Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network
Abstract
:1. Introduction
2. Mathematical Description of the Problem Statement
2.1. Objective Function
2.2. Power Balance Constraints
2.3. Inequality Constraints
2.3.1. Reactive Power Compensation Limit
2.3.2. Real Power Compensation Limit
2.3.3. Real and Reactive Power Constraint Limit
2.3.4. Bus Voltage Limitation
2.4. Radiality and Isolation Constraints
2.5. Assumptions
- (a)
- EDNs considered here are supposed to be balanced.
- (b)
- Loads are modelled as a constant power model only.
- (c)
- Only type I REG is considered here which generates active power only (i.e.,) unity pf.
- (d)
- Under the power purchase agreement, the DNO procures power from IPPs. Consequently, costs associated with the purchase, installation, operation, and maintenance of REG equipment are not covered by this arrangement.
- (e)
- This work has not taken into account the feeder switch operation and maintenance cost which is considered to be negligible.
2.6. Electrical Distribution Network Power Flow (EDNPF)
3. Proposed Methodology for the Chosen Problem (LFM-SOA)
3.1. SOA Mathematical Formulation
3.1.1. Exploration—Migration Behaviour
3.1.2. Exploitation—Attacking Behaviour
3.2. Incorporation of LFM into SOA
3.3. Application of LFM-SOA for the Chosen Problem
3.4. Parameter Arrangements to Solve the EOF
4. Case Study Details, Simulations and Discussions
4.1. Findings and Discussions—IEEE 33 Bus Prototype System
4.2. Results and Discussions—Real Three Feeder 74 Bus Myanmar EDN
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
PLoss, QLoss | Real and Reactive power loss |
PD, QD | Real and Reactive power demand |
MES | Main Energy Source |
QC | Capacitor size (kVAr) |
REGEP | REG Energy Purchase |
NREG | Number of REGs |
min, max | Minimum and maximum |
Vi | Voltage at ith bus |
References
- Srinivasan, G.; Amaresh, K.; Cheepati, K.R. Economic based evaluation of DGs in Capacitor allocated optimal Distribution Network. Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e139053. [Google Scholar] [CrossRef]
- Vasant, S. Power sector Policies in India: History and Evolution. Jindal J. Public Policy 2021, 3, 115–128. Available online: https://jgu.s3.ap-south-1.amazonaws.com/jsgp/power_sector_policies_in_india_history_and_evolution.pdf (accessed on 18 November 2024).
- Arun Kumar, S.; Padma, S.; Madhubalan, S. Distribution Network Reconfiguration Using Hybrid Optimization Technique. Intell. Autom. Soft Comput. 2022, 33, 777–789. [Google Scholar] [CrossRef]
- Otuo-Acheampong, D.; Rashed, G.I.; Akwasi, A.M.; Haider, H. Application of Optimal Network Reconfiguration for Loss Minimization and Voltage Profile Enhancement of Distribution System Using Heap-Based Optimizer. Int. Trans. Electr. Energy Syst. 2023, 2023, 9930954. [Google Scholar] [CrossRef]
- Mahdavi, E.; Asadpour, S.; Macedo, L.H.; Romero, R. Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm. Energies 2023, 16, 4560. [Google Scholar] [CrossRef]
- Tamilselvan, V.; Muthu Lakshmi, K.; Jayabarathi, T. Optimal Capacitor Placement and sizing in a Radial Distribution System using Clonal Selection Algorithm. ARPN J. Eng. Appl. Sci. 2015, 10, 3304–3312. [Google Scholar]
- Nawaz, S.; Bansal, A.K.; Sharma, M.P. A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems. J. Eng. Technol. Sci. 2017, 49, 236–246. [Google Scholar] [CrossRef]
- Sambaiah, K.S.; Jayabarathi, T. Optimal capacitor allocation in distribution networks for minimization of power loss and overall cost using water cycle algorithm and grey wolf optimizer. Int. Trans. Electr. Energy Syst. 2020, 30, e12320. [Google Scholar] [CrossRef]
- Saddique, M.W.; Haroon, S.S.; Salman, A.; Bhatti, A.R.; Sajjad, I.A.; Liaqat, R. Optimal Placement and Sizing of Shunt Capacitors in Radial Distribution System Using Polar Bear Optimization Algorithm. Arab. J. Sci. Eng. 2021, 46, 873–899. [Google Scholar] [CrossRef]
- Abdelazeem, A.A.; Mansour, H.S.E. Optimal Allocation and Hourly Scheduling of Capacitor Banks Using Sine Cosine Algorithm for Maximizing Technical and Economic Benefits. Electr. Power Compon. Syst. 2019, 47, 1025–1039. [Google Scholar] [CrossRef]
- Biswal, S.R.; Shankar, G. Optimal Sizing and Allocation of Capacitors in Radial Distribution System using Sine Cosine Algorithm. In Proceedings of the 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December 2018. [Google Scholar] [CrossRef]
- Salimon, S.A.; Omofuma, O.I.; Akinrogunde, O.O.; Thomas, T.G.; Edwin, T.E. Optimal allocation of shunt capacitors in radial distribution networks using Constriction-Factor Particle Swarm Optimization and its techno-economic analysis. Frankl. Open 2024, 7, 100093. [Google Scholar] [CrossRef]
- Suryakala, D.; Sudha Rani, D. Optimal Placement of Capacitors for Loss Reduction in Distribution System Using EPSO. Int. J. Control Theory Appl. 2017, 10, 727–741. [Google Scholar]
- Bhavana, K.; Rajeswari, V.; Rajan, V.; Velmurugan, V.R.; Muthukumar, P. An Efficient Hybrid Approach for Optimal Integration of Capacitors in Radial Distribution Networks with Realistic Load Models Using Giant Trevally Optimizer and Voltage Stability Index. Int. J. Intell. Eng. Syst. 2023, 16, 181–190. [Google Scholar] [CrossRef]
- Chang, C.-F. Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. IEEE Trans. Power Syst. 2008, 23, 1747–1755. [Google Scholar] [CrossRef]
- Hussain, A.N.; Shakir Al-Jubori, W.K.; Kadom, H.F. Hybrid Design of Optimal Capacitor Placement and Reconfiguration for Performance Improvement in a Radial Distribution System. J. Eng. 2019, 2019, 1696347. [Google Scholar] [CrossRef]
- Kadom, H.F.; Hussain, A.N.; Shakir Al-Jubori, W.K. Dual technique of reconfiguration and capacitor placement for distribution system. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 80–90. [Google Scholar] [CrossRef]
- Ayanlade, S.O.; Jimoh, A.; Ogunwole, E.I.; Aremu, A.; Jimoh, A.B.; Owolabi, D.E. Simultaneous network reconfiguration and capacitor allocations using a novel dingo optimization algorithm. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 2384–2395. [Google Scholar] [CrossRef]
- Gallego, L.A.; López-Lezama, J.M.; Carmonaa, O.G. Mixed-Integer Linear Programming Model for Simultaneous Optimal Reconfiguration and Optimal Placement of Capacitor Banks in Distribution Networks. IEEE Access 2022, 10, 52655–52673. [Google Scholar] [CrossRef]
- Gebru, Y.; Bitew, D.; Aberie, H.; Gizaw, K. Performance enhancement of radial distribution system using simultaneous network reconfiguration and switched capacitor bank placement. Cogent Eng. 2021, 8, 1897929. [Google Scholar] [CrossRef]
- Ramesh Babu, M.; Venkatesh Kumar, C.; Anitha, S. Simultaneous Reconfiguration and Optimal Capacitor Placement Using Adaptive Whale Optimization Algorithm for Radial Distribution System. J. Electr. Eng. Technol. 2021, 16, 181–190. [Google Scholar] [CrossRef]
- Srinivasan, G. Optimization of distributed generation units in reactive power compensated reconfigured distribution network. Automatika J. Control Meas. Electron. Comput. Commun. 2021, 62, 249–263. [Google Scholar] [CrossRef]
- Tijani, G.S.; Jibril, Y.; Mati, A.; Shehu, I.A.; Abdulwahab, I.; Abubakar, A.S.; Gbadamosi, H. Development of an Optimized Network Reconfiguration with Capacitor Placement for Power Loss Minimization in Radial Distribution System. J. Sci. Tech. Educ. 2023, 11, 159–172. [Google Scholar]
- Hussain, A.N.; Abed, W.R.; Yaqoob, M.M. Dual Strategy of Reconfiguration with Capacitor Placement for Improvement Reliability and Power Quality in Distribution System. J. Eng. 2023, 2023, 1943535. [Google Scholar] [CrossRef]
- Abd-El-Hakeem Mohamed, M.; Ali, Z.M.; Ahmed, M.; Al-Gahtani, S.F. Energy Saving Maximization of Balanced and Unbalanced Distribution Power Systems via Network Reconfiguration and Optimum Capacitor Allocation Using a Hybrid Metaheuristic Algorithm. Energies 2021, 14, 3205. [Google Scholar] [CrossRef]
- Press Information Bureau, Govt. of India, Ministry of New and Renewable Energy. Available online: https://pib.gov.in/newsite/printrelease.aspx?relid=174832#:~:text=2017%2C%20making%20cumulative%20achievement%2016611.73,LoI%20for%2019%2C340%20MW%20issued (accessed on 18 November 2024).
- The Grid Code, National Grid. Available online: http://www.nationalgrid.com/uk/industry-information/electricity-codes/grid-code/the-grid-code/ (accessed on 30 September 2016).
- Belbachir, N.; Zellagui, M.; Settoul, S.; El-Bayeh, C.Z.; El-Sehiemy, R.A. Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Algorithm. Energies 2023, 16, 1595. [Google Scholar] [CrossRef]
- Gallego Pareja, L.A.; López-Lezama, J.M.; Gómez Carmona, O. A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation. Energies 2022, 15, 3063. [Google Scholar] [CrossRef]
- Belbachir, N.; Zellagui, M.; Kamel, S. Multi-Dimensional Energy Management Based on an Optimal Allocation of Hybrid Wind Turbine Distributed Generation and Battery Energy Storage System in a Flexible Interconnected Distribution Network Considering Seasonal Uncertainties. Eng. Proc. 2023, 56, 246. [Google Scholar] [CrossRef]
- Ali, M.H.; Salawudeen, A.T.; Kamel, S.; Salau, H.B.; Habil, M.; Shouran, M. Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network. Mathematics 2022, 10, 2129. [Google Scholar] [CrossRef]
- Rehman, H.U.; Hussain, A.; Haider, W.; Ali, S.A.; Kazmi, S.A.A.; Huzaifa, M. Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models. Energies 2023, 16, 2444. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Vishnupriyan, S.; Saravanakumar, M.N.; Parivendhan, J.; Lese, S. Reconfiguration of Distribution Network based DG and Capacitors using Grey Wolf Algorithm for Power Loss Reduction. J. Phys. Conf. Ser. 2023, 2601, 012018. [Google Scholar] [CrossRef]
- Sayed, M.M.; Mahdy, M.Y.; Abdel Aleem, S.H.E.; Youssef, H.K.M.; Boghdady, T.A. Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions. Energies 2022, 15, 2299. [Google Scholar] [CrossRef]
- Kanwar, N.; Gupta, N.; Niazi, K.R.; Swarnkar, A. Optimal Allocation of Distributed Energy Resources Using Improved Metaheuristic Techniques. Electr. Power Compon. Syst. 2016, 44, 1466–1477. [Google Scholar] [CrossRef]
- Elattar, E.E.; Shaheen, A.M.; El-sayed, A.M.; El-Sehiemy, R.A.; Ginidi, A.R. Optimal Operation of Automated Distribution Networks Based-MRFO Algorithm. IEEE Access 2021, 9, 19586–19601. [Google Scholar] [CrossRef]
- Essa, M.B.; Lubna, A.A.; Dhaher, A.K. Distribution power loss minimization via optimal sizing and placement of shunt capacitor and distributed generator with network reconfiguration. TELKOMNIKA Telecommun. Comput. Electron. Control 2021, 19, 1039–1049. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Raghunathan, T.; Mithulananthan, N.; Cherukuri, S.H.C.; Loknath Sai, G. Enhancement of distribution system performance with reconfiguration, distributed generation and capacitor bank deployment. Heliyon 2024, 10, e26343. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Ramana, T.; Ganesh, V.; Siranagaraju, S. Simple and Fast Load Flow Solution for Electrical Power Systems. Int. J. Electr. Eng. Inform. 2003, 5, 245–253. [Google Scholar] [CrossRef]
- Kumar, V.; Swapnil, S.; Ranjan, R.; Singu, V.R. Improved Algorithm for Load Flow Analysis of Radial Distribution System. Indian J. Sci. Technol. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Venkatesh, B.; Ranjan, R. Data structure for radial distribution load flow analysis. IEE Proc. Gener. Transm. Distrib. 2003, 150, 101–106. [Google Scholar] [CrossRef]
- Rost, A.; Venkatesh, B.; Diduch, C.P. Distribution system with Distributed Generation load flow. In Proceedings of the 2006 Large Engineering Systems Conference on Power Engineering, Halifax, NS, Canada, 26–28 July 2006; pp. 55–60. [Google Scholar] [CrossRef]
- B Ismail, B.; Nakib, A.; Heliodore, F.; Poullain, S.; Patrick, S. Novel Levy based Particle Swarm Optimization algorithm for the Electrical power grid. In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 466–473. [Google Scholar] [CrossRef]
- Venkatesh, B.; Ranjan, R.; Gooi, H.B. Optimal reconfiguration of radial distribution systems to maximize loadability. IEEE Trans. Power Syst. 2004, 19, 260–266. [Google Scholar] [CrossRef]
- Myint, S.M.; Naing, S.W. Network reconfiguration for loss reduction and Voltage stability improvement of 74-bus radial Distribution system using particle swarm optimization algorithm. Int. J. Electr. Electron. Data Commun. 2015, 3, 32–38. [Google Scholar]
- Lee, C.-S.; Ayala, H.V.H.; Coelho, L.D.S. Capacitor placement of distribution systems using particle swarm optimization approaches. Electr. Power Energy Syst. 2015, 64, 839–851. [Google Scholar] [CrossRef]
- Abril, I.P. Algorithm of inclusion and interchange of variables for capacitors placement. Electr. Power Syst. Res. 2017, 148, 117–126. [Google Scholar] [CrossRef]
- Shukla, T.N.; Singh, S.P.; Rao, S.; Naik, K.B. Optimal sizing of distributed generation placed on radial distribution systems. Electr. Power Compon. Syst. 2010, 38, 260–274. [Google Scholar] [CrossRef]
Optimization | No. of Variables | Switch Status & Bus Details | Solution Vectors Range | |
---|---|---|---|---|
IEEE 33-Bus EDN | Real 74-Bus Myanmar EDN | |||
D N S A | 5 (X1 to X5) | Tie-Switch Nos. 33 to 37/ 74 to 78 | 0—Tie-switch Open 1—Tie-switch closed | |
5 (X6 to X10) | Feeder Switch Nos. 2 to 33/2 to 74 | If the Tie-switch closed (i.e., 1), the respective feeder switch in that particular loop should be opened | ||
Capacitor (RPI) | 2 + 2 (X1 to X4)/3 + 3 (X1 to X6) | Bus Nos. 2 to 33/2 to 74 | 0.1–0.75 MVAr (‘L’ Load) 0.3–1.5 MVAr (‘M’ Loads) 0.5–2.0 MVAr (‘H’ Loads) | 0.2–1.0 MVAr (‘L’ Load) 0.2–1.5 MVAr (‘M’ Load) 0.5–2.0 MVAr (‘H’ Load) |
R EG (type I) | 2 + 2 (X15 to X18)/3 + 3 (X17 to X22) | Bus Nos. 2 to 33/2 to 74 | 0.3–0.8 MW (‘L’ Load) 0.6–1.5 MW (‘M’ Load) 0.9–2.5 MW (‘H’ Load) | 0.3–1.5 MW (‘L’ Load) 0.5–2.0 MW (‘M’ Load) 0.4–3.0 MW (‘H’ Load) |
Total penetration limit (λ) of EGs should be ≤50% for both the test systems for each load level as mentioned in Equation (5) |
Load | Case | PLoss(kW) | ELoss (kWh) | % ELoss Reduction | Cap. (kVAr) Details | Switches Open | Vmin (p.u) | Δ ELoss Cost ($) | Cap. Cost ($) | EB ($) |
---|---|---|---|---|---|---|---|---|---|---|
50% | BC | 48.79 | 106,850.1 | ----- | ----- | 33–34–35–36–37 | 0.954 | ----- | ----- | 0 |
1 | 30.07 | 65,853.3 | 38.3685 | ----- | 7–14–9–32–28 | 0.972516 | 2049.84 | ----- | 2049.84 | |
2 | 33.856 | 74,144.64 | 30.61 | 178 (12) 487 (30) | 33–34–35–36–37 | 0.96425 | 1635.273 | 332.5 | 1302.773 | |
3 | 21.095 | 46,198.05 | 56.764 | 178 (12) 487 (30) | 7–14–9–32–28 | 0.981309 | 3032.6 | 332.5 | 2700.1 | |
4 | 21.038 | 46,073.22 | 56.8805 | 157 (12) 516 (30) | 7–14–9–32–28 | 0.981815 | 3038.844 | 336.5 | 2702.344 | |
5 | 21.012 | 46,016.28 | 56.9338 | 146 (9) 529 (30) | 7–13–9–32–28 | 0.982041 | 3041.691 | 337.5 | 2704.191 | |
100% | BC | 211.004 | 1,001,213.98 | ----- | ----- | 33–34–35–36–37 | 0.9038 | ----- | ----- | 0 |
1 | 125.628 | 596,104.86 | 40.4618 | ----- | 7–14–9–32–28 | 0.943635 | 20,255.45 | ----- | 202,455.45 | |
2 | 141.78 | 672,746.1 | 32.807 | 463 (12) 1044 (30) | 33–34–35–36–37 | 0.9314 | 16,423.394 | 753.5 | 15,669.894 | |
3 | 85.803 | 407,135.23 | 59.3358 | 463 (12) 1044 (30) | 7–14–9–32–28 | 0.963214 | 29,703.94 | 753.5 | 28,950.44 | |
4 | 85.14 | 403,657.15 | 59.682 | 488 (12) 1169 (30) | 7–14–9–32–28 | 0.96546 | 29,860.28 | 828.5 | 29,031.78 | |
5 | 84.96 | 403,135.2 | 59.7354 | 597 (9) 1072 (30) | 7–13–9–31–28 | 0.965492 | 29,903 | 834.5 | 29,068.5 | |
160% | BC | 603.4843 | 1,101,358.85 | ----- | ----- | 33–34–35–36–37 | 0.836 | ----- | ----- | 0 |
1 | 340.45 | 621,321.25 | 43.586 | ----- | 7–14–9–32–28 | 0.906793 | 24,001.88 | ----- | 24,001.88 | |
2 | 389.468 | 710,779.1 | 35.4634 | 747 (12) 1686 (30) | 33–34–35–36–37 | 0.883015 | 19,528.987 | 1216.5 | 18,312.487 | |
3 | 227.712 | 415,574.4 | 62.2671 | 747 (12) 1686 (30) | 7–14–9–32–28 | 0.940030 | 34,289.222 | 1216.5 | 33,072.722 | |
4 | 226.82 | 413,946.5 | 62.415 | 708 (12) 1792 (30) | 7–14–9–32–28 | 0.941964 | 34,370.62 | 1250 | 33,120.62 | |
5 | 226.641 | 413,619.825 | 62.4446 | 681 (9) 1816 (30) | 7–13–9–32–28 | 0.9424 | 34,386.95 | 1248.5 | 33,138.45 |
Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
---|---|---|---|---|---|
ELoss (kWh)/B O value | 1,283,279.41/2,209,422.93 | 1,457,669.84/2,209,422.93 | 868,907.685/2,209,422.93 | 864,009.02/2,209,422.93 | 862,771.3/2209,422.93 |
% ELoss reduction | 41.91789 | 34.02486 | 60.67264 | 60.894 | 60.95 |
ELoss reduction cost ($) | 46,307.176 | 37,587.6545 | 67,025.75 | 67,270.7 | 67,332.585 |
Capacitor details (kVAr) | ---- | 747 (12) 1686 (30) | 747 (12) 1686 (30) | 708 (12) 1792 (30) | 681 (9) 1816 (30) |
Capacitor inv. cost ($) | ---- | 2456.5 | 2456.5 | 2490 | 2488.5 |
EB ($) | 46,307.176 (41.91789%) | 35,131.1545 (31.8012%) | 64,569.25 (58.44897%) | 64,780.7 (58.6404%) | 64,844.1 (58.6978%) |
Ref. | Cap. Details (kVAr)/(Bus) | PLoss (kW)/(PLoss − BC) | Vmin (p.u) @18 | ELoss Reduction Difference (kWh) | Capacitor Cost ($) | Capacitor O & M Cost | EB ($) |
---|---|---|---|---|---|---|---|
50% Load Level | |||||||
Clonal [6] | 150 (12) 100 (24) 600 (30) | 32.0895/47.0709 | 0.9678 | 32,809.266 (31.8273%) | 425 | $1860 | −644.54 |
Analytical [7] | 300 (14) 250 (30) 170 (32) | 33.04/47 | 0.9734 | 30,572.4 (29.702%) | 360 | $1860 | −691.38 |
G W O [8] | 300 (5) 150 (12) 300 (29) | 32.42/47.07 | 0.9694 | 32,083.5 (31.124%) | 375 | $1860 | −630.825 |
W C A [8] | 300 (5) 150 (12) 300 (29) | 32.43/47.07 | 0.9687 | 32,061.6 (31.103%) | 375 | $1860 | −631.304 |
P B O A [9] | 125 (13) 72 (28) 162 (29) | 35.03134/48.7968 | 0.966 | 30,146.357 (28.1%) | 179.5 | $1860 | −532.182 |
M P S O [20] | 850 (7 Nodes) | 33.469/47.2 | 0.9668 | 30,070.89 (29.091%) | 425 | $4340 | −3261.4555 |
LFM-SOA | 178 (12) 487 (30) | 33.856/48.79 | 0.966 | 32,705.46 (30.608%) | 332.5 | $1240 | +62.773 |
100% Load Level | |||||||
S C A [10] | 500 (12) 1050 (30) | 141.89/210.99 | 0.931 | 327,879.5 (32.75%) | 775 | $1240 | 14,378.98 |
S C A [11] | 350 (14) 1000 (30) | 142.551/210.988 | 0.93 | 324,733.565 (32.4364%) | 675 | $1240 | 14,321.68 |
CF-PSO [12] | 465 (12) 1035 (30) | 141.86/211 | 0.9303 | 328,069.3 (32.767%) | 750 | $1240 | 14,413.465 |
P S O [13] | 450 (12) 1050 (30) | 136.76/202.67 | 0.9357 | 312,742.95 (32.5208%) | 750 | $1240 | 13,647.15 |
E P S O [13] | 900 (11) 900 (31) | 135.42/202.67 | 0.9329 | 319,101.25 (33.182%) | 900 | $1240 | 13,815.06 |
G T O [14] | 300 (14) 600 (24) 1050 (30) | 132.4256/202.6771 | 0.9368 | 333,343.3675 | 975 | 1860 | 13,832.168 |
M P S O [20] | 2000 (7 Nodes) | 142.21/202.4 | 0.94043 | 285,601.55 (29.738%) | 1000 | $4340 | 8940.1 |
LFM-SOA | 463 (12) 1044 (30) | 141.75/211 | 0.9314 | 328,591.25 (32.82%) | 753.5 | $1240 | 14,436.063 |
160% Load Level | |||||||
Clonal [6] | 550 (12) 100 (24) 1050 (30) | 393.2709/575.3682 | 0.8528 | 332,327.57 (31.6488%) | 850 | $1860 | 13,906.38 |
Analytical [7] | 840 (14) 650 (30) 520 (32) | 384/575.36 | 0.9 | 349,232 (33.2592%) | 1005 | $1860 | 14,596.6 |
G W O [8] | 1200 (5) 450 (13) 1200 (29) | 364.82/575.36 | 0.8982 | 384,235.5 (36.593%) | 1425 | $1860 | 15,926.78 |
W C A [8] | 1050 (5) 600 (12) 1050 (29) | 368.56/575.36 | 0.8982 | 377,410 (35.9427%) | 1350 | $1860 | 15,660.5 |
LFM-SOA | 747 (12) 1686 (30) | 389.468/603.4843 | 0.883015 | 390,576.1 (35.46311%) | 1216.5 | $1240 | 17,072.3 |
Ref. | Cap.(kVAR) Details | Switch Status | PLoss (kW)/(PLoss − BO) | Vmin (p.u) | Difference in ELoss Reduction (kWh) | Cap. Cost ($) | Capacitor O & M Cost | EB ($) |
---|---|---|---|---|---|---|---|---|
CASE 3 | ||||||||
M B B O [16] | 750 (27) 450 (30) 600 (24) | 7–11–34–36–28 | 83.469/202.677 | 0.9559 | 565,641.96 (58.8168%) | 900 | $1860 | 25,522.1 |
C S [16] | 300 (8) 750 (30) 600 (23) | 8–5–37–30–12 | 95.6628/202.677 | 0.9704 | 507,782.38 (52.8%) | 825 | $1860 | 22,704.12 |
M I C [16] | 750 (27) 150 (2) 750 (24) | 9–25–14–33–37 | 97.6377/202.677 | 0.95 | 498,411.48 (51.826%) | 825 | $1860 | 22,235.574 |
M B F B O [16] | 900 (5) 600 (27) 750 (2) | 8–37–14–7–36 | 97.3076/202.677 | 0.95 | 499,977.8 (51.98885%) | 1125 | $1860 | 22,013.89 |
A G P S O [22] | 450 (12) 600 (24) 1050 (30) | 6–14–9–32–37 | 84.1986/211.04 | 0.9607 | 601,672.643 (60.103%) | 1050 | $1860 | 27,173.63 |
P G S A [23] | 450 (8) 300 (13) 300 (19) 150 (27) 600 (30) | 8–10–13–31–37 | 101.037/202.7 | 0.9412 | 482,390.935 (50.1544%) | 900 | $3100 | 20,119.55 |
B S S A [24] | 600 (6) 600 (24) 600 (33) | 11–27–33–36–34 | 105.9175/202.6771 | 0.95 | 459,124.302 (47.7407%) | 900 | $1860 | 20,196.215 |
LFM-SOA | 463 (12) 1044 (30) | 7–14–9–32–28 | 85.803/211 | 0.96322 | 594,059.76 (59.335%) | 753.5 | $1240 | 27,709.488 |
CASE 4 | ||||||||
MBBO [17] | 300 (12) 300 (25) 300 (20) | 33–14–11–25–37 | 110.616/202.677 | 0.95 | 436,829.445 (45.4225%) | 450 | $1860 | 19,531.47 |
DDE [17] | 300 (33) 600 (30) 900 (3) | 7–13–8–36–28 | 111.86/202.677 | 0.96114 | 430,926.665 (44.8088%) | 900 | $1860 | 18,786.33 |
BTLBO [17] | 150 (13) 300 (29) 900 (30) | 7–13–8–36–28 | 115.6684/202.677 | 0.9554 | 412,855.81 (42.9297%) | 675 | $1860 | 18,107.79 |
A G P S O [22] | 600 (12) 450 (24) 900 (30) | 7–14–9–32–37 | 83.304/211 | 0.9626 | 605,917.52 (60.5194%) | 975 | $1860 | 27,460.876 |
P G S A [23] | 450 (8) 300 (13) 300 (19) 150 (27) 600 (30) | 8–13–19–27–30 | 87.872/202.7 | 0.9422 | 544,858.86 (56.649%) | 900 | $3100 | 23,242.943 |
B S S A [24] | 100 (19) 600 (23) 100 (30) | 7–14–30–35–37 | 115.7382/202.6771 | 0.95 | 412,525.0805 (42.8953%) | 400 | $1860 | 18,366.254 |
G W O [31] | 472 (24), 1100 (30) 579 (21) | 7–14–9–32–37 | 93.29/202.66 | 0.9555 | 518,960.65 (53.967%) | 1075.5 | $1860 | 23,012.53 |
LFM-SOA | 488 (12) 1169 (30) | 7–14–9–32–28 | 85.14/211 | 0.96546 | 597,205.7 (59.648%) | 828.5 | $1240 | 27,791.785 |
CASE 5 | ||||||||
D O A [18] | 512 (8) 714 (29) 495 (30) | 7–17–11–27–34 | 103.65/202.6 | 0.9530 | 469,517.75 (48.84%) | 860.5 | $1860 | 20,755.39 |
M I L P Mod [19] | 400 (8) 550 (24) 950 (30) | 7–14–9–32–37 | 92.65/ 202.67 | 0.9583 | 522,044.9 (54.2853%) | 950 | $1860 | 23,292.245 |
M P S O [20] | 900 (7 Nodes) | 7–34–11 32–28 | 100.69/202.4 | 0.9549 | 482,613.95 (50.252%) | 450 | $4340 | 21,820.7 |
A W O A [21] | 400 (24) 250 (25) 150 (30) | 37-close 25-open | 97.415/169.95 | ------ | 344,178.58 (42.6802%) | 400 | $1860 | 14,948.93 |
B S S A [24] | 600 (19) 600 (30) 600 (33) | 7–11–17–34–37 | 104.5116/202.6771 | 0.95732 | 465,795.3 (48.4344%) | 900 | $1860 | 20,529.765 |
MTS-HSSA [25] | 650 (30) 350 (25) 200 (31) | 8–9–17–32–37 | 91.01/202.66 | 0.962 | 529,779.25 (55.0923%) | 600 | $1860 | 24,028.9625 |
G W O [31] | 533 (24), 957 (30) 445 (8) | 7–14–9–32–37 | 92.59/202.66 | 0.9595 | 522,282.15 (54.3126%) | 967.5 | $1860 | 23,286.6075 |
LFM-SOA | 597 (9) 1072 (30) | 7–13–9–31–28 | 84.96/211 | 0.965492 | 598,059.8 (59.7346%) | 834.5 | $1240 | 27,828.49 |
Load | Case | DG Details (kW) | PLoss (kW) | ELoss (kWh) | Extra ELoss(kWh) Reduction Gained | Total ELoss Reduction | DGEP Cost ($) | Vmin (p.u) |
---|---|---|---|---|---|---|---|---|
50% | 6 | 434 (9) 497 (29) | 5.7124 | 12,510.156 | 33,687.894/72.92% | 88.292% | 69,825.05 | 0.99189 |
7 | 325 (12) 606 (29) | 5.275 | 11,552.25 | 34,520.97/74.926% | 89.1884% | 69,825.05 | 0.98737 | |
8 | 323 (15) 608 (29) | 5.054 | 11,068.26 | 34,943.64/75.947% | 89.6413% | 69,825.05 | 0.99028 | |
100% | 6 | 848 (9) 1020 (29) | 22.571 | 107,099.4 | 300,035.84/73.694% | 89.303% | 303,550.22 | 0.984298 |
7 | 827 (12) 1041 (29) | 21.7976 | 103,429.61 | 300,559.7/74.398% | 89.67% | 303,550.22 | 0.978983 | |
8 | 875 (15) 993 (29) | 21.46 | 101,827.7 | 301,307.5/74.741% | 89.8294% | 303,550.22 | 0.978768 | |
160% | 6 | 947 (9) 2052 (29) | 55.297 | 100,917 | 314,653.73/75.716% | 90.837% | 187,437.64 | 0.96163 |
7 | 1090 (12) 1909 (29) | 54.21 | 98,933.25 | 314,995/76.1% | 91.0172% | 187,437.64 | 0.96671 | |
8 | 1054 (15) 1943 (29) | 51.853 | 94,631.72 | 319,077.5/77.121% | 91.4077% | 187,312.635 | 0.975077 |
Parameter | Case 6 | Case 7 | Case 8 | |
---|---|---|---|---|
Total ELoss (kWh)—BC | 2,209,422.93/$110,471.15 | |||
Total ELoss(kWh)—before DG allocation | 868,907.685 | 864,009.02 | 862,771.3 | |
Total ELoss (kWh)—after DG allocation | 220,526.58 | 213,915.112 | 207,527.685 | |
% extra ELoss reduction | 74.62025 | 75.24157 | 75.9464 | |
% Total ELoss reduction | 90.0188 | 90.318 | 90.60715 | |
Cost saving ($)—ELoss reduction—after REGEP | 50% load | 1684.395 | 1726.05 | 1747.4 |
100% load | 15,001.79 | 15,027.984 | 15,065.375 | |
160% load | 15,732.869 | 15,750.66 | 15,949.405 | |
Cost Saving ($)–after REGEP | 50% load | 32,119.5 | 32,119.5 | 32,119.5 |
100% load | 139,632.78 | 139,632.78 | 139,632.78 | |
160% load | 86,221.115 | 86,221.115 | 86,163.61 | |
EB ($)—ELoss after REGEP | 32,419.056 | 32,504.7 | 32,762.18 | |
EB ($) by REGEPC | 257,973.76 | 257,973.76 | 257,916.25 | |
EB ($)—RPI Optimization | 64,569.25 | 64,780.7 | 64,844.1 | |
Total net EBs ($) | 354,962.045 | 355,259.16 | 355,522.53 |
Ref. | Switch Position | Details of DG (kW) | Cap. Details (kVAr) | PLoss (kW)/(PLoss − BC) | % PLoss Reduction |
---|---|---|---|---|---|
I G A [35] | 33–9–35–36–37 | 370 (14) 575 (24) 519 (30) | 200 (15) 200 (25) 500 (30) | 2.78/47.06 | 94.0926 |
I P S O [35] | 33–9–35–36–37 | 368 (14) 520 (24) 524 (30) | 200 (14) 300 (24) 500 (30) | 2.76/47.06 | 94.135 |
I T L B O [35] | 33–9–35–36–37 | 371 (14) 540 (24) 527 (30) | 200 (15) 300 (24) 500 (30) | 2.74/47.06 | 94.1776 |
LFM-SOA | 7–13–9–32–28 | 323 (15) 608 (29) | 146 (9) 529 (30) | 5.054/48.79 | 89.6413 |
I G A [35] | 7–9–17–35–37 | 748 (14) 1079 (24) 1043 (30) | 300 (15) 300 (25) 1100 (30) | 11.59/202.67 | 94.2813 |
I P S O [35] | 7–9–17–25–35 | 748 (14) 1003 (24) 1057 (30) | 300 (14) 500 (24) 1000 (30) | 11.12/202.67 | 94.51325 |
I T L B O [35] | 7–9–17–35–37 | 744 (14) 1070 (24) 1048 (30) | 300 (15) 500 (24) 1000 (30) | 11.21/202.67 | 94.4688 |
B A [35] | 14–24–33–35–36 | 1670 (6) 410 (9) 490 (32) | 300 (11) 300 (26) 900 (30) | 22.96/202.67 | 88.6712 |
C S O [35] | 11–20–24–35–36 | 1690 (6) 630 (14) 710 (31) | 1200 (7) 600 (3) 600 (33) | 21.82/202.67 | 89.234 |
MRFOA [36] | 7–8–9–17–27 | 841 (13), 1144 (30) | 600 (30), 900 (9) | 14.84/ 202.69 | 92.678 |
B P S O [37] | 33–34–9–12–24 | 1000 (29) 1000 (33) | 1270 (30) 480 (6) | 22.46/208.5 | 89.2278 |
G W O [38] | 05–35–14–17–26 | 1050.1 (9) 1174.7 (25) 717.8 (33) | 450 (9) 600 (29) 600 (30) | 12.14/202.5 | 94.001 |
LFM-SOA | 7–13–9–31–28 | 597 (9) 1072 (30) | 875 (15) 993 (29) | 21.45/211 | 89.834 |
I G A [35] | 7–34–9–36–28 | 845 (14) 1122 (24) 1072 (30) | 300 (15) 300 (25) 1200 (30) | 64.79/575.27 | 88.74 |
I P S O [35] | 7–34–9–36–28 | 831 (14) 1005 (24) 1128 (30) | 300 (14) 600 (24) 1200 (30) | 62.53/575.27 | 89.13 |
I T L B O [35] | 7–34–9–36–28 | 823 (14) 1070 (24) 1068 (30) | 300 (15) 600 (24) 1200 (30) | 63.26/575.27 | 89.00 |
LFM-SOA | 7–13–9–32–28 | 1054 (15) 1943 (29) | 681 (9) 1816 (30) | 51.853/603.4843 | 91.4077% |
Load | Case | PLoss (kW) | ELoss (kWh) | % ELoss Reduction | Capacitor Details (kVAr) | Switches Open | Vmin (p.u) | Δ ELoss Cost ($) | Capacitor Cost ($) | EB ($) |
---|---|---|---|---|---|---|---|---|---|---|
75% | BC | 93.791 | 205,402.29 | ----- | ----- | 74–75–76–77–78 | 0.96 | ----- | ----- | ----- |
1 | 73.281 | 160,485.39 | 21.8677 | ----- | 31–49–76–42–50 | 0.975623 | 2245.845 | ----- | 2245.74 | |
2 | 67.152 | 147,062.88 | 28.4025 | 621 (26) 447 (46) 736 (65) | 74–75–76–77–78 | 0.97098 | 2916.97 | 2762 | 154.97 | |
3 | 54.74 | 119,880.6 | 41.636 | 621 (26) 447 (46) 736 (65) | 31–48–76–41–50 | 0.981133 | 4276.08 | 2762 | 1514.08 | |
4 | 54.653 | 119,690 | 41.729 | 707 (26) 656 (64) 334 (68) | 31–49–76–42–50 | 0.981033 | 4285.611 | 2708.5 | 1577.11 | |
5 | 53.99 | 118,238.1 | 42.4358 | 437 (25) 367 (38) 903 (66) | 31–48–76–42–50 | 0.98181 | 4358.21 | 2713.5 | 1644.71 | |
100% | BC | 169.8685 | 806,026.03 | ----- | ----- | 74–75–76–77–78 | 0.946 | ----- | ----- | ----- |
1 | 131.92 | 625,960.4 | 22.34 | ----- | 31–49–76–42–50 | 0.96727 | 9003.28 | ----- | 9003.28 | |
2 | 118.68 | 563,136.6 | 30.1342 | 897 (26) 716 (46) 1275 (65) | 74–75–76–77–78 | 0.96312 | 12,144.472 | 3304 | 8840.472 | |
3 | 97.746 | 463,804.77 | 42.4578 | 897 (26) 716 (46) 1275 (65) | 31–49–76–39–50 | 0.97914 | 17,111.06 | 3304 | 13,807.06 | |
4 | 96.538 | 458,072.81 | 43.169 | 1250 (26) 714 (64) 735 (68) | 31–49–76–42–50 | 0.97580 | 17,397.66 | 3209.5 | 14,188.16 | |
5 | 95.303 | 452,212.735 | 43.896 | 796 (25) 492 (38) 1419 (66) | 31–48–76–42–50 | 0.976852 | 17,690.665 | 3213.5 | 14,477.165 | |
125% | BC | 270.5858 | 493,819.085 | ----- | ----- | 74–75–76–77–78 | 0.9317 | ----- | ----- | ----- |
1 | 208.754 | 380,976.05 | 22.851 | ----- | 31–49–76–42–50 | 0.958804 | 5642.15 | ----- | 5642.15 | |
2 | 188.356 | 343,749.7 | 30.3895 | 1137 (26) 851 (46) 1513 (65) | 74–75–76–77–78 | 0.952943 | 7503.47 | 3610.5 | 3892.97 | |
3 | 153.602 | 280,323.65 | 43.2335 | 1137 (26) 851 (46) 1513 (65) | 31–49–76–39–50 | 0.973887 | 10,674.77 | 3610.5 | 7064.27 | |
4 | 152.415 | 278,157.375 | 43.6722 | 1309 (26) 755 (64) 1202 (68) | 31–49–76–42–50 | 0.969943 | 10,783 | 3493 | 7290 | |
5 | 151.11 | 275,775.75 | 44.1545 | 1028 (25) 656 (38) 1752 (66) | 31–47–76–43–50 | 0.969822 | 10,902.167 | 3578 | 7324.167 |
Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
---|---|---|---|---|---|
Total ELoss (kWh) reduction/BC value | 1,167,421.84/1,505,247.405 | 1,053,949.18/1,505,247.405 | 864,009.02/1,505,247.405 | 855,920.185/1,505,247.405 | 846,226.585/1,505,247.405 |
% ELoss reduction | 22.4432 | 29.98166 | 42.6 | 43.1375 | 43.7816 |
Total ELoss cost ($)/ BC ELoss value ($) | 58,371.092/75,262.37 | 52,697.46/75,262.37 | 43,200.45/75,262.37 | 42,796/75,262.37 | 42,311.33/75,262.37 |
Capacitor details (kVAr)/(bus no.) | ----- | 1137 (26) 851 (46) 1513 (65) | 1137 (26) 851 (46) 1513 (65) | 1309 (26) 755 (64) 1202 (68) | 1028 (25) 656 (38) 1752 (66) |
Capacitor cost ($) | ----- | 3610.5 | 3610.5 | 3493 | 3578 |
Net EB ($) | 16,891.278 | 18,954.41 | 28,451.42 | 28,973.37 | 29,373.04 |
% Net EB | 22.4432 | 25.18444 | 37.803 | 38.4965 | 39.0275 |
Load | Case | DG Details (kW) | PLoss (kW) | ELoss (kWh) | Extra ELoss (kWh) Reduction Gained | Total % ELoss Reduction | REGEPC ($) | Vmin (p.u) |
---|---|---|---|---|---|---|---|---|
75% | 6 | 688 (26) 783 (38) 1018 (67) | 15.616 | 34,199.04 | 85,681.56/71.472% | 83.35 | 186,675.13 | 0.988144 |
7 | 580 (25) 686 (35) 1222 (67) | 13.495 | 29,554.05 | 90,136.02/75.307% | 85.6116 | 186,600.13 | 0.988145 | |
8 | 835 (26) 427 (38) 1226 (68) | 12.489 | 27,350.91 | 90,887.19/ 76.868% | 86.684 | 186,600.13 | 0.988148 | |
100% | 6 | 751 (26) 737 (38) 1832 (67) | 24.305 | 115,327.225 | 348,477.55/75.1345% | 85.692 | 539,500.39 | 0.984133 |
7 | 686 (25) 805 (35) 1829 (67) | 22.707 | 107,744.7 | 350,328.1/ 76.4786% | 86.6326 | 539,500.39 | 0.984136 | |
8 | 911 (26) 736 (38) 1672 (68) | 21.145 | 100,333 | 351,879.71/77.8128% | 87.552 | 539,337.89 | 0.984139 | |
125% | 6 | 482 (26) 998 (38) 2675 (67) | 38.837 | 70,877.52 | 209,446.125/74.7168% | 85.647 | 259,687.69 | 0.980093 |
7 | 988 (25) 680 (35) 2486 (67) | 36.963 | 67,457.48 | 210,700/75.7485% | 86.34 | 259,625.19 | 0.980095 | |
8 | 959 (26) 1222 (38) 1970 (68) | 33.355 | 60,872.88 | 214,902.88/77.9267% | 87.673 | 259,437.69 | 0.9801 |
Parameter | Case 6 | Case 7 | Case 8 | |
---|---|---|---|---|
Total ELoss (kWh)–BC | 1,505,247.408/75,262.37 | |||
Total Energy (kWh)—before DGEP | 864,009.02 | 855,920.185 | 846,226.585 | |
Total Energy (kWh)—after DGEP | 220,403.79 | 204,756.24 | 188,556.81 | |
% ELoss reduction | 74.49 | 76.077 | 77.718 | |
% Total ELoss reduction | 85.35764 | 86.39717 | 87.4734 | |
Total ELoss cost ($) | 11,020.19/75262.37 | 10,237.812/75,262.37 | 9427.8405/75,262.37 | |
Cost saving ($)— ELoss reduction | 75% load | 4284.1 | 4506.8 | 4544.36 |
100% load | 17,423.9 | 17,516.4 | 17,594 | |
125% load | 10,472.3 | 10,535 | 10,745.14 | |
Cost Saving ($)— by DGEP | 75%load | 85,870.366 | 85,835.866 | 85,835.866 |
100% load | 248,169.612 | 248,169.612 | 248,094.86 | |
125% load | 119,456.1 | 119,427.313 | 119,341.1 | |
Total DGEP Cost ($) | 985,863.21 | 985,725.71 | 985,375.71 | |
EBs ($)—ELoss after DGEP | 32,180.26 | 32,558.2 | 32,883.5 | |
EBs ($)—by REGEPC | 453,496.078 | 453,433.48 | 453,272.48 | |
EBs ($)—RPI optimization | 28,451.42 | 28,973.37 | 29,373.04 | |
Total net EBs ($) | 514,128.41 | 514,965.37 | 515,529.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, G.; Cheepati, K.R.; Goud, B.S.; Alqarni, M.; Alamri, B.; Rami Reddy, C. Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network. Energies 2024, 17, 5840. https://doi.org/10.3390/en17235840
Srinivasan G, Cheepati KR, Goud BS, Alqarni M, Alamri B, Rami Reddy C. Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network. Energies. 2024; 17(23):5840. https://doi.org/10.3390/en17235840
Chicago/Turabian StyleSrinivasan, G., Kumar Reddy Cheepati, B. Srikanth Goud, Mohammed Alqarni, Basem Alamri, and Ch. Rami Reddy. 2024. "Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network" Energies 17, no. 23: 5840. https://doi.org/10.3390/en17235840
APA StyleSrinivasan, G., Cheepati, K. R., Goud, B. S., Alqarni, M., Alamri, B., & Rami Reddy, C. (2024). Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network. Energies, 17(23), 5840. https://doi.org/10.3390/en17235840