Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques
Abstract
:1. Introduction
2. Related Works
3. Machine Learning Approach
3.1. Training Model
3.1.1. Extra Tree Classifier
3.1.2. Random Forest Classification
3.1.3. Extreme Gradient Boosting Classifier
3.1.4. Logistic Regression
- z represents the linear combination of input features and coefficients.
- x0 x1 and x2 are the input features.
- β0β1β2…βn are the coefficients (parameters) to be learned
3.1.5. Decision Tree
3.1.6. Bagging Classifier
4. Results
5. Discussion
5.1. Data Description
5.2. Data Cleaning
5.3. Comprehensive Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Esmalifalak, M.; Liu, L.; Nguyen, N.; Zheng, R.; Han, Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 2014, 11, 1644–1652. [Google Scholar] [CrossRef]
- Shees, A.; Hussain, M.T.; Tariq, M.; Sarwar, A.; Sarwat, A.I. Integration of Artificial Intelligence in Future Smart Grids: An LSTM-RNN Based Approach for Optimizing Energy Efficiency in Smart Grids. In Proceedings of the 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG), Wollongong, NSW, Australia, 3–6 December 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Ali, M.N.; Amer, M.; Elsisi, M. Reliable IoT paradigm with ensemble machine learning for faults diagnosis of power transformers considering adversarial attacks. IEEE Trans. Instrum. Meas. 2023, 72, 3525413. [Google Scholar] [CrossRef]
- Elsisi, M.; Su, C.-L.; Ali, M.N. Design of reliable IoT systems with deep learning to support resilient demand side management in smart grids against adversarial attacks. IEEE Trans. Ind. Appl. 2023, 60, 2095–2106. [Google Scholar] [CrossRef]
- Lu, K.-D.; Wu, Z.-G. Multi-objective false data injection attacks of cyber–physical power systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3924–3928. [Google Scholar] [CrossRef]
- Taher, M.A.; Behnamfar, M.; Sarwat, A.; Tariq, M. False Data Injection Attack Detection and Mitigation Using Non-Linear Autoregressive Exogenous Input-Based Observers in Distributed Control for DC Microgrid. IEEE Open J. Ind. Electron. Soc. 2024, 5, 441–457. [Google Scholar] [CrossRef]
- Case, D.U. Analysis of the cyber-attack on the Ukrainian power grid. Electr. Inf. Shar. Anal. Cent. (E-ISAC) 2016, 388, 3. [Google Scholar]
- Available online: https://www.cyberdefensemagazine.com/cybersecurity-in-critical-infrastructure-protecting-power-grids-and-smart-grids/ (accessed on 28 October 2024).
- Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting integrity attacks on SCADA systems. IEEE Trans. Control. Syst. Technol. 2013, 22, 1396–1407. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 2011, 14, 1–33. [Google Scholar] [CrossRef]
- Deng, R.; Xiao, G.; Lu, R.; Liang, H.; Vasilakos, A.V. False data injection on state estimation in power systems—Attacks, impacts, and defense: A survey. IEEE Trans. Ind. Inform. 2016, 13, 411–423. [Google Scholar] [CrossRef]
- Cui, S.; Han, Z.; Kar, S.; Kim, T.T.; Poor, H.V.; Tajer, A. Coordinated data-injection attack and detection in the smart grid: A detailed look at enriching detection solutions. IEEE Signal Process. Mag. 2012, 29, 106–115. [Google Scholar]
- Lu, X.; Jing, J.; Wu, Y. False Data Injection Attack Location Detection Based on Classification Method in Smart Grid. In Proceedings of the 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, UK, 15–17 October 2020; pp. 133–136. [Google Scholar]
- Taher, A.M.; Tariq, M.; Sarwat, A.I. Trust-Based Detection and Mitigation of Cyber Attacks in Distributed Cooperative Control of Islanded AC Microgrids. Electronics 2024, 13, 3692. [Google Scholar] [CrossRef]
- Morris, T. Industrial Control System (ICS) Cyber-Attack Datasets. Available online: https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets (accessed on 21 September 2024).
- Yohanandhan, R.V.; Elavarasan, R.M.; Manoharan, P.; Mihet-Popa, L. Cyber-Physical Power System (CPPS): A Review on Modeling, Simulation, and Analysis with Cyber Security Applications. IEEE Access 2020, 8, 151019–151064. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W.; Liang, H.; Ahrabi, R.R. Cyber-security of smart microgrids: A survey. Energies 2021, 14, 27. [Google Scholar] [CrossRef]
- Ye, J.; Giani, A.; Elasser, A.; Mazumder, S.K.; Farnell, C.; Mantooth, H.A.; Kim, T.; Liu, J.; Chen, B.; Seo, G.-S.; et al. A Review of Cyber–Physical Security for Photovoltaic Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 4879–4901. [Google Scholar] [CrossRef]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, S.H. Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M. A Review of Machine Learning Approaches to Power System Security and Stability. IEEE Access 2020, 8, 113512–113531. [Google Scholar] [CrossRef]
- Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE Trans. Smart Grid 2019, 11, 2218–2234. [Google Scholar] [CrossRef]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Cui, L.; Qu, Y.; Gao, L.; Xie, G.; Yu, S. Detecting false data attacks using machine learning techniques in smart grid: A survey. J. Netw. Comput. Appl. 2020, 170, 102808. [Google Scholar] [CrossRef]
- Jow, J.; Xiao, Y.; Han, W. A survey of intrusion detection systems in smart grid. Int. J. Sens. Networks 2017, 23, 170–186. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.I.; Sarigiannidis, P.G. Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems. IEEE Access 2019, 7, 46595–46620. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Tufail, S.; Riggs, H.; Riggs, H.; Sarwat, A.I. Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms. Electronics 2023, 12, 1789. [Google Scholar] [CrossRef]
- Alsariera, Y.A.; Adeyemo, V.E.; Balogun, A.O.; Alazzawi, A.K. AI meta-learners and extra-trees algorithm for the detection of phishing websites. IEEE Access 2020, 8, 142532–142542. [Google Scholar] [CrossRef]
- Chen, C.; Wang, N.; Chen, M. Prediction model of end-point phosphorus content in consteel electric furnace based on PCA-extra tree model. ISIJ Int. 2021, 61, 1908–1914. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Biswas, S. Navo minority over-sampling technique (NMOTe): A consistent performance booster on imbalanced datasets. J. Electron. Inform. 2020, 2, 96–136. [Google Scholar] [CrossRef]
- Sina, Y.; Yin, S.; Gibran, A.M. Intelligent fault diagnosis of manufacturing processes using extra tree classification algorithm and feature selection strategies. IEEE Open J. Ind. Electron. Soc. 2023, 4, 618–628. [Google Scholar]
- Wu, B.; Zhang, B.; Li, W.; Jiang, F. A novel method for remaining useful life prediction of bearing based on spectrum image similarity measures. Mathematics 2022, 10, 2209. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, J.; Xiao, F.; Yang, X.; Wang, S. Diagnostic Bayesian networks for diagnosing air handling units’ faults—Part I: Faults in dampers, fans, filters and sensors. Appl. Therm. Eng. 2017, 111, 1272–1286. [Google Scholar] [CrossRef]
- Pal, M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Briem, G.; Benediktsson, J.; Sveinsson, J. Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote. Sens. 2002, 40, 2291–2299. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote. Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote. Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Random Forests, The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; pp. 587–604. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Wu, Z.; Zhou, M.; Lin, Z.; Chen, X.; Huang, Y. Improved genetic algorithm and XGBoost classifier for power transformer fault diagnosis. Front. Energy Res. 2021, 9, 745744. [Google Scholar] [CrossRef]
- Pan, H.; Yang, H.; Na, C.N.; Jin, J.Y. Multi-data classification detection in smart grid under false data injection attack based on Inception network. IET Renew. Power Gener. 2024, 18, 2430–2439. [Google Scholar] [CrossRef]
- Pan, S.; Morris, T.; Adhikari, U. Developing a hybrid intrusion detection system using data mining for power systems. IEEE Trans. Smart Grid 2015, 6, 3104–3113. [Google Scholar] [CrossRef]
- He, Y.; Li, L.; Qian, H.; Qian, H. CNN-GRU based fake data injection attack detection method for power grid. In Proceedings of the 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS), Nanjing, China, 18 December 2022. [Google Scholar]
- Guo, F.; Yao, S.; Zhang, N.; He, Y. XGBoost based fake data injection attack detection method for power grid. In Proceedings of the 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS), Nanjing, China, 18 December 2022. [Google Scholar]
- Varmaziari, H.; Maryam, D. Cyber Attack Detection in PMU Networks Exploiting the Combination of Machine Learning and State Estimation-Based Methods. In Proceedings of the 2021 11th Smart Grid Conference (SGC), Tabriz, Iran, 7–9 December 2021. [Google Scholar]
- Qu, Z.; Bo, X.; Yu, T.; Liu, Y.; Dong, Y.; Kan, Z.; Wang, L.; Li, Y. Active and passive hybrid detection method for power CPS false data injection attacks with improved AKF and GRU-CNN. IET Renew. Power Gener. 2022, 16, 1490–1508. [Google Scholar] [CrossRef]
- Pan, H.; Feng, X.; Na, C.; Yang, H. A model for detecting false data injection attacks in smart grids based on the method utilized for image coding. IEEE Syst. J. 2023, 17, 6181–6191. [Google Scholar] [CrossRef]
- Joel, O.L.; Doorsamy, W.; Paul, B.S. A review of missing data handling techniques for machine learning. Int. J. Innov. Technol. Interdiscip. Sci. 2022, 5, 971–1005. [Google Scholar]
- Bruce, B.F. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation; SAGE: Newcastle upon Tyne, UK, 2018. [Google Scholar]
- Yang, J.; Rahardja, S.; Fränti, P. Outlier detection: How to threshold outlier scores? In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, Sanya, China, 19–21 December 2019. [Google Scholar]
State-of-the-Arts | Machine Learning Involved in Context of Smart Grid’s Cybersecurity | |
---|---|---|
Yohanandhan et al. [16] | At perspective level | |
Nejabatkhah et al. [17] | No discussion | |
Ye et al. [18] | At perspective level | |
Hossain et al. [19] | Utilized for big data analysis | |
Alimi et al. [20] | Utilized but not for cyberthreat | |
Musleh et al. [21] | Supervised, Unsupervised and Reinforcement learning | |
Kotsiopoulos et al. [22] | Challenge for machine learning in application of smart grid cybersecurity | |
Cui et al. [23] | Supervised, Unsupervised, and Reinforcement Learning | |
Jow et al. [24] | Supervised, Unsupervised, and Reinforcement Learning | |
Radoglou et al. [25] | Anomaly-based Machine Learning technique is utilized |
Metrics | ETC | RF | XGB | LR | DT | BC |
---|---|---|---|---|---|---|
Train Set Score | 1.00 | 1.00 | 1.00 | 0.77 | 0.87 | 1.00 |
Accuracy Score | 0.98 | 0.97 | 0.97 | 0.77 | 0.95 | 0.95 |
Precision Score | 0.96 | 0.96 | 0.95 | 0.38 | 0.92 | 0.92 |
Recall Score | 0.94 | 0.90 | 0.89 | 0.15 | 0.85 | 0.85 |
F1 score | 0.95 | 0.93 | 0.92 | 0.21 | 0.89 | 0.89 |
Scenario | Description |
---|---|
1–6 | Natural event fault at L1 and L2 |
13–14 | Natural event line maintenance |
7–12 | Data injection—SLG fault replay |
15–20 | Remote tripping command injection |
21–40 | Attack event—replay setting change |
41 | No event—normal operation |
Features | Description |
---|---|
PA1: VH–PA3: VH | Phase A–C voltage angle |
PM1: V–PM3: V | Phase A–C voltage magnitude |
PA4: IH–PA6: IH | Phase A–C current angle |
PM4: I–PM6: I | Phase A–C current magnitude |
PA7: VH–PA9: VH | Positive, negative, and zero-sequence voltage angle |
PM7: V–PM9: V | Positive, negative, and zero-sequence voltage magnitude |
PA10: VH–PA12: VH | Positive, negative, and zero-sequence current angle |
PM10: V–PM12: V | Positive, negative, and zero-sequence current magnitude |
F | Relay frequency |
DF | Relay frequency delta (rate of change of frequency—dF/dt) |
PA: Z | Relay apparent impedance |
PA: ZH | Relay apparent impedance angle |
S | Relay status indicator |
Model | Handling Missing Values | Normalization | Outlier Removal | Assumptions |
---|---|---|---|---|
Extra Tree Classifier | No | |||
Random Forest | Min–max scaling | No | ||
XGBoost | Standardization | Winsorization to cap extreme | No | |
Logistic Regression | Range 0–1 min–max scaling | IQR (interquartile range) | Linear relation b/w independent and dependent variable | |
Decision Tree | Standardization mean = 0, std = 1 | No | ||
Bagging Classifier | Standardization mean = 0, std = 1 | No |
Works | Proposed Approach | Accuracy |
---|---|---|
[43] | Inception network model for classification | 96% |
[44] | Hybrid IDS that learns temporal state-based | 90.4% |
specifications using common data mining technique | ||
[45] | GRU—convolution neural network | >93% |
[46] | Extreme Gradient Boosting (XGB) | 96.33% |
[47] | State-estimation based machine learning technique | KNN—95.7% SVM (MLP)—97% SVM (RBF)—90% |
[48] | AKF (passive detection) and GRU-CNN (active detection) are mixed in parallel operation | 97.5% |
[49] | Parallel convolutional neural network (PCNN) detection model based on image data | 93.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shees, A.; Tariq, M.; Sarwat, A.I. Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques. Energies 2024, 17, 5870. https://doi.org/10.3390/en17235870
Shees A, Tariq M, Sarwat AI. Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques. Energies. 2024; 17(23):5870. https://doi.org/10.3390/en17235870
Chicago/Turabian StyleShees, Anwer, Mohd Tariq, and Arif I. Sarwat. 2024. "Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques" Energies 17, no. 23: 5870. https://doi.org/10.3390/en17235870
APA StyleShees, A., Tariq, M., & Sarwat, A. I. (2024). Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques. Energies, 17(23), 5870. https://doi.org/10.3390/en17235870