and flow direction not reported; 0.01 mL/min 5 PV Ambient conditions | ~65 | Jha et al., 2021 [17] Roshan et al., 2016 [38] |
Berea SS core ϕ = 19.7% k = 203 × 10−15 m2 | Horizontal; 5 mL/min; 7 mL/min; 10 mL/min; 15 mL/min; 20 mL/min; 30 mL/min P = 100 bar 3.8 cm core diameter | 34 35 36 40 43 46 | Boon and Hajibeygi, 2022 [19] |
Doddington sandstone k = 170 × 10−15 m2 | Vertical (downward); 5 mL/h | 20–45 | Shahrokhi et al., 2022 [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Baek, S.; Guo, M.; Bagwell, C.; Huerta, N. Hydrogen, Methane, Brine Flow Behavior, and Saturation in Sandstone Cores During H2 and CH4 Injection and Displacement. Energies 2024, 17, 5800. https://doi.org/10.3390/en17225800
Zhong L, Baek S, Guo M, Bagwell C, Huerta N. Hydrogen, Methane, Brine Flow Behavior, and Saturation in Sandstone Cores During H2 and CH4 Injection and Displacement. Energies. 2024; 17(22):5800. https://doi.org/10.3390/en17225800
Chicago/Turabian StyleZhong, Lirong, Seunghwan Baek, Mond Guo, Christopher Bagwell, and Nicolas Huerta. 2024. "Hydrogen, Methane, Brine Flow Behavior, and Saturation in Sandstone Cores During H2 and CH4 Injection and Displacement" Energies 17, no. 22: 5800. https://doi.org/10.3390/en17225800
APA StyleZhong, L., Baek, S., Guo, M., Bagwell, C., & Huerta, N. (2024). Hydrogen, Methane, Brine Flow Behavior, and Saturation in Sandstone Cores During H2 and CH4 Injection and Displacement. Energies, 17(22), 5800. https://doi.org/10.3390/en17225800