Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN)
Abstract
:1. Introduction
2. Method
3. Literature Review
3.1. Zero Energy Buildings, Plus Energy Buildings, and Nanogrids
3.2. Phase Change Materials (PCMs)
3.2.1. Phase Change Materials (Types)
3.2.2. Phase Change Materials (Thermal Storage)
Type of PCM | Thermal Cycles | Melting Point () | Latent Heat of Fusion (KJ/Kg) | References |
---|---|---|---|---|
Paraffin (70 wt.%) + Polypropylene (30 wt.%) | 3000 | 44.77 | 136.16 | [148] |
Paraffin wax 54 | 1500 | 53.32 | 184.48 | [149] |
Paraffin wax 58–60 | 600 | 58.27 | 129.8 | [149] |
Paraffin wax 60–62 | 600 | 57.78 | 129.7 | [149] |
Acetanilide (C8H9NO) | 500 | 113 | 169.4 | [150] |
Erythritol | 1000 | 117 | 339 | [149] |
Lauric acid (C11H23COOH) | 1200 | 42.46 | 176.6 | [151] |
Myristic acid (C13H27COOH) | 450, 1200 | 50.4, 52.99 | 189.4, 181 | [151,152] |
Palmitic acid (C15H31COOH) | 450, 1200 | 57.8, 61.31 | 201.2, 197.9 | [152] |
Palmitic acid (80 wt.%) + expanded graphite (20 wt.%) | 3000 | 60.88 | 148.36 | [152] |
Stearic acid (C17H35COOH) | 450, 1500 | 65.2, 63 | 209.9, 155 | [152,153] |
Calcium chloride hexahydrate (CaCl2.6H2O) | 1000 | 29.8, 28, 23.26 | 190.8, 86, 125.4 | [154,155,156] |
Magnesium chloride hexahydrate (MgCl2.6H2O) | 1000 | 23.26 | 125.4 | [150] |
Glauber’s salt (Na2SO4.10H2O) | 500 | 111.5 | 155.11 | [157] |
Sodium acetate trihydrate (NaCH3COO.3H2O) | 500 | 58 | 230 | [158] |
Na2SO4.1/2NaCl.10H2O | 5650 | 20 | - | [159] |
Al–34%Mg–6%Zn alloy | 1000 | 454 | 314.4 | [160] |
Ammonium alum (NH4(SO4)2.12H2O)(15%) | 1100 | 53 | 170 | [161] |
Capric acid (65 mol%) + lauric acid (35 mol%) | 360 | 19.6 | 126.5 | [161] |
Capric acid (73.5 wt.%) + myristic acid (26.5 wt.%) | 5000 | 21.4 | 152 | [162] |
Capric acid (83 wt.%) + stearic acid (17 wt.%) | 5000 | 24.68 | 178.64 | [163] |
Lauric acid (66 wt.%) + myristic acid (34 wt.%) | 1460 | 34.2 | 166.8 | [164] |
Lauric acid (69 wt.%) + palmitic acid (31 wt.%) | 1460 | 35.2 | 166.3 | [164] |
Myristic acid (64 wt.%) + stearic acid (36 wt.%) | 1460 | 44.1 | 182.4 | [164] |
Myristic acid + glycerol | 1000 | 31.96 | 154.3 | [165] |
Palmitic acid + glycerol | 1000 | 58.50 | 185.9 | [165] |
Stearic acid + glycerol | 1000 | 63.45 | 149.4 | [165] |
Mg(NO3)2.6H2O (93 wt.%) + MgCl2.6H2O (7 wt.%) | 110 | 33.8 | 111.6 | [166] |
3.2.3. PCM Thermal Storage (Building)
3.2.4. PCM Thermal Storage (Solar Heating)
3.2.5. PCM Thermal Storage (Integrated Hot Water Storage Unit)
3.2.6. PCM Thermal Storage (Feasibility of PCM-TES)
3.2.7. PCM Thermal Storage (Key Challenges)
3.3. Phase Change Materials (Heat Transfer Enhancement)
3.3.1. Heat Transfer Fluids and Mass Flow Rates (Thermophysical Property)
3.3.2. Shell and Tube PCM (Arrangement)
3.3.3. Multi PCM Systems (Arrangement)
3.3.4. Hybrid Technologies (Arrangement + Thermophysical Properties + Structure)
3.3.5. Nanocomposite PCMs (Structure)
3.3.6. Microencapsulated PCM (Arrangement)
3.3.7. Shape-Stabilized PCMs (Structure)
3.3.8. Nitrides, Additives and Nanofluids (Additives)
3.4. Photochromic and Thermochromic (Materials)
3.4.1. Photochromic (Materials)
3.4.2. Thermochromic (Materials)
4. Proposed Nanogrid Integrated Architecture
4.1. Overview of Studies
4.2. Nanogrid (Architecture)
4.3. Nanogrid (Design)
5. Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CHS | Clathrate Hydrate Slurry |
CNF | Carbon Nanofibers |
Carbon Dioxide | |
COP | Coefficient of Performance |
DHA | Dihydroazulene |
DHW | Domestic Hot Water |
DR | Demand Response |
DSC | Differential Scanning Calorimetry |
FIR | Far Infrared |
GSHP | Ground Source Heat Pump |
GNPs | Graphene Nanofillers |
GST | Germanium-Antimony-Telluride |
h-BN | Hexagonal Boron Nitride |
HDPE | High-Density Polyethylene |
HTF | Heat Transfer Fluid |
HVAC | Heating, Ventilation, and Air Conditioning |
IEA | International Energy Agency |
IR | Infrared |
LHS | Latent Heat Storage |
L-MWCNTs | Long Multi-Walled Carbon Nanotubes |
MWCNT | Multi-Walled Carbon Nanotubes |
MWCNTs | Multi-Walled Carbon Nanotubes |
NaNO3 | Sodium Nitrate |
Ne-PCMs | Nano-enhanced Phase Change Materials |
NIR | Near Infrared |
ORC | Organic Rankine Cycle |
PC-PCM | Photochromic Phase Change Material |
PCMs | Phase Change Materials |
PMMA | Poly(methyl methacrylate) |
PVC | Polyvinyl Chloride |
RT6 | Rubitherm Type 6 |
SAH | Solar Air Heater |
S-MWCNTs | Short Multi-Walled Carbon Nanotubes |
TBAB | Tetra-n-butylammonium Bromide |
TCO | Transparent Conductive Oxide |
TC-PCM | Thermochromic Phase Change Material |
TES | Thermal Energy Storage |
TESS | Thermal Energy Storage Systems |
UHI | Urban Heat Island |
UV | Ultraviolet |
VHF | Vinylheptafulvene |
W/mK | Watts per meter-Kelvin |
wt.% | Weight Percent |
Zirconium Dioxide |
References
- Kalair, A.R.; Seyedmahmoudian, M.; Stojcevski, A.; Mekhilef, S.; Abas, N.; Koh, K. Thermal comfort analysis of a trombe wall integrated multi-energy nanogrid building. J. Build. Eng. 2023, 78, 107623. [Google Scholar] [CrossRef]
- Reddy, V.J.; Ghazali, M.F.; Kumarasamy, S. Advancements in phase change materials for energy-efficient building construction: A comprehensive review. J. Energy Storage 2024, 81, 110494. [Google Scholar] [CrossRef]
- Ahmad, A.; Memon, S.A. A novel method to evaluate phase change materials’ impact on buildings’ energy, economic, and environmental performance via controlled natural ventilation. Appl. Energy 2023, 353, 122033. [Google Scholar] [CrossRef]
- Jacob, J.; Paul, J.; Selvaraj, J.; Vaka, M. Phase change materials integrated buildings: A short review. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Penang, Malaysia, 7–8 June 2023. [Google Scholar] [CrossRef]
- Aghoei, M.M.; Astanbous, A.; Khaksar, R.Y.; Moezzi, R.; Behzadian, K.; Annuk, A.; Gheibi, M. Phase Change Materials (PCM) As A Passive System in The Opaque Building Envelope: A Simulation-Based Analysis. J. Energy Storage 2023, 101, 113625. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Alimohamadi, R. A comparative evaluation on energy consumption of a building using bio-based and paraffin-based phase change materials integrated to external building envelope. Energy Rep. 2024, 11, 3914–3930. [Google Scholar] [CrossRef]
- Hrncic, B.; Vusanovic, I. Analyzing the impact of using phase change materials on energy consumption in buildings: A case study. J. Phys. Conf. Ser. 2023, 2766, 012226. [Google Scholar] [CrossRef]
- Selvasofia, S.D.A.; Shri, S.D.; Kumar, P.M.; B, P.K. Characterization of bio-nano doped phase change material (bio-nano/PCM) for building energy management. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 3760–3778. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Jin, L.; Cui, X.; Yang, X. Energy, economic and environmental (3E) analysis of residential building walls enhanced with phase change materials. J. Build. Eng. 2024, 84, 108503. [Google Scholar] [CrossRef]
- Rashid, F.L.; Dulaimi, A.; Hatem, W.A.; Al-Obaidi, M.A.; Ameen, A.; Eleiwi, M.A.; Jawad, S.A.; Bernardo, L.F.A.; Hu, J.W. Recent Advances and Developments in Phase Change Materials in High-Temperature Building Envelopes: A Review of Solutions and Challenges. Buildings 2024, 14, 1582. [Google Scholar] [CrossRef]
- Asghari, M.; Fereidoni, S.; Fereidooni, L.; Nabisi, M.; Kasaeian, A. Energy efficiency analysis of applying phase change materials and thermal insulation layers in a building. Energy Build. 2024, 312, 114211. [Google Scholar] [CrossRef]
- Hawila, A.; Alsalloum, H.; Merabtine, A.; Fardoun, F. Plus Energy Buildings: A Numerical Case Study. Fluid Dyn. Mater. Process. 2023, 19, 117–134. [Google Scholar] [CrossRef]
- Healey, T.T.; Andresen, I.; Gaitani, N. Energy performance and scenario analyses of a multistorey apartment building in Norway. E3S Web Conf. 2022, 362, 10004. [Google Scholar] [CrossRef]
- Passer, A.; Ouellet-Plamondon, C.; Kenneally, P.; John, V.; Habert, G. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy Build. 2016, 124, 153–163. [Google Scholar] [CrossRef]
- Graillet, O.; Genon-Catalot, D.; Lucas de Peslouan, P.-O.; Bernard, F.; Alicalapa, F.; Lemaitre, L.; Chabriat, J.-P. Optimizing Energy Consumption: A Case Study of LVDC Nanogrid Implementation in Tertiary Buildings on La Réunion Island. Energies 2024, 17, 1247. [Google Scholar] [CrossRef]
- Abbas, A.H.R.; Rajeswari, M.; Sharma, D.; Singh, R.; Jeyakani, P.; Dhabliya, D. Optimization of Nanogrids for Remote Off-Grid Communities. E3s Web Conf. 2024, 540, 1014. [Google Scholar] [CrossRef]
- Santoro, D.; Delmonte, N.; Simonazzi, M.; Toscani, A.; Rocchi, N.; Sozzi, G.; Cova, P.; Menozzi, R. Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters. Sustainability 2023, 15, 2759. [Google Scholar] [CrossRef]
- Jacob, R.; Hoffmann, M.; Weinand, J.M.; Linßen, J.; Stolten, D.; Müller, M. The future role of thermal energy storage in 100% renewable electricity systems. Renew. Sustain. Energy Transit. 2023, 4, 100059. [Google Scholar] [CrossRef]
- Bitar, M.; El Tawil, T.; Benbouzid, M.; Dinh, V.B.; Benaouicha, M. On Hybrid Nanogrids Energy Management Systems—An Insight into Embedded Systems. Appl. Sci. 2024, 14, 1563. [Google Scholar] [CrossRef]
- Rakib, M.W.; Munna, A.H.; Farooq, T.; Boker, A.; He, M. Enhancing Grid Stability and Sustainability: Energy-Storage-Based Hybrid Systems for Seamless Renewable Integration. Eur. J. Electr. Eng. Comput. Sci. 2024, 8, 1–8. [Google Scholar] [CrossRef]
- Alemam, A.; Ferber, N.L.; Malm, T.; Eveloy, V.; Calvet, N. Experimental Demonstration of a Solar Powered High Temperature Latent Heat Storage Prototype: Preliminary Results of an Experimental Validation Campaign. In Proceedings of the SolarPACES 2023, 29th International Conference on Concentrating Solar Power, Thermal, and Chemical Energy Systems, Sydney, Australia, 10–13 October 2023; TIB Open Publishing: Hannover, Germany, 2024; Volume 2. [Google Scholar] [CrossRef]
- Assis, F.A.; Coelho, F.C.; Castro, J.F.C.; Donadon, A.R.; Roncolatto, R.A.; Rosas, P.A.; Andrade, V.E.; Bento, R.G.; Silva, L.C.; Cypriano, J.G.; et al. Assessment of Regulatory and Market Challenges in the Economic Feasibility of a Nanogrid: A Brazilian Case. Energies 2024, 17, 341. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L. Heat and Mass Storage with PCM: An Up-to-Date Introduction into Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Telkes, M.; Raymond, E. Storing solar heat in chemicals—A report on the Dover house. Heat. Vent. 1949, 46, 80–86. [Google Scholar]
- Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 1983, 30, 313–332. [Google Scholar] [CrossRef]
- Henze, R.H.; Humphrey, J.A.C. Enhanced heat conduction in phase-change thermal energy storage devices. Int. J. Heat Mass Transf. 1981, 24, 459–474. [Google Scholar] [CrossRef]
- Abhat, A. Short term thermal energy storage. Energy Build. 1981, 3, 49–76. [Google Scholar] [CrossRef]
- Bareiss, M.; Beer, H. An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int. J. Heat Mass Transf. 1984, 27, 739–746. [Google Scholar] [CrossRef]
- Bushnell, D.L. Performance studies of a solar energy storing heat exchanger. Sol. Energy 1988, 41, 503–512. [Google Scholar] [CrossRef]
- Prakash, J.; Garg, H.P.; Datta, G. A solar water heater with a built-in latent heat storage. Energy Convers. Manag. 1985, 25, 51–56. [Google Scholar] [CrossRef]
- Charach, C. Solidification (Melting) in Finite Extent Pcm Bodies. In Intersol Eighty Five; Bilgen, E., Hollands, K.G.T., Eds.; Pergamon: Oxford, UK, 1986; pp. 786–790. ISBN 9780080331775. [Google Scholar]
- Sokolov, M.; Keizman, Y. Phase Change Storage in Solar Pipes. In Advances In Solar Energy Technology; Bloss, W.H., Pfisterer, F., Eds.; Pergamon: Oxford, UK, 1988; pp. 1217–1221. ISBN 9780080343150. [Google Scholar]
- Theunissen, P.-H.; Buchlin, J.-M. Numerical optimization of a solar air heating system based on encapsulated P.C.M. storage. Sol. Energy 1983, 31, 271–277. [Google Scholar] [CrossRef]
- Hasnain, S.M.; Gibbs, B.M. Low Temperature Thermal Energy Storage for Solar Heating Applications Preliminary Investigations. In Advances In Solar Energy Technology; Bloss, W.H., Pfisterer, F., Eds.; Pergamon: Oxford, UK, 1988; pp. 1197–1201. ISBN 9780080343150. [Google Scholar]
- Brandstetter, A. Phase Change Storage for Greenhouses. In Advances In Solar Energy Technology; Bloss, W.H., Pfisterer, F., Eds.; Pergamon: Oxford, UK, 1988; pp. 3353–3357. ISBN 9780080343150. [Google Scholar]
- Aboul-Enein, S.; Ramadam, M.R.I. Storage of low temperature heat in salt-hydrate melts for heating applications. Sol. Wind. Technol. 1988, 5, 441–444. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Harikrishnan, S.; Kalaiselvam, S. Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy Build. 2010, 42, 1353–1360. [Google Scholar] [CrossRef]
- Gowreesunker, B.L.; Tassou, S.A.; Kolokotroni, M. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an airport terminal building displacement conditioning system. Build. Environ. 2013, 65, 132–145. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy Build. 2013, 60, 270–279. [Google Scholar] [CrossRef]
- Chou, H.-M.; Chen, C.-R.; Nguyen, V.-L. A new design of metal-sheet cool roof using PCM. Energy Build. 2013, 57, 42–50. [Google Scholar] [CrossRef]
- Cerón, I.; Neila, J.; Khayet, M. Experimental tile with phase change materials (PCM) for building use. Energy Build. 2011, 43, 1869–1874. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Solomon, G.R.; Kumaresan, V.; Velraj, R. Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Convers. Manag. 2014, 78, 74–80. [Google Scholar] [CrossRef]
- Sharma, A.; Shukla, A.; Chen, C.R.; Dwivedi, S. Development of phase change materials for building applications. Energy Build. 2013, 64, 403–407. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R.M.; Busato, F. Solar cooling and heating plants: An energy and economic analysis of liquid sensible vs. phase change material (PCM) heat storage. Int. J. Refrig. 2014, 39, 104–116. [Google Scholar] [CrossRef]
- Summers, E.K.; Antar, M.A.; Lienhard, J.H.V. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification–dehumidification desalination. Sol. Energy 2012, 86, 3417–3429. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Magesh, S.; Kalaiselvam, S. Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochim. Acta 2013, 565, 137–145. [Google Scholar] [CrossRef]
- Shukla, A.; Buddhi, D.; Sawhney, R.L. Solar water heaters with phase change material thermal energy storage medium: A review. Renew. Sustain. Energy Rev. 2009, 13, 2119–2125. [Google Scholar] [CrossRef]
- Chaabane, M.; Mhiri, H.; Bournot, P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers. Manag. 2014, 78, 897–903. [Google Scholar] [CrossRef]
- Islam, M.R.; Sumathy, K.; Khan, S.U. Solar water heating systems and their market trends. Renew. Sustain. Energy Rev. 2013, 17, 1–25. [Google Scholar] [CrossRef]
- Tan, F.L.; Tso, C.P. Cooling of mobile electronic devices using phase change materials. Appl. Therm. Eng. 2004, 24, 159–169. [Google Scholar] [CrossRef]
- Weng, Y.-C.; Cho, H.-P.; Chang, C.-C.; Chen, S.-L. Heat pipe with PCM for electronic cooling. Appl. Energy 2011, 88, 1825–1833. [Google Scholar] [CrossRef]
- Baby, R.; Balaji, C. Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int. J. Heat Mass Transf. 2012, 55, 1642–1649. [Google Scholar] [CrossRef]
- Lohse, E.; Schmitz, G. Performance assessment of regularly structured Composite Latent Heat Storages for temporary cooling of electronic. Int. J. Refrig. 2012, 35, 1145–1155. [Google Scholar] [CrossRef]
- Jaworski, M. Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Appl. Therm. Eng. 2012, 35, 212–219. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Zhu, X.; Qiu, Y.J.; Li, K.; Chen, R.; Liao, Q. A review of waste heat recovery technologies towards molten slag in steel industry. Appl. Energy 2013, 112, 956–966. [Google Scholar] [CrossRef]
- Shon, J.; Kim, H.; Lee, K. Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger. Appl. Energy 2014, 113, 680–689. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622–638. [Google Scholar] [CrossRef]
- Pitié, F.; Zhao, C.Y.; Baeyens, J.; Degrève, J.; Zhang, H.L. Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Appl. Energy 2013, 109, 505–513. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Nejman, A.; Goetzendorf-Grabowska, B. Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochim. Acta 2013, 569, 144–150. [Google Scholar] [CrossRef]
- Sánchez, P.; Sánchez-Fernandez, M.V.; Romero, A.; Rodríguez, J.F.; Sánchez-Silva, L. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim. Acta 2010, 498, 16–21. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Medina, M.A.; Lee, K.O. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB). Energy Convers. Manag. 2014, 83, 73–78. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Pérez, G. Life cycle assessment (LCA) of phase change materials (PCMs) used in buildings. Eco-Efficient Construction and Building Materials; Pacheco-Torgal, F., Cabeza, L.F., Labrincha, J., de Magalhães, A., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 287–310. ISBN 9780857097675. [Google Scholar]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Waqas, A.; Din, Z.U. Phase change material (PCM) storage for free cooling of buildings—A review. Renew. Sustain. Energy Rev. 2013, 18, 607–625. [Google Scholar] [CrossRef]
- AL-Saadi, S.N.; Zhai, Z. Modeling phase change materials embedded in building enclosure: A review. Renew. Sustain. Energy Rev. 2013, 21, 659–673. [Google Scholar] [CrossRef]
- Zsembinszki, G.; Solé, C.; Castell, A.; Pérez, G.; Cabeza, L.F. The use of phase change materials in fish farms: A general analysis. Appl. Energy 2013, 109, 488–496. [Google Scholar] [CrossRef]
- Oró, E.; Cabeza, L.F.; Farid, M.M. Experimental and numerical analysis of a chilly bin incorporating phase change material. Appl. Therm. Eng. 2013, 58, 61–67. [Google Scholar] [CrossRef]
- Lu, W.; Tassou, S.A. Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications. Appl. Energy 2013, 112, 1376–1382. [Google Scholar] [CrossRef]
- Reyes, A.; Mahn, A.; Vásquez, F. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manag. 2014, 83, 241–248. [Google Scholar] [CrossRef]
- Beyhan, B.; Paksoy, H.; Daşgan, Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers. Manag. 2013, 74, 446–453. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Bek, M.A.; El-Sebaii, A.A. Solar dryers with PCM as energy storage medium: A review. Renew. Sustain. Energy Rev. 2014, 33, 110–116. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Bek, M.A. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Convers. Manag. 2014, 83, 1–8. [Google Scholar] [CrossRef]
- Bouadila, S.; Kooli, S.; Skouri, S.; Lazaar, M.; Farhat, A. Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 2014, 64, 663–672. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A. Solar greenhouse drying: A review. Renew. Sustain. Energy Rev. 2014, 29, 905–910. [Google Scholar] [CrossRef]
- Saxena, A.; Agarwal, N.; Srivastava, G. Design and performance of a solar air heater with long term heat storage. Int. J. Heat Mass Transf. 2013, 60, 8–16. [Google Scholar] [CrossRef]
- Li, Z.-R.; Hu, N.; Fan, L.-W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater. 2023, 55, 727–753. [Google Scholar] [CrossRef]
- Shah, K.W. A review on enhancement of phase change materials—A nanomaterials perspective. Energy Build. 2018, 175, 57–68. [Google Scholar] [CrossRef]
- Ranjbar, S.G.; Roudini, G.; Barahuie, F. Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings. J. Energy Storage 2020, 27, 101168. [Google Scholar] [CrossRef]
- Paul, J.; Kadirgama, K.; Samykano, M.; Pandey, A.K.; Tyagi, V.V. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. J. Energy Storage 2022, 45, 103415. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zheng, D.; Mikulčić, H.; Vujanović, M.; Sundén, B. Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renew. Sustain. Energy Rev. 2021, 151, 111541. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K.; Gupta, N.K. Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain. Cities Soc. 2020, 53, 101884. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Constr. Build. Mater. 2019, 225, 723–744. [Google Scholar] [CrossRef]
- Ismail, A.; Wang, J.; Salami, B.A.; Oyedele, L.O.; Otukogbe, G.K. Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materials: A critical review. Constr. Build. Mater. 2023, 401, 132877. [Google Scholar] [CrossRef]
- Konuklu, Y.; Ostry, M.; Paksoy, H.O.; Charvat, P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015, 106, 134–155. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, C.; Lin, Y.; Fang, G. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Appl. Therm. Eng. 2019, 147, 841–855. [Google Scholar] [CrossRef]
- Reyez-Araiza, J.L.; Pineda-Piñón, J.; López-Romero, J.M.; Gasca-Tirado, J.R.; Arroyo Contreras, M.; Jáuregui Correa, J.C.; Apátiga-Castro, L.M.; Rivera-Muñoz, E.M.; Velazquez-Castillo, R.R.; Pérez Bueno, J.D.J.; et al. Thermal Energy Storage by the Encapsulation of Phase Change Materials in Building Elements—A Review. Materials 2021, 14, 1420. [Google Scholar] [CrossRef]
- Gandhi, M.; Kumar, A.; Elangovan, R.; Meena, C.S.; Kulkarni, K.S.; Kumar, A.; Bhanot, G.; Kapoor, N.R. A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings. Sustainability 2020, 12, 9481. [Google Scholar] [CrossRef]
- Zhu, N.; Li, S.; Hu, P.; Wei, S.; Deng, R.; Lei, F. A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years. Sustain. Cities Soc. 2018, 43, 251–264. [Google Scholar] [CrossRef]
- Chinnasamy, V.; Heo, J.; Jung, S.; Lee, H.; Cho, H. Shape stabilized phase change materials based on different support structures for thermal energy storage applications—A review. Energy 2023, 262, 125463. [Google Scholar] [CrossRef]
- Kim, H.B.; Mae, M.; Choi, Y. Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate. Build. Environ. 2017, 125, 1–14. [Google Scholar] [CrossRef]
- Kim, H.B.; Mae, M.; Choi, Y.; Kiyota, T. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy Build. 2017, 152, 524–533. [Google Scholar] [CrossRef]
- Mohaisen, K.O.; Zahir, M.H.; Maslehuddin, M.; Al-Dulaijan, S.U. Development of a shape-stabilized phase change material utilizing natural and industrial byproducts for thermal energy storage in buildings. J. Energy Storage 2022, 50, 104205. [Google Scholar] [CrossRef]
- Simonsen, G.; Ravotti, R.; O’Neill, P.; Stamatiou, A. Biobased phase change materials in energy storage and thermal management technologies. Renew. Sustain. Energy Rev. 2023, 184, 113546. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Karimi-Maleh, H.; Naddafi, M.; Karimi, F. Application of bio-based phase change materials for effective heat management. J. Energy Storage 2023, 61, 106859. [Google Scholar] [CrossRef]
- Baylis, C.; Cruickshank, C.A. Review of bio-based phase change materials as passive thermal storage in buildings. Renew. Sustain. Energy Rev. 2023, 186, 113690. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dhaidan, N.S.; Hussein, A.K.; Ali, B.; Hamida, M.B.B.; Younis, O. Bio-based phase change materials for thermal energy storage and release: A review. J. Energy Storage 2023, 73, 109219. [Google Scholar] [CrossRef]
- Li, D.; Zhuang, B.; Chen, Y.; Li, B.; Landry, V.; Kaboorani, A.; Wu, Z.; Wang, X.A. Incorporation technology of bio-based phase change materials for building envelope: A review. Energy Build. 2022, 260, 111920. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, K.R.; Rakshit, D. Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations. Sustain. Energy Technol. Assess. 2021, 48, 101633. [Google Scholar] [CrossRef]
- Dardir, M.; Panchabikesan, K.; Haghighat, F.; El Mankibi, M.; Yuan, Y. Opportunities and challenges of PCM-to-air heat exchangers (PAHXs) for building free cooling applications—A comprehensive review. J. Energy Storage 2019, 22, 157–175. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Sheremet, M.A. A Numerical Study of Heat Performance of Multi-PCM Brick in a Heat Storage Building. Mathematics 2023, 11, 2825. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dulaimi, A.; Mahmood, D.M.N.; Sopian, K. A Review of Recent Improvements, Developments, and Effects of Using Phase-Change Materials in Buildings to Store Thermal Energy. Designs 2023, 7, 90. [Google Scholar] [CrossRef]
- Nair, A.M.; Wilson, C.; Huang, M.J.; Griffiths, P.; Hewitt, N. Phase change materials in building integrated space heating and domestic hot water applications: A review. J. Energy Storage 2022, 54, 105227. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Pomianowski, M.; Heiselberg, P.; Zhang, Y. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013, 67, 56–69. [Google Scholar] [CrossRef]
- Zahir, M.H.; Irshad, K.; Shafiullah, M.; Ibrahim, N.I.; Islam, A.K.; Mohaisen, K.O.; Sulaiman, F.A.A. Challenges of the application of PCMs to achieve zero energy buildings under hot weather conditions: A review. J. Energy Storage 2023, 64, 107156. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Review on the methodology used in thermal stability characterization of phase change materials. Renew. Sustain. Energy Rev. 2015, 50, 665–685. [Google Scholar] [CrossRef]
- Noël, J.A.; Kahwaji, S.; Desgrosseilliers, L.; Groulx, D.; White, M.A. Chapter 13—Phase Change Materials. In Storing Energy; Letcher, T.M., Ed.; Elsevier: Oxford, UK, 2016; pp. 249–272. [Google Scholar] [CrossRef]
- Sikiru, S.; Oladosu, T.L.; Amosa, T.I.; Kolawole, S.Y.; Soleimani, H. Recent advances and impact of phase change materials on solar energy: A comprehensive review. J. Energy Storage 2022, 53, 105200. [Google Scholar] [CrossRef]
- Hu, X.; Chen, P.; Zhang, X.; Gong, X.; Shuai, Y.; Wang, Y.; Xing, X.; Zheng, X.; Wang, G. Experimental and numerical study on thermal management performance of PCM-based heat sinks with various configurations fabricated by additive manufacturing. Renew. Energy 2024, 232, 121069. [Google Scholar] [CrossRef]
- Righetti, G.; Savio, G.; Meneghello, R.; Doretti, L.; Mancin, S. Experimental study of phase change material (PCM) embedded in 3D periodic structures realized via additive manufacturing. Int. J. Therm. Sci. 2020, 153, 106376. [Google Scholar] [CrossRef]
- Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl. Energy 2018, 220, 242–273. [Google Scholar] [CrossRef]
- Qiu, J.; Huo, D.; Xia, Y. Phase-Change Materials for Controlled Release and Related Applications. Adv. Mater. 2020, 32, 2000660. [Google Scholar] [CrossRef]
- Hakami, A.; Srinivasan, S.S.; Biswas, P.K.; Krishnegowda, A.; Wallen, S.L.; Stefanakos, E.K. Review on thermochromic materials: Development, characterization, and applications. J. Coat. Technol. Res. 2022, 19, 377–402. [Google Scholar] [CrossRef]
- Wang, X.; Narayan, S. Thermochromic Materials for Smart Windows: A State-of-Art Review. Front. Energy Res. 2021, 9, 800382. [Google Scholar] [CrossRef]
- Nagare, S.M.; Hakami, A.; Biswas, P.K.; Stefanakos, E.K.; Srinivasan, S.S. A review of thermochromic materials for coating applications: Production, protection, and degradation of organic thermochromic materials. J. Coat. Technol. Res. 2024. [Google Scholar] [CrossRef]
- Aklujkar, P.S.; Kandasubramanian, B. A review of microencapsulated thermochromic coatings for sustainable building applications. J. Coat. Technol. Res. 2021, 18, 19–37. [Google Scholar] [CrossRef]
- Zhao, Y.; Ji, H.; Lu, M.; Tao, J.; Ou, Y.; Wang, Y.; Chen, Y.; Huang, Y.; Wang, J.; Mao, Y. Thermochromic Smart Windows Assisted by Photothermal Nanomaterials. Nanomaterials 2022, 12, 3865. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhou, Y.; Cui, Y.; Chen, Z.; Liu, Y.; Li, J.; Long, Y.; Gao, Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem. Rev. 2023, 123, 7025–7080. [Google Scholar] [CrossRef] [PubMed]
- Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R.; Ebendorff-Heidepriem, H.; Wu, Y. Thermochromic smart window technologies for building application: A review. Appl. Energy 2019, 255, 113522. [Google Scholar] [CrossRef]
- Zou, X.; Ji, H.; Zhao, Y.; Lu, M.; Tao, J.; Tang, P.; Liu, B.; Yu, X.; Mao, Y. Research Progress of Photo-/Electro-Driven Thermochromic Smart Windows. Nanomaterials 2021, 11, 3335. [Google Scholar] [CrossRef] [PubMed]
- Anayurt, R.A.; Alkan, C. Most Recent Applications of Microencapsulated Phase Change Materials. J. New Results Sci. 2021, 10, 24–37. [Google Scholar]
- Wu, S.; Sun, H.; Duan, M.; Mao, H.; Wu, Y.; Zhao, H.; Lin, B. Applications of thermochromic and electrochromic smart windows: Materials to buildings. Cell Rep. Phys. Sci. 2023, 4, 101370. [Google Scholar] [CrossRef]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S.; Long, Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv. Energy Mater. 2019, 9, 1902066. [Google Scholar] [CrossRef]
- Zhai, X.Q.; Wang, X.L.; Wang, T.; Wang, R.Z. A review on phase change cold storage in air conditioning system: Materials and applications. Renew. Sustain. Energy Rev. 2013, 22, 108–120. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.R.; Salah, N.B.; Lassue, S.P.; Zalewski, L. A review on phase-change materials: Mathematical modeling and simulations. Renew. Sustain. Energy Rev. 2011, 15, 112–130. [Google Scholar] [CrossRef]
- Zanganeh, G.; Commerford, M.; Haselbacher, A.; Pedretti, A.; Steinfeld, A. Stabilization of the Outflow Temperature of a Packed-Bed Thermal Energy Storage by Combining Rocks with Phase Change Materials. Appl. Therm. Eng. 2014, 70, 316–320. [Google Scholar] [CrossRef]
- Jradi, M.; Gillott, M.; Riffat, S. Simulation of the transient behaviour of encapsulated organic and inorganic phase change materials for low-temperature energy storage. Appl. Therm. Eng. 2013, 59, 211–222. [Google Scholar] [CrossRef]
- Li, T.; Lee, J.-H.; Wang, R.; Kang, Y.T. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application. Int. J. Heat Mass Transf. 2014, 75, 1–11. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Siddique, A.K.; Sari, A. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Thermal Energy Storage: Systems and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 2010, 14, 615–628. [Google Scholar] [CrossRef]
- Khodadadi, J.M.; Fan, L.; Babaei, H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2013, 24, 418–444. [Google Scholar] [CrossRef]
- Rathod, M.K.; Kanzaria, H.V. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Mater. Des. 2011, 32, 3578–3585. [Google Scholar] [CrossRef]
- Rathod, M.K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sustain. Energy Rev. 2013, 18, 246–258. [Google Scholar] [CrossRef]
- Delgado, M.; Lazaro, A.; Mazo, J.; Zalba, B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew. Sustain. Energy Rev. 2012, 16, 253–273. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Kenisarin, M.M. High temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Paksoy, H.O. Thermal Energy Storage for Sustainable Energy Consumption. In Proceedings of the NATO Advance Study Institute on Thermal Energy Storage for Sustainable Energy Consumption—Fundamentals, Case Studies and Design, Izmir, Turkey, 6–17 June 2005. [Google Scholar]
- Nkwetta, D.N.; Vouillamoz, P.-E.; Haghighat, F.; El-Mankibi, M.; Moreau, A.; Daoud, A. Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Appl. Therm. Eng. 2014, 67, 460–468. [Google Scholar] [CrossRef]
- Tchinda, R. A review of the mathematical models for predicting solar air heaters systems. Renew. Sustain. Energy Rev. 2009, 13, 1734–1759. [Google Scholar] [CrossRef]
- Izquierdo-Barrientos, M.A.; Sobrino, C.; Almendros-Ibáñez, J.A. Thermal energy storage in a fluidized bed of PCM. Chem. Eng. J. 2013, 230, 573–583. [Google Scholar] [CrossRef]
- Close, D.J. Solar air heaters. Sol. Energy 1963, 7, 117–129. [Google Scholar] [CrossRef]
- El-Sawi, A.M.; Wifi, A.S.; Younan, M.Y.; Elsayed, E.A.; Basily, B.B. Application of folded sheet metal in flat bed solar air collectors. Appl. Therm. Eng. 2010, 30, 864–871. [Google Scholar] [CrossRef]
- Alkan, C.; Kaya, K.; Sari, A. Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage. J. Polym. Environ. 2009, 17, 254–258. [Google Scholar] [CrossRef]
- Shukla, A.; Buddhi, D.; Sawhney, R.L. Thermal cycling test of few selected inorganic and organic phase change materials. Renew. Energy 2008, 33, 2606–2614. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.; Al-Heniti, S. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking. Energy Convers. Manag. 2009, 50, 3104–3111. [Google Scholar] [CrossRef]
- Sari, A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications. Energy Convers. Manag. 2003, 44, 2277–2287. [Google Scholar] [CrossRef]
- Hasan, A.; Sayigh, A.A. Some fatty acids as phase-change thermal energy storage materials. Renew. Energy 1994, 4, 69–76. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.D.; Buddhi, D. Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers. Manag. 2002, 43, 1923–1930. [Google Scholar] [CrossRef]
- Kimura, H.; Kai, J. Phase change stability of CaCl2.6H2O. Sol. Energy 1984, 33, 49–55. [Google Scholar] [CrossRef]
- Fellchenfeld, H.; Sarig, S. Calcium chloride hexahydrate: A phase-changing material for energy storage. Ind. Eng. Chem. Product. Res. Dev. 1985, 24, 130–133. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol. Energy Mater. Sol. Cells 2008, 92, 891–899. [Google Scholar] [CrossRef]
- Marks, S. An investigation of the thermal energy storage capacity of glauber’s salt with respect to thermal cycling. Sol. Energy 1980, 25, 225–258. [Google Scholar] [CrossRef]
- Wada, T.; Yamamoto, R.; Matsuo, Y. Heat storage capacity of sodium acetate trihydrate during thermal cycling. Sol. Energy 1984, 33, 373–375. [Google Scholar] [CrossRef]
- Porosini, F.C. Salt hydrates used for latent heat storage: Corrosion of metals and reliability of thermal performance. Sol. Energy 1988, 41, 193–197. [Google Scholar] [CrossRef]
- Sun, J.Q.; Zhang, R.Y.; Liu, Z.P.; Lu, G.H. Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers. Manag. 2007, 48, 619–624. [Google Scholar] [CrossRef]
- Shilei, L.; Neng, Z.; Guohui, F. Eutectic mixture of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy Build. 2006, 38, 708–711. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A. Capric–mystric acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew. Energy 2008, 33, 2599–2605. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A.; Kaygusuz, K. Thermal properties and thermal reliability of capric acid/stearic acid mixture for latent heat thermal energy storage. Energy Sources 2009, 31, 199–207. [Google Scholar] [CrossRef]
- Sari, A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability. Appl. Therm. Eng. 2005, 25, 2100–2107. [Google Scholar] [CrossRef]
- Sari, A.; Bicer, A.; Karaipekli, A.; Alkan, C.; Karadag, A. Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid–liquid phase change materials. Sol. Energy Mater. Sol. Cells 2010, 94, 1711–1715. [Google Scholar] [CrossRef]
- Nagano, K.; Takeda, S.; Mochida, T.; Shimakura, K.; Nakamura, T. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—Heat response in small scale experiments. Energy Build. 2006, 38, 436–446. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Aboul-Eneein, S.; Ramadan, M.I.; EL-Bialy, E.E. Year round performance of double pass solar air heater with packed bed. Energy Convers. Manag. 2007, 48, 990–1003. [Google Scholar] [CrossRef]
- de Gracia, A.; Oró, E.; Farid, M.M.; Cabeza, L.F. Thermal analysis of including phase change material in a domestic hot water cylinder. Appl. Therm. Eng. 2011, 31, 3938–3945. [Google Scholar] [CrossRef]
- Haillot, D.; Franquet, E.; Gibout, S.; Bédécarrats, J.-P. Optimization of solar DHW system including PCM media. Appl. Energy 2013, 109, 470–475. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Thermal Energy Storage Technology Brief; International Renewable Energy Agency: Masdar, United Arab Emirates, 2013. [Google Scholar]
- Erro, I.; Aranguren, P.; Sorbet, F.J.; Bonilla-Campos, I.; Astrain, D. Installation of a Thermoelectric Heat Pump in a Thermal Energy Storage Cycle for Decentralized Energy Generation. Appl. Therm. Eng. 2023, 246, 122923. [Google Scholar] [CrossRef]
- Biswas, K.; Lu, J.; Soroushian, P.; Shrestha, S. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl. Energy 2014, 131, 517–529. [Google Scholar] [CrossRef]
- Qiao, Y.; Liu, Y.; Yang, L.; Bao, J.; Liu, J. Experimental Investigation of PCM Wallboard in Artificial Controlled Environment with Different Climate Conditions. In Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), Harbin, China, 12–15 July 2019; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Saxena, R.; Rakshi, D.; Kaushik, S.C. Experimental Assessment of Characterised PCMs for Thermal Management of Buildings in Tropical Composite Climate. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain, 16–18 August 2018. [Google Scholar] [CrossRef]
- Bal, L.M.; Sudhakar, P.; Satya, S.; Naik, N.S. Solar dryer with latent heat storage systems for drying agricultural food products. In Proceedings of the International Conference on Food Security and Environmental Sustainability, Colombo, Sri Lanka, 17–19 December 2009. [Google Scholar]
- Cakmak, G.; Yidiz, C. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod. Process. 2011, 89, 103–108. [Google Scholar] [CrossRef]
- Esakkimuthu, S.; Hassabou, A.; Palaniappan, C.; Spinnler, M.; Blumenberg, J.; Velraj, R. Experimental investigation on phase change material based thermal storage system for solar air heating applications. Sol. Energy 2013, 88, 144–153. [Google Scholar] [CrossRef]
- Lamnatou, C.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl. Energy 2012, 94, 232–243. [Google Scholar] [CrossRef]
- Boughali, S.; Benmoussa, H. Crop drying by indirect active hybrid solar–electrical dryer. Sol. Energy 2009, 83, 2223–2232. [Google Scholar] [CrossRef]
- Amer, B.; Hossain, M.; Gottschalk, K. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Convers. Manag. 2010, 51, 813–820. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, R.; Zhang, X.Y.; An, Y.J.; Wang, M.X.; Gao, Y.K.; Yu, Y. Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Sol. Energy 2014, 107, 714–727. [Google Scholar] [CrossRef]
- Liang, R.; Ma, L.; Zhang, J.; Zhao, L. Performance analysis of a new-design filled-type solar collector with double U-tubes. Energy Build. 2013, 57, 220–226. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, A.; Said, Z. Applications of Nano-enhanced PCMs in Solar Energy. In Nano Enhanced Phase Change Materials; Said, Z., Pandey, A.K., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2023. [Google Scholar]
- Kaygusuz, K. The viability of thermal energy storage. Energy Sources 1999, 21, 745–755. [Google Scholar] [CrossRef]
- Almeida, F. Experimental and Numerical Study on the Thermal Performance of a Vertical PCM Panel. Ph.D. Thesis, Toronto Metropolitan University, Toronto, ON, USA, 2023. [Google Scholar] [CrossRef]
- Diaconu, B.M.; Varga, S.; Oliveira, A.C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry. Energy 2010, 35, 2688–2693. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, A.; Said, Z. Influence of Nanoparticles on Thermophysical Properties of PCMs. In Nano Enhanced Phase Change Materials; Said, Z., Pandey, A.K., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2023. [Google Scholar]
- Saxena, R.; Dwivedi, C.; Dutta, V.; Kaushik, S.C.; Rakshit, D. Nano-enhanced PCMs for low-temperature thermal energy storage systems and passive conditioning applications. Clean. Technol. Environ. Policy 2021, 23, 1161–1168. [Google Scholar] [CrossRef]
- Ren, Q.; Xu, H.; Luo, Z. PCM charging process accelerated with combination of optimized triangle fins and nanoparticles. Int. J. Therm. Sci. 2019, 140, 466–479. [Google Scholar] [CrossRef]
- Ma, Z.; Lin, W.; Sohel, M.I. Nano-enhanced phase change materials for improved building performance. Renew. Sustain. Energy Rev. 2016, 58, 1256–1268. [Google Scholar] [CrossRef]
- Liu, M.; Belusko, M.; Tay, N.H.S.; Bruno, F. Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants. Sol. Energy 2014, 101, 220–231. [Google Scholar] [CrossRef]
- Alkilani, M.M.; Sopian, K.; Mat, S.; Alghoul, M.A. Output air temperature prediction in a solar air heater integrated with phase change material. Eur. J. Sci. Res. 2009, 27, 334–434. [Google Scholar]
- Charvát, P.; Klimeš, L.; Ostr, M. Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy Build. 2014, 68, 488–497. [Google Scholar] [CrossRef]
- Colella, F.; Sciacovelli, A.; Verda, V. Numerical analysis of a medium scale latent energy storage unit for district heating systems. Energy 2012, 45, 397–406. [Google Scholar] [CrossRef]
- Piroozmand, V.; Ahmadi, R. Enhancement of PCMs performance using nano-particles in horizontal triple-series shell-and-tube heat exchangers: A numerical study. J. Energy Storage 2024, 85, 111057. [Google Scholar] [CrossRef]
- Keshteli, A.N.; Sheikholeslami, M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. J. Mol. Liq. 2019, 274, 516–533. [Google Scholar] [CrossRef]
- Yerzhan, B.; Toleukhanov, A.; Yerdesh, Y.; Seitov, A.; Aliuly, A.; Botella, O. Numerical simulation of cascade latent heat thermal energy storage device thermal performance using multiple PCMs. AIP Conf. Proc. 2024, 3126, 020001. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Radwan, A.; Fouda, M.S.; Sultan, A.A.; Abdelrehim, O. Energy assessment of a sliding window integrated with PV cell and multiple PCMs. J. Energy Storage 2024, 86, 111341. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Fouda, M.S.; Cheng, P. Power saving in a central air conditioning system by using multiple PCMs integrated with fresh air path. Energy Build. 2023, 300, 113691. [Google Scholar] [CrossRef]
- He, W.; Su, Y.; Wang, Y.Q.; Riffat, S.B.; Ji, J. A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors. Renew. Energy 2012, 37, 142–149. [Google Scholar] [CrossRef]
- Abed, A.M.; Mouziraji, H.R.; Bakhshi, J.; Dulaimi, A.; Mohammed, H.I.; Ibrahem, R.K.; Ben Khedher, N.; Yaïci, W.; Mahdi, J.M. Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins. Front. Chem. 2022, 10, 1057196. [Google Scholar] [CrossRef] [PubMed]
- Ben Khedher, N.; Biswas, N.; Togun, H.; Mohammed, H.I.; Mahdi, J.M.; Ibrahem, R.K.; Talebizadehsardari, P. Geometry modification of a vertical shell-and-tube latent heat thermal energy storage system using a framed structure with different undulated shapes for the phase change material container during the melting process. J. Energy Storage 2023, 72 Pt B, 108365. [Google Scholar] [CrossRef]
- Oztop, H.F.; Bayrak, F.; Hepbasli, A. Energetic and exergetic aspects of solar air heating (solar collector) systems. Renew. Sustain. Energy Rev. 2013, 21, 59–83. [Google Scholar] [CrossRef]
- Dolado, P.; Lazaro, A.; Marin, J.M.; Zalba, B. Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energy Convers. Manag. 2011, 52, 1890–1907. [Google Scholar] [CrossRef]
- Dolado, P.; Lazaro, A.; Marín, J.M.; Zalba, B. Characterization of melting and solidification in a real-scale PCM-air heat exchanger: Experimental results and empirical model. Renew. Energy 2011, 36, 2906–2917. [Google Scholar] [CrossRef]
- Khalifa, A.J.N.; Suffer, K.H.; Mahmoud, M.S. A storage domestic solar hot water system with a back layer of phase change material. Exp. Therm. Fluid. Sci. 2013, 44, 174–181. [Google Scholar] [CrossRef]
- Zhu, N.; Hu, P.; Xu, L.; Jiang, Z.; Lei, F. Recent research and applications of ground source heat pump integrated with thermal energy storage systems: A review. Appl. Therm. Eng. 2014, 71, 142–151. [Google Scholar] [CrossRef]
- Tumirah, K.; Hussein, M.Z.; Zulkarnain, Z.; Rafeadah, R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 2014, 66, 881–890. [Google Scholar] [CrossRef]
- López-Navarro, A.; Biosca-Taronger, J.; Corberán, J.M.; Peñalosa, C.; Lázaro, A.; Dolado, P.; Payá, J. Performance characterization of a PCM storage tank. Appl. Energy 2014, 119, 151–162. [Google Scholar] [CrossRef]
- Parameshwara, R.; Dhamodharana, P.; Kalaiselvam, S. Study on thermal storage properties of hybrid nanocomposite-dibasic ester as phase change material. Thermochim. Acta 2013, 573, 106–120. [Google Scholar] [CrossRef]
- Fan, L.W.; Fang, X.; Wang, X.; Zeng, Y.; Xiao, Y.Q.; Yu, Z.T.; Xu, X.; Hu, Y.C.; Cen, K.F. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 2013, 110, 163–172. [Google Scholar] [CrossRef]
- Fang, X.; Fan, L.W.; Ding, Q.; Yao, X.L.; Wu, Y.Y.; Hou, J.F.; Wang, X.; Yu, Z.T.; Cheng, G.H.; Hu, Y.C. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers. Manag. 2014, 80, 103–109. [Google Scholar] [CrossRef]
- Teng, T.-P.; Yu, C.-C. The Effect on Heating Rate for Phase Change Materials Containing MWCNTs. Int. J. Chem. Eng. Appl. 2012, 3, 340–342. [Google Scholar] [CrossRef]
- Benita, S. Microencapsulation: Methods and Industrial Applications; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Ma, Z.W.; Zhang, P. Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes. Int. J. Heat Mass Transf. 2013, 64, 874–881. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Döğüşcü, D.K.; Biçer, A. Micro/nano-encapsulatedn-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 42–50. [Google Scholar] [CrossRef]
- Lin, X.; Guiyin, F.; Fan, Y. Study on the preparation and performance of the microcapsule phase change material for cold storage. Vac. Cryog. 2006, 12, 153–156. [Google Scholar]
- Alkan, C.; Sari, A.; Karaipekli, A.; Uzun, O. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2009, 93, 143–147. [Google Scholar] [CrossRef]
- Sari, A.; Alkan, C.; Karaipekli, A.; Uzun, O. Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol. Energy 2009, 83, 1757–1763. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Uddin, M.S.; Zhu, H. Encapsulated phase change materials for thermal energy storage: Experiments and simulation. Int. J. Energy Res. 2002, 26, 159–171. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y.; Darkwa, J. The micro-/nano-PCMs for thermal energy storage systems: A state of art review. Int. J. Energy Res. 2019, 43, 5572–5620. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Uddin, M.S.; Khin, M.M. Microencapsulated PCM thermal-energy storage system. Appl. Energy 2003, 74, 195–202. [Google Scholar] [CrossRef]
- Ozonur, Y.; Mazman, M.; Paksoy, H.O.; Evliya, H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 2006, 30, 741–749. [Google Scholar] [CrossRef]
- Peng, S.; Fuchs, A.; Wirtz, R.A. Polymeric phase change composites for thermal energy storage. J. Appl. Polym. Sci. 2004, 93, 1240–1251. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, S.J.; Kim, Y.G.; Choi, Y.C.; Kim, J.H.; Lee, J.G. Development of building materials by using micro-encapsulated phase change material. Korean J. Chem. Eng. 2007, 24, 332–335. [Google Scholar] [CrossRef]
- Chen, L.; Xu, L.; Shang, H.; Zhang, Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers. Manag. 2009, 50, 723–729. [Google Scholar]
- Yu, F.; Chen, Z.H.; Zeng, X.R. Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene–maleic anhydride as emulsifier. Colloid Polym. Sci. 2009, 287, 549–560. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Yang, F.; Liua, X.; Wu, S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem. Eng. J. 2009, 153, 217–221. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol. Energy Mater. Sol. Cells 2009, 93, 1366–1376. [Google Scholar] [CrossRef]
- Kaygusuz, K.; Sari, A. High density polyethylene/paraffin composites as form–stable phase change material for thermal energy storage. Energy Sources Part A 2007, 29, 261–270. [Google Scholar] [CrossRef]
- Kenisarin, M.M.; Kenisarin, K.M. Form–stable phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2012, 16, 1999–2040. [Google Scholar] [CrossRef]
- Trigui, A.; Karkri, M.; Krupa, I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Convers. Manag. 2014, 77, 586–596. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Lee, J.-H.; Seo, J.; Kim, S. Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving. Int. J. Heat Mass Transf. 2014, 71, 245–250. [Google Scholar] [CrossRef]
- Sari, A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties. Energy Convers. Manag. 2004, 45, 2033–2042. [Google Scholar] [CrossRef]
- Alkan, C.; Sari, A.; Uzun, O. Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. AIChE J. 2006, 52, 3310–3314. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, J.; Zhou, W.; Wang, J.; Wang, Y. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method. Thermochim. Acta 2011, 254, 128–134. [Google Scholar] [CrossRef]
- Sari, A.; Kaygusuz, K. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 2007, 27, 1271–1277. [Google Scholar] [CrossRef]
- Sari, A.; Kaygusuz, K. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 2009, 93, 571–576. [Google Scholar] [CrossRef]
- Behzadi, S.; Farid, M.M. Long term thermal stability of organic PCMs. Appl. Energy 2014, 122, 11–16. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, P.; Li, M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage. Energy Convers. Manag. 2013, 73, 86–94. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy 2011, 36, 5539–5546. [Google Scholar] [CrossRef]
- Fukai, J.; Kanou, M.; Kodama, Y.; Miyatake, O. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manag. 2000, 41, 1543–1556. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; Xiao, S.; Zhu, D. Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs. Procedia Eng. 2012, 31, 240–244. [Google Scholar] [CrossRef]
- Mills, A.; Farid, M.; Selman, J.R.; Al-Hallaj, S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl. Therm. Eng. 2006, 26, 1652–1661. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Tan, J. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method. Appl. Energy 2012, 92, 456–461. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res. Lett. 2013, 8, 448. [Google Scholar] [CrossRef]
- Ismail, K.A.R.; Henrı´quez, J.R. Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl. Therm. Eng. 2002, 22, 1705–1716. [Google Scholar] [CrossRef]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Lima, O., Jr.; Freitas, E.; Cardoso, P.; Segundo, I.R.; Margalho, É.; Moreira, L.; Nascimento, J.H.O.; Landi, S., Jr.; Carneiro, J. Mitigation of Urban Heat Island Effects by Thermochromic Asphalt Pavement. Coatings 2023, 13, 35. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wu, D. Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics. Sol. Energy Mater. Sol. Cells 2015, 133, 56–68. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Wang, Y.; Lu, J.; Wang, J.; Wang, N.; Li, J.; Zhang, X. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy 2018, 159, 857–869. [Google Scholar] [CrossRef]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B. Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog. Polym. Sci. 2019, 98, 101149. [Google Scholar] [CrossRef]
- Vassalini, I.; Alessandri, I.; de Ceglia, D. Stimuli-Responsive Phase Change Materials: Optical and Optoelectronic Applications. Materials 2021, 14, 3396. [Google Scholar] [CrossRef]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Yuan, A.; Zhao, S.; Liu, T.; Zhao, Y.; Jiang, L.; Lei, J. Temperature-Responsive Thermochromic Phase Change Materials with Tunable Photothermal Conversion Efficiency Toward Solar Energy Storage. Adv. Mater. Technol. 2022, 7, 2200226. [Google Scholar] [CrossRef]
- Cacciarini, M.; Skov, A.B.; Jevric, M.; Hansen, A.S.; Elm, J.; Kjaergaard, H.G.; Mikkelsen, K.V.; Brøndsted Nielsen, M. Towards Solar Energy Storage in the Photochromic Dihydroazulene-Vinylheptafulvene System. Chem.–A Eur. J. 2015, 21, 7454–7461. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap: Solar Photovoltaic Energy and Technology Roadmap: Solar Thermal Electricity; IEA: Paris, France, 2014. [Google Scholar]
- Amberger, B.; Savji, N. Thermochromism of Transition Metal Compounds. 2008. Available online: https://web.archive.org/web/20090531010111/http://www3.amherst.edu/~thoughts/contents/amberger-thermochromism.html (accessed on 30 September 2024).
- Bukleski, M.; Petruševski, V.M. Preparation and Properties of a Spectacular Thermochromic Solid. J. Chem. Educ. 2009, 86, 30. [Google Scholar] [CrossRef]
- Bamfield, P.; Hutchings, M.G. Chromic Phenomena: Technological Applications of Colour Chemistry; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Miller, B.J. How smart windows save energy. Knowable Magazine, 6 August 2022. [Google Scholar] [CrossRef]
- Seeboth, A.; Lötzsch, D. Thermochromic and Thermotropic Materials; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kitsopoulou, A.; Bellos, E.; Sammoutos, C.; Lykas, P.; Vrachopoulos, M.G.; Tzivanidis, C. A detailed investigation of thermochromic dye-based roof coatings for Greek climatic conditions. J. Build. Eng. 2024, 84, 108570. [Google Scholar] [CrossRef]
- Garshasbi, S.; Santamouris, M. Using advanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Sol. Energy Mater. Sol. Cells 2019, 191, 21–32. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Yang, Q.; Xiong, J.; Mao, G.; Zhang, Y. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge–Discharge Cycles. Materials 2023, 16, 5955. [Google Scholar] [CrossRef] [PubMed]
- Kalair, A.R.; Seyedmahmoudian, M.; Mekhilef, S.; Stojcevski, A. Dynamic Analysis of Solar Heat Stimulated Residential Absorption Cooling with Integrated Thermal Wall for Space Heating. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 5–8 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kalair, A.R. Synergetic Electrothermal Storage Integrated Trigeneration Nanogrid. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2024. [Google Scholar] [CrossRef]
- Al-Absi, Z.A.; Isa, M.H.M.; Ismail, M. Phase Change Materials (PCMs) and Their Optimum Position in Building Walls. Sustainability 2020, 12, 1294. [Google Scholar] [CrossRef]
Trends | Key Findings | Residential (Nanogrid) Applications | Challenges | References |
---|---|---|---|---|
Nanocomposites | Enhanced thermal conductivity and energy storage efficiency | Potential for improving energy efficiency in walls and insulation materials | High production costs and potential agglomeration issues | [77,78,79,80,81] |
Microencapsulated PCMs | Improved stability and integration with building materials | Suitable for incorporation into drywall, paint, and cement for temperature regulation | Complexity in manufacturing and potential leakage problems | [82,83,84,85,86,87] |
Shape-stabilized PCMs | Better adaptability for residential applications | Effective in floor heating systems and underfloor heating applications | Limited thermal conductivity and scalability concerns | [88,89,90,91,92,93] |
Bio-based PCMs | Increased sustainability and reduced environmental impact | Eco-friendly option for insulation in green buildings and sustainable housing | Variable thermal properties and higher costs | [94,95,96,97,98] |
Hybrid PCMs | Combined benefits of multiple PCMs and improved thermal performance | Versatile for use in a variety of integrated thermal storage systems | Complexity in synthesis and phase separation issues | [99,100,101] |
High-temperature PCMs | Industrial applications and higher operational temperature ranges | Less relevant for typical residential use and more applicable in homes using solar thermal systems | Corrosion and material compatibility issues | [102,103,104,105,106,107] |
Thermal Cycling Stability | Enhanced durability and longevity of PCMs through repeated thermal cycles | Ensures long-term reliability of PCM-integrated home heating and cooling systems | Degradation over time and consistency of properties | [108,109,110] |
Additive Manufacturing | Customizable PCM structures for specific applications via 3D printing techniques | Customizable heating and cooling elements that can be designed for specific residential structures | Limited material options and mechanical strength concerns | [111,112] |
Phase Transition Temperature Tuning | Tailored thermal properties for specific applications | Allows for precise temperature control in different residential zones or rooms | Complexity in designing and cost of materials | [113,114] |
Photochromic and Thermochromic PCMs | Dynamic response to light and temperature changes for improved energy management | Suitable for smart windows and adaptive insulation in residential buildings | Limited availability and higher cost of materials | [115,116,117,118,119,120,121,122,123,124,125,126] |
No. | Component | Melting Temperature () |
---|---|---|
1. | Air conditioning | <15 [4] |
2. | Absorption refrigeration | >90 [4] |
3. | Solar heating | 15 to 90 [4] |
4. | Residential heating/cooling | 0 to 65 [68] |
5. | Agricultural drying products | 40 to 75 [131] |
6. | Solar thermal plant | >500 [111,141] |
PCM | Heat (Latent) (J/g) | Phase Transition Temperature () | Density (g/cm3) | Solid (J/g ) | Liquid (J/g ) |
---|---|---|---|---|---|
PT-40 | 198 | 40 | 0.85 | 1.98 | 2.12 |
PT-43 | 180 | 43 | 0.88 | 1.87 | 1.94 |
PT-48 | 245 | 48 | 0.82 | 2.10 | 2.27 |
PT-50 | 200 | 50 | 0.86 | 1.82 | 1.94 |
PT-56 | 237 | 56 | 0.81 | 2.47 | 2.27 |
PT-61 | 199 | 61 | 0.84 | 1.99 | 2.16 |
PT-68 | 198 | 68 | 0.87 | 1.84 | 1.91 |
Element | Cost (Euro) | Cost (AUD) | % Cost |
---|---|---|---|
Wall (tank) + lid + drainage | 1700 | 2788 | 36.5 |
Insulation | 1500 | 2460 | 32 |
Copper (tubes) | 400 | 656 | 8.6 |
Collectors | 240 | 393.6 | 5.1 |
PCM (165 kg) | 814 | 1334.96 | 17.5 |
Total | 4654 | 7632.56 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalair, A.; Jamei, E.; Seyedmahmoudian, M.; Mekhilef, S.; Abas, N. Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN). Energies 2024, 17, 5862. https://doi.org/10.3390/en17235862
Kalair A, Jamei E, Seyedmahmoudian M, Mekhilef S, Abas N. Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN). Energies. 2024; 17(23):5862. https://doi.org/10.3390/en17235862
Chicago/Turabian StyleKalair, Ali, Elmira Jamei, Mehdi Seyedmahmoudian, Saad Mekhilef, and Naeem Abas. 2024. "Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN)" Energies 17, no. 23: 5862. https://doi.org/10.3390/en17235862
APA StyleKalair, A., Jamei, E., Seyedmahmoudian, M., Mekhilef, S., & Abas, N. (2024). Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN). Energies, 17(23), 5862. https://doi.org/10.3390/en17235862