Mapping Solar Global Radiation and Beam Radiation in Taiwan
Abstract
:1. Introduction
2. Database
2.1. Global Radiation Database
2.2. Beam Radiation Database
3. Spatial Interpolation Methodology
3.1. Interpolation
3.2. Residual Kriging
3.3. Cross Validation
3.4. Determination of Semivariogram Model, Regression Formula, and Grid Size
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AST | apparent solar time (h) |
b | slope |
CWB | Central Weather Bureau |
nugget | |
sill | |
d | diffuse fraction, Equation (2) |
DSI | downward solar irradiance, equivalent to solar global horizontal radiation |
E | expectation |
FIT | feed-in-tariff |
solar constant () | |
h | lag distance |
hourly beam normal radiation () | |
hourly diffuse horizontal radiation () | |
hourly global horizontal radiation (), Equation (1) | |
hourly extraterrestrial horizontal radiation (), Equation (9) | |
daily clearness index, Equation (7) | |
hourly clearness index, Equation (6) | |
MAE | mean absolute error, Equation (20) |
MAPE | mean absolute percentage error, Equation (21) |
ME | mean error, Equation (18) |
MPE | mean percentage error, Equation (19) |
MGR | monthly global horizontal radiation () |
MTSAT | multifunctional transport satellite |
PV | photovoltaic |
RMSE | root mean square error, Equation (22) |
r | range, Equation (11); residual value, Equation (16) |
final residual value | |
SWH | solar water heater |
TMM | typical meteorological month |
TMY | typical meteorological year |
latitude, longitude, and altitude, respectively | |
Greek | |
solar altitude angle (radian) | |
semivariogram | |
difference, Equation (23) | |
sun declination angle (degree) | |
solar zenith angle (degree) | |
latitude (degree) | |
persistence of global radiation level, Equation (8) | |
hour angle (degree) | |
Subscript | |
bias | bias |
est | estimation |
obs | observation |
References
- Bureau of Energy. Energy Statistical Data Book; Ministry of Economic Affairs, Taiwan: Taipei City, Taiwan, 2014. (In Chinese) [Google Scholar]
- Chang, K.C.; Lin, W.M.; Chung, K.M. A lesson learned from the long-term subsidy program for solar water heaters in Taiwan. Sustain. Cities Soc. 2018, 41, 810–815. [Google Scholar] [CrossRef]
- Renewable Energy Installed Capacity, Bureau of Energy, Ministry of Economic Affairs, Taiwan. Available online: https://www.esist.org.tw/Database/List?PageId=4 (accessed on 1 October 2024). (In Chinese).
- Sung, H.Y.; Lin, Y.R.; Huang, C.Y.; Lin, F.M. Introduction to the design inspection of photovoltaic system. J. Taiwan Energy 2021, 8, 411–420. (In Chinese) [Google Scholar]
- Hsieh, T.E.; Fraincas, B.; Chang, K.C. Generation of a typical meteorological year for global solar radiation in Taiwan. Energies 2023, 16, 2986. [Google Scholar] [CrossRef]
- Hsiao, F.; Lin, P.H.; Lai, Y.J. Estimation of downward solar irradiance over Taiwan from MTSAT image and digital terrain data. Atmos. Sci. 2011, 39, 103–118. (In Chinese) [Google Scholar]
- Dervishi, S.; Mahdavi, A. Computing diffuse fraction of global horizontal solar radiation: A model comparison. Sol. Energy 2012, 86, 1796–1802. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Huang, K.T. Identifying a suitable solar diffuse fraction model to generate the typical meteorological year for building energy simulation. Renew. Energy 2020, 157, 1102–1115. [Google Scholar] [CrossRef]
- Every, J.P.; Li, L.; Dorrell, D.G. Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations. Renew. Energy 2020, 147, 2453–2469. [Google Scholar] [CrossRef]
- Lin, C.T.; Chang, K.C.; Chung, K.M. Re-modeling the solar diffuse fraction in Taiwan on basis of a typical-meteorological-year data. Renew. Energy 2023, 204, 823–835. [Google Scholar] [CrossRef]
- Lin, C.T.; Chang, K.C. Effects of topography and geography on solar diffuse fraction modeling in Taiwan. Atmosphere 2024, 15, 807. [Google Scholar] [CrossRef]
- Chang, K.C.; Lin, C.T.; Chen, C.C. Monitoring investigation of solar diffuse fraction in Taiwan. Opt. Quantum Electron. 2018, 50, 439–454. [Google Scholar] [CrossRef]
- Ridley, B.; Boland, J.; Lauret, P. Modeling of diffuse fraction with multiple predictors. Renew. Energy 2010, 35, 478–783. [Google Scholar] [CrossRef]
- Kuo, C.W.; Chang, W.C.; Chang, K.C. Distribution of solar diffuse fraction in Taiwan. Energy Procedia 2014, 57, 1120–1129. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Park, J.K.; Park, J.H. Comparison of spatial interpolation method for estimating solar radiation in South Korea. AWER Procedia Inf. Technol. Comput. Sci. 2013, 4, 608–614. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Rehman, S.; Ghori, S.G. Spatial estimation of global solar radiation using geostatistics. Renew. Energy 2000, 21, 583–605. [Google Scholar] [CrossRef]
- Ertekin, C.; Evrendilek, F. Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey. Agric. For. Meteorol. 2007, 145, 36–47. [Google Scholar] [CrossRef]
- ESRI Inc. ArcGIS 8.2; ESRI Inc.: Redlands, CA, USA, 2002. [Google Scholar]
- Alsamamra, H.; Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Tovar-Pescador, J. A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agric. For. Meteorol. 2009, 149, 1343–1357. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Santos-Alamillos, F.J.; Lara-Fanego, V.; Tovar-Pescador, J. A topographic geostotistical approach for mapping monthly mean values of daily global solar radiation: A case study in southern Spain. Agric. For. Meteorol. 2011, 151, 1812–1822. [Google Scholar] [CrossRef]
- Sluiter, R. Interpolation Methods for Climate Data Literature Review; KNMI Intern Rapport; Royal Netherland Meteorological Institute: De Bilt, The Netherlands, 2009. [Google Scholar]
- Park, J.K.; Das, A.; Park, J.H. A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea. Energy Convers. Manag. 2015, 101, 30–39. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Kavadias, K.A.; Paliatsos, A.G.; Bartzokas, A. Development a Greek solar map based solar model estimations. Sun Geosph. 2016, 11, 137–141. [Google Scholar]
- Chiles, J.P. Delfiner, PGeostatistics: Modeling Spatial Uncertainty; John Wiley: Hoboken, NJ, USA, 1999; Chapter 4. [Google Scholar]
- Becker, C.F.; Boyd, J.S. Solar radiation availability on surfaces in the United States as affected by season, orientation, latitude, altitude and cloudiness. Sol. Energy 1957, 1, 13–21. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J.; Gaskin, S.J. Spatial temporal analysis of daily precipitation and temperature in the basin of Mexico. J. Hydrol. 2007, 336, 231–249. [Google Scholar] [CrossRef]
- Ahmed, S.; de Marsily, G. Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resour. Res. 1987, 23, 1717–1737. [Google Scholar] [CrossRef]
- Hall, J.J.; Prairie, P.R.; Anderson, H.E.; Boes, E.C. Generation of a typical meteorological year. In Proceedings of the 1978 Annual meeting of the American Section of the International Solar Energy Society, Denver, CO, USA, 28–31 August 1978; pp. 669–671. [Google Scholar]
- Diffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; Wiley: Hoboken, NJ, USA, 2013; p. 37. [Google Scholar]
- Wu, T.; Li, Y. Spatial interpolation of temperature in the United States using residual kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Kulesza, K.; Martinez, A.; Taylor, N. Assessment of typical meteorological year data in Photovoltaic Geographical Information System 5.2, based on reanalysis and ground station data from 147 European weather stations. Atmosphere 2023, 14, 1803. [Google Scholar] [CrossRef]
- Carpentieri, A.; Folini, D.; Wild, M.; Vuileumier, L.; Meyer, A. Satellite-derived solar radiation for intra-hour and intra-day applications: Biases and uncertainties by season and altitude. Sol. Energy 2023, 255, 274–284. [Google Scholar] [CrossRef]
Number | Name | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|---|
1 | Anbu | 25.18 | 121.53 | 837.6 |
2 | Zhuzihu | 25.16 | 121.54 | 607.1 |
3 | Tamsui | 25.16 | 121.45 | 19.0 |
4 | Keelung | 25.13 | 121.74 | 26.7 |
5 | Taipei | 25.04 | 121.51 | 5.3 |
6 | Banqiao | 25.00 | 121.44 | 9.7 |
7 | Hsinchu | 24.83 | 121.01 | 26.9 |
8 | Wuqi | 24.26 | 121.52 | 31.7 |
9 | Taichung | 24.14 | 120.68 | 84.0 |
10 | Sun Moon Lake | 23.88 | 120.91 | 1017.5 |
11 | Alishan | 23.51 | 120.81 | 2413.4 |
12 | Yushan | 23.49 | 120.96 | 3844.8 |
13 | Chiayi | 23.50 | 120.43 | 26.9 |
14 | Chigu | 23.15 | 120.09 | 2.9 |
15 | Yongkang | 23.04 | 120.24 | 8.1 |
16 | Tainan | 22.99 | 120.20 | 40.8 |
17 | Kaohsiung | 22.57 | 120.32 | 2.3 |
18 | Hengchun | 22.00 | 120.75 | 22.3 |
19 | Dawu | 22.36 | 120.90 | 8.1 |
20 | Taitung | 22.75 | 121.15 | 9.0 |
21 | Chenggong | 23.10 | 121.37 | 33.5 |
22 | Hualien | 23.98 | 121.61 | 16.1 |
23 | Su-Ao | 24.60 | 121.86 | 24.9 |
24 | Yilan | 24.76 | 121.76 | 7.2 |
25 | Pongjiayu | 25.63 | 122.08 | 101.7 |
26 | Lanyu | 22.04 | 121.56 | 324.0 |
27 | Penghu | 23.56 | 119.56 | 10.7 |
28 | Dongjidao | 23.26 | 119.67 | 43.0 |
29 | Matsu | 26.17 | 119.92 | 97.8 |
30 | Kinmen | 24.41 | 118.29 | 47.9 |
Country or District | Area/Mean Area Density per Station (km2) | Grid Size (km × km) | (Number of Stations for Model Development)/(Number of Stations for Validation) | Data Sampled | Type of Kriging |
---|---|---|---|---|---|
Saudi Arabia [19] | 2,150,000/52,439 | 55 × 33 | 40/1 * | Since 1971 (incomplete information) | Ordinary kriging [18] |
Turkey [20] | 783,356/4927 | 0.5 × 0.5 | 124/35 | Mean values in 1968–2004 | Universal kriging [21] |
Andalusia, Spain [22,23] | 87,000/482 | 1 × 1 | 112/54 | Mean values in 2003–2006 | Ordinary kriging and residual kriging [24] |
South Korea [25] | 100,032/1235 | 0.03 × 0.03 | 80/1 * | Mean values in 2001–2012 | Residual kriging |
Greece [26] | 131,957/3384 | No information | 39/39 ** | TMY (1985–1999) | Empirical Bayesian kriging [27] |
Taiwan (present study) | 35,808/1492 | 1 × 1 | 23/1 * | TMY (2004–2018) | Residual kriging |
Station Number/Name | January | February | March | April | May | June | July | August | September | October | November | December | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1/Anbu | 179.62 | 208.55 | 282.76 | 349.30 | 354.37 | 374.06 | 494.62 | 440.12 | 330.78 | 248.30 | 186.55 | 179.65 | 3268.7 |
2/Zhuzihu | 164.20 | 179.73 | 334.12 | 218.92 | 335.81 | 416.09 | 342.42 | 429.70 | 341.63 | 353.64 | 197.38 | 208.13 | 3421.8 |
3/Tamsui | 190.44 | 213.37 | 308.74 | 321.57 | 435.22 | 441.43 | 580.10 | 490.31 | 469.13 | 309.13 | 247.17 | 200.91 | 4208.1 |
4/Keelung | 141.76 | 178.63 | 252.12 | 313.84 | 397.27 | 445.67 | 630.05 | 565.90 | 354.30 | 250.23 | 173.73 | 137.00 | 3840.5 |
5/Taipei | 186.92 | 209.80 | 249.61 | 371.37 | 438.10 | 421.69 | 547.94 | 429.09 | 368.22 | 273.89 | 248.54 | 202.06 | 3947.2 |
6/Banqiao | 214.77 | 224.03 | 257.07 | 318.59 | 451.30 | 434.64 | 603.76 | 509.89 | 419.07 | 304.32 | 231.09 | 189.91 | 3968.5 |
7/Hsinchu | 231.26 | 224.59 | 276.61 | 353.47 | 422.42 | 460.72 | 570.72 | 506.62 | 456.43 | 405.70 | 270.44 | 212.41 | 4391.1 |
8/Wuqi | 263.62 | 303.24 | 374.62 | 429.72 | 507.76 | 486.03 | 560.38 | 516.30 | 471.91 | 453.63 | 297.14 | 281.21 | 4945.6 |
9/Taichung | 355.97 | 332.78 | 416.85 | 417.28 | 484.45 | 487.79 | 573.82 | 496.54 | 486.37 | 483.21 | 376.07 | 326.58 | 5237.7 |
10/Sun Moon Lake | 311.97 | 310.18 | 342.28 | 318.25 | 359.59 | 390.65 | 457.56 | 400.69 | 367.36 | 388.29 | 329.75 | 276.01 | 4252.6 |
11/Alishan | 359.17 | 331.43 | 387.33 | 379.50 | 372.37 | 376.03 | 408.91 | 330.54 | 326.02 | 374.32 | 359.04 | 348.19 | 4352.8 |
12/Yushan | 400.85 | 385.51 | 456.67 | 412.03 | 454.42 | 471.16 | 547.76 | 468.82 | 411.77 | 524.81 | 376.57 | 394.10 | 5304.5 |
13/Chiayi | 351.67 | 332.32 | 434.81 | 474.24 | 566.83 | 483.25 | 550.59 | 480.96 | 508.74 | 469.35 | 320.19 | 324.11 | 5297.1 |
14/Chigu | 380.60 | 391.62 | 453.95 | 439.48 | 527.92 | 489.00 | 579.36 | 483.06 | 533.14 | 459.80 | 348.86 | 325.76 | 5412.6 |
15/Yongkang | 336.12 | 351.04 | 383.23 | 445.50 | 539.81 | 470.92 | 511.31 | 464.71 | 440.55 | 461.17 | 341.67 | 315.96 | 5062.1 |
16/Tainan | 366.81 | 369.90 | 482.78 | 498.13 | 550.66 | 537.61 | 572.01 | 481.67 | 457.07 | 464.28 | 348.68 | 350.34 | 5479.9 |
17/Kaohsiung | 342.94 | 363.43 | 463.19 | 484.57 | 548.18 | 518.64 | 546.12 | 488.83 | 447.62 | 465.65 | 329.77 | 327.45 | 5326.4 |
18/Hengchun | 335.57 | 414.00 | 447.52 | 486.01 | 518.02 | 505.44 | 523.87 | 460.64 | 456.74 | 449.28 | 375.64 | 323.97 | 5296.7 |
19/Dawa | 276.22 | 319.26 | 345.00 | 411.85 | 499.42 | 531.17 | 551.18 | 516.73 | 462.86 | 434.28 | 325.72 | 251.87 | 4925.6 |
20/Taitung | 289.65 | 297.98 | 338.25 | 430.25 | 560.46 | 588.17 | 678.33 | 585.66 | 484.83 | 451.15 | 330.13 | 302.22 | 5337.1 |
21/Chengong | 232.33 | 259.12 | 296.97 | 328.47 | 402.78 | 561.51 | 661.58 | 552.57 | 488.42 | 416.07 | 312.95 | 256.76 | 4769.5 |
22/Hualien | 201.38 | 220.22 | 286.63 | 303.06 | 420.74 | 499.39 | 623.50 | 552.67 | 438.94 | 342.35 | 255.14 | 221.22 | 4365.2 |
23/Su-Ao | 166.25 | 189.63 | 252.48 | 332.22 | 385.58 | 505.51 | 581.22 | 582.96 | 399.17 | 273.58 | 191.91 | 170.51 | 4031.0 |
24/Yilan | 171.19 | 212.05 | 282.50 | 337.25 | 402.22 | 458.92 | 630.85 | 559.38 | 435.54 | 277.87 | 189.70 | 156.94 | 4114.4 |
25/Pongjiayu | 162.32 | 186.79 | 290.64 | 377.78 | 477.04 | 533.40 | 748.67 | 663.66 | 516.22 | 399.85 | 230.50 | 186.63 | 4773.5 |
26/Lanyu | 219.97 | 240.67 | 307.95 | 364.64 | 419.61 | 431.12 | 541.76 | 423.75 | 371.95 | 368.67 | 251.38 | 229.60 | 4171.1 |
27/Penghu | 218.22 | 235.57 | 343.08 | 424.50 | 498.01 | 527.09 | 611.54 | 529.94 | 478.05 | 410.44 | 298.95 | 256.43 | 4811.8 |
28/Dongjidao | 283.88 | 293.42 | 380.38 | 470.03 | 575.94 | 532.77 | 621.03 | 557.39 | 510.96 | 455.64 | 307.64 | 261.34 | 5250.4 |
29/Matsu | 195.47 | 247.70 | 289.66 | 358.42 | 419.64 | 407.83 | 601.57 | 518.26 | 379.56 | 339.09 | 215.17 | 194.03 | 4166.4 |
30/Kinmen | 287.77 | 258.95 | 324.43 | 384.80 | 442.75 | 456.21 | 622.04 | 545.34 | 466.73 | 417.45 | 311.93 | 281.43 | 4799.8 |
Station Number/Name | January | February | March | April | May | June | July | August | September | October | November | December | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1/Anbu | 64.61 | 75.61 | 91.82 | 118.06 | 103.40 | 89.79 | 176.76 | 162.40 | 105.61 | 86.04 | 54.67 | 61.35 | 1190.1 |
2/Zhuzihu | 43.04 | 40.40 | 137.67 | 15.07 | 94.66 | 110.23 | 26.91 | 124.94 | 120.35 | 72.32 | 21.60 | 87.75 | 849.9 |
3/Tamsui | 55.07 | 81.59 | 95.78 | 79.60 | 171.67 | 83.96 | 196.30 | 141.24 | 195.48 | 110.06 | 68.45 | 77.29 | 1356.5 |
4/Keelung | 43.53 | 70.96 | 108.77 | 93.87 | 116.81 | 151.96 | 278.76 | 265.72 | 131.87 | 80.23 | 54.03 | 28.54 | 1425.0 |
5/Taipei | 59.48 | 78.51 | 61.32 | 111.43 | 121.69 | 90.29 | 185.31 | 110.11 | 148.22 | 89.07 | 81.02 | 72.70 | 1209.2 |
6/Banqiao | 85.88 | 87.91 | 51.86 | 105.01 | 141.20 | 143.24 | 289.14 | 185.54 | 182.38 | 100.34 | 78.53 | 75.77 | 1526.8 |
7/Hsinchu | 78.89 | 60.58 | 73.26 | 105.63 | 135.63 | 149.22 | 200.38 | 177.58 | 174.42 | 150.89 | 91.56 | 53.98 | 1452.0 |
8/Wuqi | 67.76 | 85.64 | 74.51 | 133.50 | 134.63 | 115.50 | 171.98 | 206.87 | 238.78 | 173.25 | 105.05 | 106.57 | 1614.0 |
9/Taichung | 191.73 | 152.09 | 178.57 | 115.09 | 161.36 | 146.76 | 207.16 | 133.16 | 194.48 | 214.44 | 187.33 | 168.94 | 2051.1 |
10/Sun Moon Lake | 155.51 | 138.96 | 122.18 | 59.57 | 100.13 | 77.98 | 114.05 | 82.72 | 80.23 | 125.67 | 136.63 | 131.09 | 1324.7 |
11/Alishan | 208.65 | 143.56 | 166.19 | 128.10 | 130.46 | 84.65 | 117.63 | 67.74 | 94.79 | 163.09 | 176.84 | 184.80 | 1666.5 |
12/Yushan | 261.68 | 228.94 | 231.90 | 170.56 | 138.37 | 140.31 | 229.04 | 183.52 | 164.18 | 309.55 | 214.71 | 256.11 | 2528.9 |
13/Chiayi | 161.71 | 118.53 | 156.54 | 180.09 | 226.90 | 185.47 | 181.43 | 187.81 | 236.46 | 216.46 | 114.42 | 127.97 | 2093.8 |
14/Chigu | 205.97 | 163.06 | 157.14 | 117.33 | 227.56 | 203.20 | 203.81 | 149.35 | 220.88 | 156.12 | 145.35 | 124.04 | 2073.8 |
15/Yongkang | 151.62 | 150.64 | 104.92 | 127.28 | 210.09 | 123.37 | 156.14 | 203.73 | 151.08 | 206.23 | 139.29 | 147.58 | 1872.0 |
16/Tainan | 150.59 | 152.68 | 191.10 | 202.89 | 252.17 | 265.16 | 204.15 | 186.28 | 158.56 | 218.32 | 142.08 | 154.58 | 2278.6 |
17/Kaohsiung | 131.03 | 133.16 | 176.20 | 168.66 | 198.21 | 192.38 | 227.37 | 180.43 | 146.02 | 182.92 | 115.97 | 118.23 | 1970.6 |
18/Hengchun | 121.87 | 185.86 | 143.32 | 171.55 | 206.42 | 186.07 | 176.93 | 144.26 | 148.74 | 176.45 | 161.74 | 132.75 | 1956.0 |
19/Dawa | 105.38 | 136.19 | 87.90 | 132.41 | 147.67 | 183.54 | 197.70 | 274.24 | 183.54 | 189.38 | 129.34 | 81.53 | 1848.8 |
20/Taitung | 119.57 | 115.72 | 124.62 | 214.74 | 283.12 | 276.15 | 368.11 | 320.64 | 272.97 | 238.04 | 143.77 | 126.33 | 2603.8 |
21/Chengong | 74.97 | 90.42 | 52.87 | 97.85 | 139.78 | 250.65 | 349.27 | 281.63 | 280.68 | 215.39 | 139.45 | 101.71 | 2074.7 |
22/Hualien | 73.16 | 70.74 | 105.11 | 81.47 | 103.20 | 199.70 | 262.10 | 229.48 | 164.06 | 128.03 | 98.89 | 93.79 | 1609.7 |
23/Su-Ao | 59.09 | 67.89 | 69.18 | 108.11 | 103.56 | 182.11 | 267.18 | 298.37 | 134.43 | 93.78 | 69.79 | 68.97 | 1522.5 |
24/Yilan | 53.30 | 86.03 | 76.26 | 92.36 | 140.26 | 121.90 | 297.94 | 275.27 | 191.14 | 114.14 | 63.58 | 45.64 | 1557.8 |
25/Pongjiayu | 59.43 | 79.60 | 129.66 | 151.95 | 183.04 | 210.98 | 463.17 | 310.33 | 226.38 | 182.12 | 71.29 | 77.73 | 2145.7 |
26/Lanyu | 56.80 | 75.39 | 72.53 | 95.13 | 117.95 | 95.10 | 214.58 | 127.39 | 134.64 | 119.75 | 68.59 | 72.50 | 1250.4 |
27/Penghu | 55.80 | 78.96 | 78.65 | 112.47 | 155.53 | 171.29 | 244.56 | 207.58 | 214.30 | 128.76 | 99.92 | 66.76 | 1614.6 |
28/Dongjidao | 87.96 | 102.50 | 102.03 | 127.75 | 206.42 | 227.03 | 253.87 | 204.23 | 201.38 | 183.23 | 115.03 | 78.96 | 1890.4 |
29/Matsu | 83.67 | 90.69 | 57.17 | 89.80 | 91.76 | 104.64 | 206.25 | 159.21 | 111.79 | 96.85 | 57.80 | 54.62 | 1204.2 |
30/Kinmen | 92.87 | 89.40 | 86.17 | 143.89 | 165.70 | 124.34 | 244.68 | 178.44 | 175.39 | 138.87 | 107.58 | 101.36 | 1648.7 |
Case | Semivariogram Model | Multiple Regression Formula | ||
---|---|---|---|---|
Exponential, Equation (11) | Linear, Equation (12) | Linear, Equation (14) | Nonlinear, Equation (15) | |
1 | √ | √ | ||
2 | √ | √ | ||
3 | √ | √ | ||
4 | √ | √ |
Month | January | February | March | April | May | June | July | August | September | October | November | December | Mean ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPE-1 * (%) | 0.51 | 0.38 | 0.70 | 1.16 | 0.79 | 0.51 | 1.64 | 0.95 | 0.96 | 0.43 | 0.22 | 0.58 | 0.74 |
MAPE-1 (%) | 5.73 | 4.57 | 6.96 | 8.24 | 6.70 | 5.24 | 9.64 | 7.72 | 8.75 | 3.57 | 1.99 | 6.06 | 6.27 |
ME-1) | −4.90 | −3.30 | 3.77 | 1.08 | 0.144 | −1.10 | −1.90 | −0.035 | −0.130 | −11.0 | −23.0 | −1.10 | −3.50 |
MAE-1) | 0.469 | 0.455 | 0.780 | 0.945 | 0.926 | 0.788 | 1.550 | 1.144 | 1.212 | 0.433 | 0.173 | 0.472 | 0.780 |
RMSE-1) | 0.623 | 0.568 | 0.917 | 1.146 | 1.234 | 1.040 | 1.980 | 1.436 | 1.335 | 0.647 | 0.263 | 0.566 | 0.980 |
MPE-2 (%) | 0.36 | 0.28 | 0.61 | 0.98 | 0.31 | 0.10 | 0.69 | 0.24 | 0.25 | 0.05 | 0.32 | 0.54 | 0.39 |
MAPE-2 (%) | 4.55 | 3.95 | 6.14 | 7.75 | 3.91 | 2.59 | 5.63 | 3.53 | 3.09 | 2.24 | 3.92 | 5.95 | 4.44 |
ME-2) | −4.70 | −5.50 | 0.674 | ~ 0 | 1.06 | 8.88 | 1.10 | 1.45 | −1.60 | 1.09 | −2.00 | 0.470 | 0.074 |
MAE-2) | 0.392 | 0.384 | 0.674 | 0.895 | 0.562 | 0.410 | 0.925 | 0.561 | 0.447 | 0.260 | 0.380 | 0.464 | 0.530 |
RMSE-2) | 0.508 | 0.471 | 0.858 | 1.072 | 0.812 | 0.505 | 1.270 | 0.761 | 0.634 | 0.320 | 0.519 | 0.571 | 0.692 |
MPE-3 (%) | 0.41 | 0.04 | 0.11 | 0.06 | 0.73 | 0.42 | 0.89 | 0.70 | 0.80 | 0.62 | 0.73 | 0.62 | 0.51 |
MAPE-3 (%) | 4.74 | 0.59 | 0.42 | 0.43 | 6.34 | 4.45 | 5.22 | 5.45 | 6.85 | 5.00 | 5.82 | 6.32 | 4.30 |
ME-3) | −9.40 | −3.51 | 81.74 | −3.90 | 1.04 | 0.585 | 6.59 | −3.90 | −9.22 | −9.70 | −7.12 | −1.21 | 64.2 |
MAE-3) | 0.393 | 0.0547 | 0.0464 | 0.0476 | 0.877 | 0.672 | 0.840 | 0.792 | 0.940 | 0.613 | 0.511 | 0.492 | 0.523 |
RMSE-3) | 0.528 | 0.0721 | 0.0571 | 0.0622 | 1.147 | 0.882 | 1.081 | 1.072 | 1.112 | 0.861 | 0.668 | 0.593 | 0.678 |
MPE-4 (%) | 0.28 | 0.20 | 0.05 | 0.05 | 0.21 | 0.09 | 0.25 | 0.21 | 0.02 | 0.06 | 0.02 | 0.30 | 0.14 |
MAPE-4 (%) | 3.35 | 2.69 | 0.36 | 0.43 | 2.66 | 2.47 | 1.89 | 3.20 | 0.09 | 2.29 | 0.20 | 3.16 | 1.90 |
ME-4) | −9.10 | −9.50 | 11.07 | −6.30 | 4.22 | 1.06 | 20.1 | 2.95 | 23.3 | 0.587 | 1.06 | −1.30 | 3.99 |
MAE-4) | 0.288 | 0.256 | 0.0397 | 0.0485 | 0.376 | 0.392 | 0.312 | 0.508 | 0.0123 | 0.266 | 0.0187 | 0.246 | 0.230 |
RMSE-4) | 0.373 | 0.308 | 0.0567 | 0.0641 | 0.525 | 0.485 | 0.428 | 0.680 | 0.0174 | 0.328 | 0.0238 | 0.306 | 0.300 |
Grid Size (km by km) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 × 10 | −10.25 | 3.92 | −5.92 | −5.14 | −0.74 | −10.01 | −2.14 | −0.03 | 5.16 | −0.13 | −2.63 | −5.13 |
1 × 1 | −10.09 | 3.86 | −5.24 | −5.11 | −0.75 | −10.16 | −2.16 | −0.04 | 5.10 | −0.10 | −2.61 | −5.10 |
0.1 × 0.1 | −10.08 | 3.86 | −5.20 | −5.11 | −0.74 | −10.15 | −2.15 | −0.04 | 5.09 | −0.10 | −2.61 | −5.09 |
Station Number | Relative Difference *** | Relative Difference | ||
---|---|---|---|---|
30 * (24.41° N, 118.29° E) | 4799.8 | 8.36% | 1648.7 | 19.62% |
9 (24.14° N, 120.68° E) | 5237.7 | 2051.1 |
Station Number | Relative Difference | Relative Difference | ||
---|---|---|---|---|
27 * (23.56° N, 119.56° E) | 4811.8 | 9.16% | 1614.6 | 22.88% |
9 (23.50° N, 120.43° E) | 5297.1 | 2093.8 |
Station Number | Relative Difference | Relative Difference | ||
---|---|---|---|---|
26 ** (22.04° N, 121.56° E) | 4171.1 | 21.25% | 1250.4 | 36.07% |
18 (22.00° N, 120.75° E) | 5296.7 | 1956.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, T.-E.; Chang, K.-C. Mapping Solar Global Radiation and Beam Radiation in Taiwan. Energies 2024, 17, 5874. https://doi.org/10.3390/en17235874
Hsieh T-E, Chang K-C. Mapping Solar Global Radiation and Beam Radiation in Taiwan. Energies. 2024; 17(23):5874. https://doi.org/10.3390/en17235874
Chicago/Turabian StyleHsieh, Tsung-En, and Keh-Chin Chang. 2024. "Mapping Solar Global Radiation and Beam Radiation in Taiwan" Energies 17, no. 23: 5874. https://doi.org/10.3390/en17235874
APA StyleHsieh, T. -E., & Chang, K. -C. (2024). Mapping Solar Global Radiation and Beam Radiation in Taiwan. Energies, 17(23), 5874. https://doi.org/10.3390/en17235874