Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study
Abstract
:1. Introduction
2. Materials and Methods
- provision of local spatial development plans,
- distance from the nearest residential development,
- possibility of signing lease agreements with landowners,
- distance from infrastructure (roads, overhead power lines, gas pipelines, etc.),
- distance from valuable forms of nature conservation.
3. Analysis and Results
3.1. Energy Analysis of Farm A
3.2. Energy Analysis of Farm B
3.3. Cost Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN General Assembly Resolution Adopted by the General Assembly on 25 September 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 21 October 2024).
- European Commission: Directorate-General for Climate Action. Going Climate-Neutral by 2050–A Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate-Neutral EU Economy; Publications Office of the European Union: Luxembourg, 2019; Available online: https://data.europa.eu/doi/10.2834/02074 (accessed on 19 November 2024).
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Wind Europe. Latest Wind Energy Data for Europe Autumn 2024. Available online: https://windeurope.org/intelligence-platform/product/latest-wind-energy-data-for-europe-autumn-2024/ (accessed on 21 October 2024).
- Deloitte. The 2030 Decarbonization Challenge. The Path to the Future of Energy. Available online: https://www.scribd.com/document/493910178/The-2030-Decarbonization-Challange-The-Path-to-the-Future-of-Energy-Dynamic-PDF-FINAL (accessed on 19 November 2024).
- Hegazy, A.; Blondel, F.; Cathelain, M.; Aubrun, S. LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models. Renew. Energy 2022, 181, 457–471. [Google Scholar] [CrossRef]
- Stevens, R.J.; Meneveau, C. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 2017, 49, 311–339. [Google Scholar] [CrossRef]
- Cai, W.; Hu, Y.; Fang, F.; Yao, L.; Liu, J. Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines. Appl. Energy 2023, 339, 121000. [Google Scholar] [CrossRef]
- Howland, M.F.; Quesada, J.B.; Martínez, J.J.P.; Larrañaga, F.P.; Yadav, N.; Chawla, J.S.; Sivaram, V.; Dabiri, J.O. Collective wind farm operation based on a predictive model increases utility-scale energy production. Nat. Energy 2022, 7, 818–827. [Google Scholar] [CrossRef]
- Gonzalez Silva, J.; Ferrari, R.; Wingerden, J.W. Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines. Renew. Energy 2022, 203, 421–433. [Google Scholar] [CrossRef]
- Sun, H.; Yang, H. Study on an innovative three-dimensional wind turbine wake model. Appl. Energy 2018, 226, 483–493. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, H.; Gao, X.; Wang, X.; Nian, H.; Fan, W. Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis. Sustainability 2024, 16, 1813. [Google Scholar] [CrossRef]
- Petrescu, R.V.; Aversa, R.; Apicella, A.; Petrescu, F.I. Green energy to protecting the environment (energia verde para proteger o meio ambiente). GEINTEC J. 2017, 7, 3722–3743. [Google Scholar] [CrossRef]
- Finserås, E.; Herrera Anchustegui, I.; Cheynet, E.; Gebhardt, C.G.; Reuder, J. Gone with the wind? Wind farm-induced wakes and regulatory gaps. Mar. Policy 2024, 159, 105897. [Google Scholar] [CrossRef]
- Kacejko, P.; Szulczyk, J.; Zagubień, A. Wind Energy: Societal and Human Impacts, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Zagubień, A. The Results of the Measurements and Analyses of Impact of Wind Farms on Acoustic Climate. Rocz. Ochr. Sr. 2017, 19, 527–539. [Google Scholar]
- Katic, I.; Højstrup, J.; Jensen, N.O. A Simple Model for Cluster Efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7–9 October 1986; Volume 1, pp. 407–410. [Google Scholar]
- Ainslie, J.F. Calculating the flowfield in the wake of wind turbines. J. Wind Eng. Ind. Aerod. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Larsen, G.C.; Højstrup, J.; Aagaard Madsen, H. Wind fields in wakes. In 1996 European Union Wind Energy Conference, Proceedings of the 1996 European Wind Energy Conference and Exhibition, Göteborg, Sweden, 20–24 May 1996; Zervos, A., Ehmann, H., Helm, P., Eds.; H.S. Stephens and Associates: Bedford, UK, 1996; pp. 764–768. [Google Scholar]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Nygaard, N.G.; Steen, S.T.; Poulsen, L.; Pedersen, J.G. Modelling cluster wakes and wind farm blockage. J. Phys. Conf. Ser. 2020, 1618, 062072. [Google Scholar] [CrossRef]
- Djerf, E.; Mattson, H. Evaluation of the Software Program WindFarm and Comparisons with Measured Data from Alsvik; Technical Report: FFA-TN-2000-30; The Aeronautical Research Institute of Sweden: Stockholm, Sweden, 2000. [Google Scholar]
- Schepers, J.G. ENDOW. Validation and Improvement of ECN’s Wake Model; Energy Research Centre of the Netherlands ECN: Petten, The Netherlands, 2003. [Google Scholar]
- Cheng, Y.; Zhang, M.; Zhang, Z.; Xu, J. A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory. Appl. Energy 2019, 239, 96–106. [Google Scholar] [CrossRef]
- Brogna, R.; Feng, J.; Sørensen, J.N.; Shen, W.Z.; Porté-Agel, F. A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain. Appl. Energy 2020, 259, 114189. [Google Scholar] [CrossRef]
- Lopes, A.M.; Vicente, A.H.; Sánchez, O.H.; Daus, R.; Koch, H. Operation assessment of analytical wind turbine wake models. J. Wind Eng. Ind. Aerod. 2022, 220, 104840. [Google Scholar] [CrossRef]
- DTU. Available online: https://www.dtu.dk/english/search?area=samesite&searchQuery=wake+loss&entity=publications (accessed on 21 October 2024).
- Göçmen, T.; van der Laan, P.; Réthoré, P.E.; Diaz, A.P.; Larsen, G.C.; Ott, S. Wind turbine wake models developed at the technical university of Denmark: A review. Renew. Sustain. Energy Rev. 2016, 60, 752–769. [Google Scholar] [CrossRef]
- WindPRO. Available online: https://help.emd.dk/knowledgebase/content/ReferenceManual/Wake_Model.pdf (accessed on 21 October 2024).
- Ramasamy, P.; Chandel, S.S.; Yadav, A.K. Wind speed prediction in the mountainous region of India using an artificial neural network model. Renew. Energy 2015, 80, 338–347. [Google Scholar] [CrossRef]
- Famoso, F.; Oliveri, L.M.; Brusca, S.; Chiacchio, F. A Dependability Neural Network Approach for Short-Term Production Estimation of a Wind Power Plant. Energies 2024, 17, 1627. [Google Scholar] [CrossRef]
- Ioakimidis, C.S.; Genikomsakis, K.N.; Dallas, P.I.; Lopez, S. Short-term wind speed forecasting model based on ANN with statistical feature parameters. In Proceedings of the IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 000971–000976. [Google Scholar] [CrossRef]
- Copernicus DEM. Available online: https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model (accessed on 21 October 2024).
- CORINE Land Cover. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/a5144888-ee2a-4e5d-a7b0-2bbf21656348?activeAccordion=1084043%2C1070080%2C798 (accessed on 21 October 2024).
- Wolniewicz, K.; Zagubień, A.; Wesolowski, M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies 2021, 14, 7290. [Google Scholar] [CrossRef]
- Kuczyński, W.; Wolniewicz, K.; Charun, H. Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies 2021, 14, 7740. [Google Scholar] [CrossRef]
- Wais, P. A review of Weibull functions in wind sector. Renew. Sustain. Energy Rev. 2017, 70, 1099–1107. [Google Scholar] [CrossRef]
Terrain Type | Roughness Class | Roughness Length | Wake Decay Constant | Ambient Turbulence at 50 m | Comments |
---|---|---|---|---|---|
Offshore water areas | 0.0 | 0.0002 | 0.040 | 0.06 ÷ 0.08 | Water reservoirs. |
Mixed water and land | 0.5 | 0.0024 | 0.052 | 0.07 ÷ 0.10 | Also applies to very smooth terrain. |
Very open farmland | 1.0 | 0.0300 | 0.063 | 0.10 ÷ 0.13 | Scattered buildings. Smooth hills. |
Open farmland | 1.5 | 0.0550 | 0.075 | 0.11 ÷ 0.15 | Some buildings. Crossing hedges 8 m high and 1250 m apart. |
Mixed farmland | 2.0 | 0.1000 | 0.083 | 0.12 ÷ 0.16 | Some buildings. Crossing hedges 8 m high and 800 m apart. |
Trees and farmland | 2.5 | 0.2000 | 0.092 | 0.13 ÷ 0.18 | Enclosed appearance. Dense vegetation with 8 m hedges 250 m apart. |
Forests and villages | 3.0 | 0.4000 | 0.100 | 0.15 ÷ 0.21 | Villages, small towns, and enclosed farmland. Numerous wood and forest areas. |
Large towns and cities | 3.5 | 0.8000 | 0.108 | 0.17 ÷ 0.24 | Large towns, cities with extended built-up areas. |
Large built-up cities | 4.0 | 1.6000 | 0.117 | 0.21 ÷ 0.29 | Large cities with high buildings. |
Wind Speed | Power V136–3.45 | Power V162–6.2 |
---|---|---|
m/s | kW | kW |
3.0 | 49 | 34 |
3.5 | 127 | 150 |
4.0 | 224 | 292 |
4.5 | 339 | 467 |
5.0 | 480 | 676 |
5.5 | 651 | 927 |
6.0 | 857 | 1229 |
6.5 | 1099 | 1584 |
7.0 | 1382 | 2000 |
7.5 | 1705 | 2476 |
8.0 | 2067 | 3017 |
8.5 | 2460 | 3626 |
9.0 | 2849 | 4284 |
9.5 | 3174 | 4917 |
10.0 | 3369 | 5483 |
10.5 | 3434 | 5882 |
11.0 | 3449 | 6114 |
11.5 | 3450 | 6176 |
12.0 | 3450 | 6197 |
12.5 | 3450 | 6200 |
13.0 | 3450 | 6200 |
13.5 | 3450 | 6200 |
14.0 | 3450 | 6200 |
14.5 | 3450 | 6200 |
15.0 | 3450 | 6200 |
15.5 | 3450 | 6200 |
16.0 | 3450 | 6200 |
16.5 | 3450 | 6200 |
17.0 | 3450 | 6186 |
17.5 | 3450 | 6077 |
18.0 | 3450 | 5853 |
18.5 | 3450 | 5590 |
19.0 | 3450 | 5348 |
19.5 | 3450 | 5095 |
20.0 | 3450 | 4825 |
20.5 | 3450 | 4538 |
21.0 | 3450 | 4251 |
21.5 | 3450 | 3954 |
22.0 | 3450 | 3664 |
22.5 | 3450 | 3367 |
23.0 | 0 * | 3064 |
23.5 | 0 * | 2763 |
24.0 | 0 * | 2451 |
Turbine Number | Annual Energy | Wake Loss | Annual Energy | Wake Loss |
---|---|---|---|---|
MWh/y | % | MWh/y | % | |
1 | 2 | 3 | 4 | 5 |
A01 | 10,324.1 | 7.3 | 10,331.7 | 7.2 |
A02 | 10,210.2 | 8.3 | 10,212.4 | 8.3 |
A03 | 10,432.6 | 6.3 | 10,435.2 | 6.2 |
A04 | 10,378.6 | 6.7 | 10,381.8 | 6.7 |
A05 | 10,499.8 | 5.7 | 10,502.1 | 5.6 |
A06 | 10,161.4 | 8.7 | 10,165.9 | 8.7 |
A07 | 10,201.3 | 8.4 | 10,210.9 | 8.3 |
A08 | 10,891.4 | 2.1 | 10,893.2 | 2.1 |
A09 | 9721.5 | 12.6 | 9762.6 | 12.3 |
A10 | 9363.6 | 15.8 | 9452.0 | 15.0 |
A11 | 10,835.3 | 2.5 | 10,838.7 | 2.5 |
A12 | 9010.7 | 19 | 9385.3 | 15.6 |
A13 | 9054.6 | 18.6 | 9120.9 | 18.0 |
A14 | 9054.0 | 18.6 | 9160.7 | 17.6 |
A15 | 9470.7 | 14.8 | 9519.2 | 14.4 |
A16 | 10,093.9 | 9.2 | 10,106.0 | 9.1 |
A17 | 8571.4 | 22.9 | 0.0 | 0.0 |
A18 | 9032.7 | 18.8 | 9084.9 | 18.3 |
A19 | 9582.5 | 13.8 | 9610.6 | 13.5 |
A20 | 8851.2 | 20.4 | 8986.6 | 19.2 |
A21 | 10,579.2 | 4.8 | 10,586.4 | 4.8 |
A22 | 9012.0 | 18.9 | 9105.3 | 18.1 |
A23 | 10,036.1 | 9.7 | 10,044.6 | 9.6 |
A24 | 9417.8 | 15.2 | 9439.0 | 15.0 |
A25 | 8707.2 | 21.6 | 8824.1 | 20.6 |
A26 | 9001.0 | 19.1 | 9152.9 | 17.7 |
A27 | 9843.1 | 11.4 | 9858.6 | 11.3 |
A28 | 10,261.3 | 7.6 | 10,271.4 | 7.6 |
A29 | 9243.1 | 16.8 | 9290.4 | 16.4 |
A30 | 8880.5 | 20.1 | 8942.6 | 19.5 |
A31 | 9334.4 | 16 | 9398.5 | 15.4 |
A32 | 9891.5 | 11 | 9914.6 | 10.8 |
A33 | 9383.2 | 15.5 | 9417.4 | 15.2 |
A34 | 10,116.5 | 8.9 | 10,145.9 | 8.6 |
Mean wake loss WF | - | 12.9 | - | 12.1 |
Total annual energy WF | 329,448.4 | 322,552.4 |
Turbine Number | Annual Energy | Wake Loss | Annual Energy | Wake Loss |
---|---|---|---|---|
MWh/y | % | MWh/y | % | |
1 | 2 | 3 | 4 | 5 |
B01 | 17,295.4 | 5.4 | 17,303.0 | 5.4 |
B02 | 16,965.7 | 7.2 | 16,971.9 | 7.2 |
B03 | 17,259.1 | 5.6 | 17,267.6 | 5.6 |
B04 | 16,851.6 | 7.9 | 16,865.3 | 7.8 |
B05 | 16,629.7 | 9.1 | 16,642.8 | 9.0 |
B06 | 16,650.0 | 9.0 | 16,664.0 | 8.9 |
B07 | 17,005.6 | 7.0 | 17,021.6 | 6.9 |
B08 | 16,862.9 | 7.8 | 16,878.0 | 7.7 |
B09 | 16,542.9 | 9.5 | 16,570.3 | 9.4 |
B10 | 15,931.8 | 12.9 | 15,969.1 | 12.0 |
B11 | 16,170.6 | 11.7 | 16,208.1 | 11.0 |
B12 | 15,491.9 | 15.4 | 15,540.6 | 15.0 |
B13 | 17,014.6 | 7.1 | 17,036.6 | 7.0 |
B14 | 15,470.2 | 15.5 | 15,534.4 | 15.0 |
B15 | 16,101.8 | 12.1 | 16,133.2 | 11.0 |
B16 | 15,496.5 | 15.4 | 15,551.9 | 15.0 |
B17 | 15,884.4 | 13.2 | 15,973.0 | 12.0 |
B18 | 17,050.0 | 6.9 | 17,085.4 | 6.7 |
B19 | 16,156.3 | 11.7 | 16,204.1 | 11.0 |
B20 | 15,608.2 | 14.7 | 16,109.6 | 11.0 |
B21 | 15,799.3 | 13.7 | 16,473.9 | 10.0 |
B22 | 16,250.5 | 11.1 | 16,403.8 | 10.0 |
B23 | 15,463.4 | 15.5 | 0.0 | 0.0 |
B24 | 16,678.4 | 8.8 | 16,720.2 | 8.5 |
B25 | 16,337.7 | 10.7 | 16,615.8 | 9.2 |
B26 | 16,666.0 | 8.9 | 16,793.4 | 8.2 |
B27 | 15,985.6 | 12.6 | 16,043.3 | 12.0 |
B28 | 16,300.6 | 10.9 | 16,368.8 | 10.0 |
B29 | 17,257.1 | 5.7 | 17,338.5 | 5.3 |
B30 | 17,062.1 | 6.7 | 17,086.9 | 6.6 |
B31 | 16,593.7 | 9.2 | 16,621.2 | 9.1 |
B32 | 16,841.1 | 7.9 | 16,869.9 | 7.7 |
Mean wake loss WF | - | 10.2 | - | 9.6 |
Total annual energy WF | 525,674.7 | - | 512,866.2 | - |
Cost Type | V162 | V136 |
---|---|---|
€ | € | |
Annual land lease | 34,000 | 21,000 |
Construction of the foundation including connection to the internal power grid | 280,000 | 280,000 |
Maintenance yard | 82,000 | 82,000 |
Access road 500 m | 81,000 | 81,000 |
Purchase, transportation, and installation of the turbine | 6,000,000 | 4,000,000 |
Annual operation (maintenance) | 60,000 | 50,000 |
Farm A—V136 | Farm B—V162 | ||
---|---|---|---|
MWh/y | MWh/y | ||
34 Turbines | 33 Turbines | 32 Turbines | 31 Turbines |
329,448.4 | 322,552.4 | 525,674.7 | 512,866.2 |
Productivity difference = 6896.0 | Productivity difference = 12,808.5 | ||
Profit difference = 758,560 € | Profit difference = 1,408,935 € |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagubień, A.; Wolniewicz, K.; Szwochertowski, J. Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study. Energies 2024, 17, 5816. https://doi.org/10.3390/en17235816
Zagubień A, Wolniewicz K, Szwochertowski J. Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study. Energies. 2024; 17(23):5816. https://doi.org/10.3390/en17235816
Chicago/Turabian StyleZagubień, Adam, Katarzyna Wolniewicz, and Jakub Szwochertowski. 2024. "Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study" Energies 17, no. 23: 5816. https://doi.org/10.3390/en17235816
APA StyleZagubień, A., Wolniewicz, K., & Szwochertowski, J. (2024). Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study. Energies, 17(23), 5816. https://doi.org/10.3390/en17235816