Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory
Abstract
:1. Introduction
2. Characterization of Bifacial PV Devices
2.1. Single-Sided Illumination
- Use a non-reflective material behind the non-illuminate side.
- Limit the exposure of the module illuminating with a source of the size of the module.
- Cover the non-illuminated side with a black surface.
2.2. Double-Sided Illumination
3. Bifacial Electrical Models
3.1. The Bifacial Representation
3.2. Models Evaluation
- Gu et al. [12] The single-diode model requires 5 parameters. The estimation method the authors proposed for these parameters is implemented as described by Equations (13)–(17)
- Janssen et al. [8] utilizes a double-diode model, where initially 7 parameters have to be estimated. However, based on the author’s considerations, 3 parameters are assumed: , , and . Then, to obtain the first diode saturation current, the formulation proposed by [36] is employed, given by Equation (22).
- Bhang et al. [7] proposed a single-diode model with a parallel configuration, resulting in the estimation of 10 parameters: 5 for the frontal face and the other 5 for the rear. A W-Lambert parameter estimation is employed to obtain it, utilizing the measured values at STC for both faces. Finally, the parameters are corrected utilizing Equations (10) and (18)–(20)
4. Methodology
4.1. Setup
4.1.1. Bifacial Modules
4.1.2. Solar Simulator
4.2. Measurement
4.2.1. Single-Sided Illumination (SS)
4.2.2. Double-Sided Illumination (DS)
4.3. Data Processing and Model Approach
4.3.1. Single-Sided Illumination Measurement (SS)
4.3.2. Double-Sided Illumination Measurement (DS)
5. Results and Discussion
5.1. Single-Sided Illumination Measurement
5.2. Double-Sided Illumination Measurement
Parameters Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mouhib, E.; Micheli, L.; Almonacid, F.M.; Fernández, E.F. Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics. Energies 2022, 15, 8777. [Google Scholar] [CrossRef]
- Cuevas, A.; Luque, A.; Eguren, J.; del Alamo, J. 50 Per cent more output power from an albedo-collecting flat panel using bifacial solar cells. Sol. Energy 1982, 29, 419–420. [Google Scholar] [CrossRef]
- Eisenberg, N.P.; Drori, A.; Karsenty, A.; Bordin, N.; Kreinin, L.B. Experimental Analysis of the Increases in Energy Generation of Bifacial Over Mono-Facial PV Modules. In Proceedings of the 26th Europe Photovoltaic Solar Energy Conference Exhibition, Hambourg, Genmany, 5–9 September 2011. [Google Scholar]
- Tina, G.M.; Bontempo Scavo, F.; Merlo, L.; Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 2021, 281, 116084. [Google Scholar] [CrossRef]
- Rodríguez-Gallegos, C.D.; Bieri, M.; Gandhi, O.; Singh, J.P.; Reindl, T.; Panda, S. Monofacial vs bifacial Si-based PV modules: Which one is more cost-effective? Sol. Energy 2018, 176, 412–438. [Google Scholar] [CrossRef]
- Tahir, F.; Baloch, A.A.; Al-Ghamdi, S.G. Impact of climate change on solar monofacial and bifacial Photovoltaics (PV) potential in Qatar. Energy Rep. 2022, 8, 518–522. [Google Scholar] [CrossRef]
- Bhang, B.G.; Lee, W.; Kim, G.G.; Choi, J.H.; Park, S.Y.; Ahn, H.K. Power Performance of Bifacial c-Si PV Modules with Different Shading Ratios. IEEE J. Photovoltaics 2019, 9, 1413–1420. [Google Scholar] [CrossRef]
- Janssen, G.; Van Aken, B.; Carr, A.; Mewe, A. Outdoor Performance of Bifacial Modules by Measurements and Modelling. Energy Procedia 2015, 77, 364–373. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Aly, M.; Mostafa, M.; Rezk, H.; Alnuman, H.; Alhosaini, W. An Accurate Model for Bifacial Photovoltaic Panels. Sustainability 2023, 15, 509. [Google Scholar] [CrossRef]
- Louw, J. Modelling and Simulation of Bifacial PV Modules by Implementing the Ray Tracing Technique. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2020. Available online: https://scholar.sun.ac.za/items/54d3a241-43d1-4654-a4ce-94a7603d132a (accessed on 1 November 2024).
- Bouchakour, S.; Valencia-Caballero, D.; Luna, A.; Roman, E.; Boudjelthia, E.A.K.; Rodríguez, P. Modelling and Simulation of Bifacial PV Production Using Monofacial Electrical Models. Energies 2021, 14, 4224. [Google Scholar] [CrossRef]
- Gu, W.; Ma, T.; Li, M.; Shen, L.; Zhang, Y. A coupled optical-electrical-thermal model of the bifacial photovoltaic module. Appl. Energy 2020, 258, 114075. [Google Scholar] [CrossRef]
- Vergura, S. Simulink model of a bifacial PV module based on the manufacturer datasheet. Renew. Energy Power Qual. J. 2020, 18, 637–641. [Google Scholar] [CrossRef]
- Lindsay, N.; Libois, Q.; Badosa, J.; Migan-Dubois, A.; Bourdin, V. Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs. Sol. Energy 2020, 197, 266–278. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; de Pison, F.M.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Liang, T.S.; Pravettoni, M.; Deline, C.; Stein, J.S.; Kopecek, R.; Singh, J.P.; Luo, W.; Wang, Y.; Aberle, A.G.; Khoo, Y.S. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 2019, 12, 116–148. [Google Scholar] [CrossRef]
- IEC TS 60904-1-2:2019; Photovoltaic Devices—Part 1-2: Measurement of Current-Voltage Characteristics of Bifacial Photovoltaic (PV) Devices. Technical Specification. International Electrotechnical Commision: Geneva, Switzerland, 2019.
- Liang, T.S.; Poh, D.; Pravettoni, M. Challenges in the pre-normative characterization of bifacial photovoltaic modules. Energy Procedia 2018, 150, 66–73. [Google Scholar] [CrossRef]
- Razongles, G.; Sicot, L.; Joanny, M.; Gerritsen, E.; Lefillastre, P.; Schroder, S.; Lay, P. Bifacial Photovoltaic Modules: Measurement Challenges. Energy Procedia 2016, 92, 188–198. [Google Scholar] [CrossRef]
- Lagunas, A.; Cuadra, J.; Petrina, I.; Mayo, M.E. Design of a Special Set-Up for the I-V Characterization of Bifacial Photovoltaic Solar Cells. In Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September 2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Q.; Yu, Y.; Liu, Z. Comparison of Double-Side and Equivalent Single-Side Illumination Methods for Measuring the I–V Characteristics of Bifacial Photovoltaic Devices. IEEE J. Photovoltaics 2018, 8, 397–403. [Google Scholar] [CrossRef]
- Abbassi, A.; Mehrez, R.B.; Bensalem, Y.; Abbassi, R.; Kchaou, M.; Jemli, M.; Abualigah, L.; Altalhi, M. Improved Arithmetic Optimization Algorithm for Parameters Extraction of Photovoltaic Solar Cell Single-Diode Model. Arab. J. Sci. Eng. 2022, 47, 10435–10451. [Google Scholar] [CrossRef]
- Hara, S. Parameter Extraction of Single-Diode Model From Module Datasheet Information Using Temperature Coefficients. IEEE J. Photovoltaics 2021, 11, 213–218. [Google Scholar] [CrossRef]
- Piliougine, M.; Guejia-Burbano, R.; Petrone, G.; Sánchez-Pacheco, F.; Mora-López, L.; de Cardona, M.S. Parameters extraction of single diode model for degraded photovoltaic modules. Renew. Energy 2021, 164, 674–686. [Google Scholar] [CrossRef]
- Rasheed, M.; Alabdali, O.; Shihab, S. A New Technique for Solar Cell Parameters Estimation of The Single-Diode Model. J. Physics: Conf. Ser. 2021, 1879, 032120. [Google Scholar] [CrossRef]
- Rasheed, M.; Shihab, S.; Alabdali, O.; Hassan, H.H. Parameters Extraction of a Single-Diode Model of Photovoltaic Cell Using False Position Iterative Method. J. Phys. Conf. Ser. 2021, 1879, 032113. [Google Scholar] [CrossRef]
- Song, Z.; Fang, K.; Sun, X.; Liang, Y.; Lin, W.; Xu, C.; Huang, G.; Yu, F. An Effective Method to Accurately Extract the Parameters of Single Diode Model of Solar Cells. Nanomaterials 2021, 11, 2615. [Google Scholar] [CrossRef] [PubMed]
- Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. Photovoltaic Sources Modeling; Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Raina, G.; Sinha, S. A holistic review approach of design considerations, modelling, challenges and future applications for bifacial photovoltaics. Energy Convers. Manag. 2022, 271, 116290. [Google Scholar] [CrossRef]
- Abbassi, A.; Ben Mehrez, R.; Touaiti, B.; Abualigah, L.; Touti, E. Parameterization of photovoltaic solar cell double-diode model based on improved arithmetic optimization algorithm. Optik 2022, 253, 168600. [Google Scholar] [CrossRef]
- Hejri, M.; Mokhtari, H.; Azizian, M.R.; Ghandhari, M.; Söder, L. On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules. IEEE J. Photovoltaics 2014, 4, 915–923. [Google Scholar] [CrossRef]
- Ortiz, S.; Robles, C.; Tobón, J.; Ospino, A.; Martínez, A. Evaluación del desempeño de los modelos de un diodo y dos diodos para módulos fotovoltaicos. Rev. Espac. 2020, 41, 152–170. [Google Scholar]
- Alrahim Shannan, N.M.A.; Yahaya, N.Z.; Singh, B. Single-diode model and two-diode model of PV modules: A comparison. In Proceedings of the 2013 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 29 November–1 December 2013; pp. 210–214. [Google Scholar] [CrossRef]
- Ortiz-Rivera, E.; Peng, F. Analytical Model for a Photovoltaic Module using the Electrical Characteristics provided by the Manufacturer Data Sheet. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 16 June 2005; Volume 2005, pp. 2087–2091. [Google Scholar] [CrossRef]
- Kratochvil, J.A.; Boyson, W.E.; King, D.L. Photovoltaic Array Performance Model; Sandia National Laboratories: Albuquerque, NM, USA, 2004. [Google Scholar] [CrossRef]
- Babu, B.C.; Gurjar, S. A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module. IEEE J. Photovoltaics 2014, 4, 1156–1161. [Google Scholar] [CrossRef]
- IEC 60891:2021; International Electrotechnical Commission, Photovoltaic Devices-Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics. IEC: Geneva, Switzerland, 2021.
- Raina, G.; Sinha, S. A comprehensive assessment of electrical performance and mismatch losses in bifacial PV module under different front and rear side shading scenarios. Energy Convers. Manag. 2022, 261, 115668. [Google Scholar] [CrossRef]
Validation Method | Ref | Proposed Model | Evaluation Method | PV Device | Technology | Measurement Conditions |
---|---|---|---|---|---|---|
Outdoor measurement | [7] | Parallel single diode | IV curve | Cell | Not reported | Temperature: 25–55 °C. Irradiance: 1000 W/m2. |
Module | Not reported | Albedo: 0.16. Irradiance: 900 ± 20 W/m2. | ||||
Outdoor measurement | [8] | Double diode | Annual bifacial gain and energy output | Cell | N-type | Vertical east-west orientation. Two different albedo. |
Outdoor measurement | [9] | Single and double diode | IV curve | Module | N-type | Frontal irradiance at 1000 W/m2 while rear irradiance varies between 0% and 30%. |
Outdoor measurement | [10] | Single diode traditional and parallel configuration | Power and cumulative energy | Module | Not reported | Daily performance estimation, considering summer and winter days. |
Outdoor measurement | [11] | Analytical and empirical | DC power | Monofacial and bifacial PV array | PERC | Variation in albedo levels Different levels of temperature and irradiance depending on weather conditions. |
Simulation | [12] | Single diode | Energy yield | Module | Not reported | Daily and yearly performance estimation, considering sunny and cloudy days. |
Simulation | [13] | Single diode | IV curves for monofacial and bifacial module | Module | Not reported | STC condition: 25 °C and 1000 W/m2. 20 °C and 800 W/m2. |
Manufacturer | Model | Source | (W) | Technology | Test |
---|---|---|---|---|---|
Risen | RSM72-6-370BMDG | Santiago, Chile | 370 | PERC+ | SS, DS |
CEA-INES HJT 1 | GOPV PSDA 6 | Antogafasta, Chile | 393 | HJT | SS |
CEA-INES HJT 2 | HET GO 25 | Antogafasta, Chile | 355 | HJT | SS |
CEA-INES nPERT | n-PERT | Antogafasta, Chile | 348 | n-PERT | SS |
Trina | TSM-490DEG18MC.20(II) | Santiago, Chile | 490 | PERC+ | DS |
SunPower | SPR-P6-500-COM-S-BF | Santiago, Chile | 500 | PERC+ | SS, DS |
Module | Model | |||||||
---|---|---|---|---|---|---|---|---|
Risen | SDM parameter extraction | 10.5943 | · | - | 0.1415 | inf | 1.62 | - |
Gu et al. [12] | 10.7488 | · | - | 0.1638 | inf | 1.61 | - | |
DDM parameter extraction | 10.5943 | · | · | 0.1415 | inf | 1.50 | 2.20 | |
Janssen et al. [8] | 10.6366 | · | · | 0.1285 | - | 1.00 | 2.00 | |
Sun Power | SDM parameter extraction | 15.5432 | · | - | 0.0120 | inf | 1.42 | - |
Gu et al. [12] | 15.6654 | · | - | 0.0146 | inf | 1.43 | - | |
DDM parameter extraction | 15.5432 | · | · | 0.0200 | inf | 1.40 | 2.20 | |
Janssen et al. [8] | 15.5987 | · | · | 0.0122 | - | 1.00 | 2.00 | |
Trina | SDM parameter extraction | 12.9789 | · | - | 0.0223 | inf | 1.65 | - |
Gu et al. [12] | 12.8143 | · | - | 0.0817 | inf | 1.50 | - | |
DDM parameter extraction | 12.9789 | · | · | 0.0223 | inf | 1.60 | 2.20 | |
Janssen et al. [8] | 12.8116 | · | · | 0.0759 | - | 1.00 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra, V.G.; Valdivia-Lefort, P.; Barraza, R.; García, J.G. Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory. Energies 2024, 17, 5868. https://doi.org/10.3390/en17235868
Becerra VG, Valdivia-Lefort P, Barraza R, García JG. Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory. Energies. 2024; 17(23):5868. https://doi.org/10.3390/en17235868
Chicago/Turabian StyleBecerra, Valentina González, Patricio Valdivia-Lefort, Rodrigo Barraza, and Jesús García García. 2024. "Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory" Energies 17, no. 23: 5868. https://doi.org/10.3390/en17235868
APA StyleBecerra, V. G., Valdivia-Lefort, P., Barraza, R., & García, J. G. (2024). Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory. Energies, 17(23), 5868. https://doi.org/10.3390/en17235868