Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya †
Abstract
:1. Introduction
- -
- Find the best monthly, seasonal, and yearly tilt angles of solar photovoltaic panels to maximize the incident solar radiation.
- -
- Compare the presented results with other published results achieved in the same region.
- -
- Establish empirical models for estimating the optimum tilt angle in twelve major cities in Libya.
- -
- Validate the established models using different statistical criteria.
2. Materials and Methods
2.1. Case Study Regions and Data Resources
2.2. Methodology
2.2.1. Extraterrestrial Solar Radiation
2.2.2. Solar Radiation on Tilted Surfaces
2.2.3. Optimum Tilt Angle
2.2.4. Percentage Gain and Loss in Radiation
2.2.5. Models for Optimum Tilt Angles
- -
- Model #1: linear model
- -
- Model #2: 2nd-degree polynomial
- -
- Model #3: 3rd-degree polynomial
- -
- Model #4: Exponential
- -
- Model #5: Gauss
- -
- Model #6: Fourier
- -
- Model #7: Exponential II
2.3. Statistical Methods
3. Results and Discussion
3.1. Bengazi
3.2. Ajdabiya
3.3. Jalu
3.4. Kufra
3.5. Sebha
3.6. Hun
3.7. Elgariyat
3.8. Tripoli
3.9. Nalut
3.10. Ghadames
3.11. Ghat
3.12. Sirt
4. Conclusions
- ▪
- The summer season has a value of optimum tilt angle lower than the winter season. The monthly optimum tilt angles in the studied sites vary from (in June and July) to (in December). Also, the annual optimum tilt angles for the selected sites vary between and .
- ▪
- The percent gain in annual average solar energy () received at the surfaces of PV panels mounted at monthly optimum tilt angle varies from 12.43% to 17.24% for all cities compared to the horizontal surface.
- ▪
- The percentage increase in solar radiation due to seasonal optimum tilt angle compared with annual fixed tilt angle for all cities varies between 4.83% and 5.94%.
- ▪
- A loss of 5.57–6.60% in solar energy () is determined with surfaces tilted at the annual optimum tilt angle compared to surfaces at monthly optimum tilt angle.
- ▪
- Both the third-order polynomial model and the Fourier model had the best performance in estimating the optimum tilt angle in Libya.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Regression coefficient | |
Global solar radiation on a horizontal surface | |
Extraterrestrial solar radiation | |
Diffuse solar radiation | |
Solar radiation incident on a tilted surface | |
Solar constant | |
Clearness index | |
Mean bias error | |
Number of the day of the year | |
Correlation coefficient | |
Ratio of the tilted solar radiation to the horizontal solar radiation | |
Ratio of the direct solar radiation on the tilted surface to the horizontal solar radiation. | |
Root mean square error. | |
Latitude | |
Solar declination | |
Sunrise hour angle | |
Sunset hour angle | |
Tilt angle |
Appendix A
Months | Bengazi | Ajdabiya | ||||||
---|---|---|---|---|---|---|---|---|
Jan | 2.82 | 4.23 | 4.23 | 3.88 | 3.07 | 4.58 | 4.58 | 4.19 |
Feb | 3.80 | 5.00 | 4.98 | 4.81 | 4.06 | 5.31 | 5.28 | 5.11 |
Mar | 4.84 | 5.48 | 5.31 | 5.47 | 5.05 | 5.68 | 5.51 | 5.67 |
Apr | 6.09 | 6.25 | 6.25 | 6.14 | 6.15 | 6.29 | 6.29 | 6.17 |
May | 6.36 | 6.36 | 6.21 | 5.88 | 6.32 | 6.32 | 6.16 | 5.83 |
Jun | 6.84 | 6.84 | 6.80 | 6.08 | 7.21 | 7.21 | 7.17 | 6.37 |
Jul | 7.10 | 7.10 | 7.08 | 6.40 | 6.88 | 6.88 | 6.86 | 6.20 |
Aug | 6.46 | 6.52 | 6.49 | 6.27 | 6.35 | 6.39 | 6.37 | 6.13 |
Sep | 5.52 | 5.99 | 5.85 | 5.99 | 5.71 | 6.16 | 6.01 | 6.16 |
Oct | 4.38 | 5.56 | 5.56 | 5.42 | 4.29 | 5.29 | 5.29 | 5.18 |
Nov | 3.34 | 5.04 | 4.93 | 4.62 | 3.76 | 5.74 | 5.59 | 5.23 |
Dec | 2.57 | 4.01 | 4.01 | 3.62 | 2.89 | 4.55 | 4.54 | 4.08 |
Average | 5.01 | 5.70 | 5.64 | 5.38 | 5.15 | 5.87 | 5.80 | 5.53 |
% Gain | - | 13.76 | 12.59 | 7.41 | - | 14.04 | 12.82 | 7.40 |
Months | Jalu | Kufra | ||||||
Jan | 3.70 | 5.70 | 5.70 | 5.16 | 4.47 | 6.51 | 6.50 | 5.91 |
Feb | 4.47 | 5.84 | 5.80 | 5.61 | 5.24 | 6.58 | 6.54 | 6.34 |
Mar | 5.28 | 5.88 | 5.72 | 5.88 | 5.91 | 6.42 | 6.27 | 6.42 |
Apr | 6.69 | 6.83 | 6.82 | 6.68 | 6.97 | 7.03 | 7.02 | 6.84 |
May | 6.81 | 6.81 | 6.62 | 6.23 | 7.31 | 7.31 | 7.08 | 6.62 |
Jun | 7.35 | 7.35 | 7.31 | 6.44 | 7.56 | 7.56 | 7.54 | 6.58 |
Jul | 7.39 | 7.39 | 7.36 | 6.59 | 7.41 | 7.41 | 7.40 | 6.56 |
Aug | 6.63 | 6.66 | 6.65 | 6.36 | 7.29 | 7.29 | 7.29 | 6.90 |
Sep | 5.83 | 6.24 | 6.08 | 6.23 | 6.35 | 6.65 | 6.46 | 6.64 |
Oct | 4.89 | 6.09 | 6.08 | 5.94 | 5.61 | 6.73 | 6.72 | 6.58 |
Nov | 3.72 | 5.38 | 5.27 | 4.98 | 4.72 | 6.64 | 6.48 | 6.12 |
Dec | 3.50 | 5.70 | 5.69 | 5.05 | 3.93 | 5.80 | 5.78 | 5.22 |
Average | 5.52 | 6.32 | 6.26 | 5.93 | 6.06 | 6.83 | 6.76 | 6.39 |
% Gain | - | 14.50 | 13.33 | 7.37 | - | 12.59 | 11.43 | 5.44 |
Months | Sebha | Hun | ||||||
Jan | 4.35 | 6.79 | 6.78 | 6.11 | 3.47 | 5.20 | 5.20 | 4.75 |
Feb | 4.92 | 6.37 | 6.33 | 6.13 | 4.58 | 6.03 | 6.00 | 5.79 |
Mar | 5.77 | 6.40 | 6.22 | 6.39 | 5.28 | 5.89 | 5.72 | 5.88 |
Apr | 6.83 | 6.93 | 6.93 | 6.75 | 6.59 | 6.72 | 6.72 | 6.57 |
May | 6.55 | 6.55 | 6.36 | 5.96 | 6.68 | 6.68 | 6.49 | 6.11 |
Jun | 7.51 | 7.51 | 7.48 | 6.52 | 7.32 | 7.32 | 7.28 | 6.41 |
Jul | 7.25 | 7.25 | 7.23 | 6.42 | 7.31 | 7.31 | 7.28 | 6.51 |
Aug | 6.87 | 6.89 | 6.88 | 6.54 | 6.85 | 6.88 | 6.87 | 6.57 |
Sep | 6.65 | 7.11 | 6.89 | 7.10 | 6.09 | 6.55 | 6.36 | 6.54 |
Oct | 5.46 | 6.78 | 6.78 | 6.62 | 4.91 | 6.13 | 6.12 | 5.98 |
Nov | 4.75 | 7.22 | 7.04 | 6.57 | 3.92 | 5.81 | 5.68 | 5.34 |
Dec | 3.97 | 6.42 | 6.40 | 5.69 | 3.28 | 5.19 | 5.17 | 4.64 |
Average | 5.91 | 6.85 | 6.78 | 6.40 | 5.52 | 6.31 | 6.24 | 5.93 |
% Gain | - | 16.02 | 14.72 | 8.37 | - | 14.22 | 13.03 | 7.28 |
Months | Elgariyat | Tripoli | ||||||
Jan | 3.43 | 5.30 | 5.30 | 4.80 | 3.07 | 4.91 | 4.91 | 4.44 |
Feb | 4.35 | 5.77 | 5.73 | 5.52 | 3.44 | 4.45 | 4.41 | 4.31 |
Mar | 5.38 | 6.08 | 5.89 | 6.07 | 5.18 | 5.98 | 5.78 | 5.96 |
Apr | 6.76 | 6.93 | 6.93 | 6.79 | 6.14 | 6.32 | 6.32 | 6.21 |
May | 6.55 | 6.55 | 6.38 | 6.02 | 7.15 | 7.15 | 6.96 | 6.58 |
Jun | 7.39 | 7.39 | 7.35 | 6.50 | 7.22 | 7.22 | 7.18 | 6.37 |
Jul | 7.44 | 7.44 | 7.41 | 6.65 | 7.87 | 7.87 | 7.84 | 7.03 |
Aug | 7.08 | 7.13 | 7.11 | 6.83 | 7.06 | 7.15 | 7.11 | 6.87 |
Sep | 5.13 | 5.46 | 5.32 | 5.45 | 5.46 | 5.95 | 5.80 | 5.95 |
Oct | 4.13 | 5.01 | 5.01 | 4.92 | 4.20 | 5.34 | 5.34 | 5.21 |
Nov | 3.46 | 5.02 | 4.90 | 4.65 | 3.17 | 4.78 | 4.69 | 4.41 |
Dec | 3.20 | 5.20 | 5.19 | 4.62 | 2.81 | 4.72 | 4.70 | 4.19 |
Average | 5.36 | 6.11 | 6.04 | 5.74 | 5.23 | 5.99 | 5.92 | 5.63 |
% Gain | - | 13.97 | 12.77 | 7.04 | - | 14.46 | 13.17 | 7.60 |
Months | Nalut | Ghadames | ||||||
Jan | 2.96 | 4.46 | 4.45 | 4.06 | 3.89 | 6.36 | 6.35 | 5.70 |
Feb | 3.99 | 5.28 | 5.25 | 5.05 | 4.85 | 6.66 | 6.63 | 6.35 |
Mar | 4.71 | 5.28 | 5.12 | 5.27 | 5.84 | 6.69 | 6.45 | 6.68 |
Apr | 5.90 | 6.04 | 6.04 | 5.93 | 6.55 | 6.70 | 6.70 | 6.54 |
May | 6.00 | 6.00 | 5.86 | 5.57 | 7.03 | 7.03 | 6.82 | 6.40 |
Jun | 7.24 | 7.24 | 7.20 | 6.42 | 7.21 | 7.21 | 7.17 | 6.30 |
Jul | 6.84 | 6.84 | 6.82 | 6.19 | 7.24 | 7.24 | 7.21 | 6.43 |
Aug | 6.41 | 6.46 | 6.44 | 6.22 | 7.01 | 7.06 | 7.04 | 6.73 |
Sep | 5.43 | 5.86 | 5.75 | 5.86 | 6.10 | 6.60 | 6.41 | 6.60 |
Oct | 3.51 | 4.17 | 4.17 | 4.11 | 5.38 | 7.02 | 7.02 | 6.81 |
Nov | 2.82 | 3.90 | 3.83 | 3.66 | 4.08 | 6.34 | 6.20 | 5.79 |
Dec | 2.85 | 4.59 | 4.57 | 4.08 | 3.26 | 5.32 | 5.31 | 4.76 |
Average | 4.89 | 5.51 | 5.46 | 5.20 | 5.70 | 6.69 | 6.61 | 6.26 |
% Gain | - | 12.69 | 11.68 | 6.42 | - | 17.24 | 15.87 | 9.71 |
Months | Ghat | Sirt | ||||||
Jan | 4.14 | 5.99 | 5.99 | 5.45 | 2.92 | 4.31 | 4.31 | 3.95 |
Feb | 5.13 | 6.51 | 6.47 | 6.25 | 3.75 | 4.82 | 4.79 | 4.65 |
Mar | 5.40 | 5.85 | 5.71 | 5.85 | 4.72 | 5.27 | 5.12 | 5.26 |
Apr | 6.55 | 6.61 | 6.61 | 6.45 | 5.58 | 5.70 | 5.69 | 5.59 |
May | 6.54 | 6.54 | 6.36 | 5.98 | 5.92 | 5.92 | 5.79 | 5.49 |
Jun | 6.85 | 6.85 | 6.83 | 6.04 | 6.82 | 6.82 | 6.79 | 6.08 |
Jul | 6.91 | 6.91 | 6.90 | 6.18 | 6.88 | 6.88 | 6.86 | 6.22 |
Aug | 6.18 | 6.19 | 6.18 | 5.89 | 5.92 | 5.96 | 5.94 | 5.73 |
Sep | 6.11 | 6.42 | 6.24 | 6.40 | 5.38 | 5.79 | 5.66 | 5.78 |
Oct | 5.67 | 6.91 | 6.90 | 6.74 | 3.79 | 4.56 | 4.56 | 4.48 |
Nov | 3.99 | 5.39 | 5.29 | 5.04 | 3.07 | 4.34 | 4.26 | 4.04 |
Dec | 3.58 | 5.21 | 5.21 | 4.72 | 3.01 | 4.91 | 4.88 | 4.33 |
Average | 5.59 | 6.28 | 6.23 | 5.92 | 4.81 | 5.44 | 5.39 | 5.13 |
% Gain | - | 12.43 | 11.41 | 5.87 | - | 13.00 | 11.93 | 6.67 |
Appendix B
References
- Obiwulu, A.U.; Erusiafe, N.; Olopade, M.A.; Nwokolo, S.C. Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon 2022, 8, e09598. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Abbas, M.K.; Abdulateef, A.M.; Abdulateef, J.; Mohamad, A. Assessment the potential solar energy with the models for optimum tilt angles of maximum solar irradiance for Iraq. Case Stud. Chem. Environ. Eng. 2021, 4, 100140. [Google Scholar] [CrossRef]
- Jamil, B.; Siddiqui, A.T.; Akhtar, N. Estimation of solar radiation and optimum tilt angles for south-facing surfaces in Humid Subtropical Climatic Region of India. Eng. Sci. Technol. Int. J. 2016, 19, 1826–1835. [Google Scholar] [CrossRef]
- Mansour, R.B.; Khan, M.A.; Alsulaiman, F.A.; Mansour, R.B. Optimizing the solar PV tilt angle to maximize the power output: A case study for Saudi Arabia. IEEE Access 2021, 9, 15914–15928. [Google Scholar] [CrossRef]
- Alqaed, S.; Mustafa, J.; Almehmadi, F.A.; Jamil, B. Estimation of ideal tilt angle for solar-PV panel surfaces facing south: A case study for Najran City, Saudi Arabia. J. Therm. Anal. Calorim. 2023, 148, 8641–8654. [Google Scholar] [CrossRef]
- Bakirci, K. General models for optimum tilt angles of solar panels: Turkey case study. Renew. Sustain. Energy Rev. 2012, 16, 6149–6159. [Google Scholar] [CrossRef]
- Al-Sayyab, A.K.; Al Tmari, Z.Y.; Taher, M.K. Theoretical and experimental investigation of photovoltaic cell performance, with optimum tilted angle: Basra city case study. Case Stud. Therm. Eng. 2019, 14, 100421. [Google Scholar] [CrossRef]
- Bailek, N.; Bouchouicha, K.; Aoun, N.; Mohamed, E.S.; Jamil, B.; Mostafaeipour, A. Optimized fixed tilt for incident solar energy maximization on flat surfaces located in the Algerian Big South. Sustain. Energy Technol. Assess. 2018, 28, 96–102. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Wu, Y. Comprehensive analysis of tropical rooftop PV project: A case study in nanning. Heliyon 2023, 9, e14131. [Google Scholar] [CrossRef]
- Kaddoura, T.O.; Ramli, M.A.; Al-Turki, Y.A. On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 65, 626–634. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V. Comparison of optimum tilt angles of solar collectors determined at yearly; seasonal and monthly levels. Energy Convers. Manag. 2015, 97, 121–131. [Google Scholar] [CrossRef]
- Jafarkazemi, F.; Saadabadi, S.A. Optimum tilt angle and orientation of solar surfaces in Abu Dhabi; UAE. Renew. Energy 2013, 56, 44–49. [Google Scholar] [CrossRef]
- Chang, Y.P. Optimal the tilt angles for photovoltaic modules using PSO method with nonlinear time-varying evolution. Energy 2010, 35, 1954–1963. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Mohammadi, K.; Mostafaeipour, A. Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass; Iran. Energy Convers. Manag. 2014, 78, 805–814. [Google Scholar] [CrossRef]
- Bojić, M.; Bigot, D.; Miranville, F.; Parvedy-Patou, A.; Radulović, J. Optimizing performances of photovoltaics in Reunion Island—Tilt angle. Prog. Photovolt. Res. Appl. 2012, 20, 923–935. [Google Scholar] [CrossRef]
- Kaldellis, J.; Zafirakis, D. Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period. Energy 2012, 38, 305–314. [Google Scholar] [CrossRef]
- Yan, R.; Saha, T.K.; Meredith, P.; Goodwin, S. Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane; Australia. Energy Convers. Manag. 2013, 74, 102–108. [Google Scholar] [CrossRef]
- Gökmen, N.; Hu, W.; Hou, P.; Chen, Z.; Sera, D.; Spataru, S. Investigation of wind speed cooling effect on PV panels in windy locations. Renew. Energy 2016, 90, 283–290. [Google Scholar] [CrossRef]
- Mehdi, M.; Ammari, N.; Merrouni, A.A.; Benazzouz, A.; Dahmani, M. Experimental investigation on the effect of wind as a natural cooling agent for photovoltaic power plants in desert locations. Case Stud. Therm. Eng. 2023, 47, 103038. [Google Scholar] [CrossRef]
- Armstrong, S.; Hurley, W.G. A new methodology to optimise solar energy extraction under cloudy conditions. Renew. Energy 2010, 35, 780–787. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.E. Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Sci. Afr. 2022, 15, e01069. [Google Scholar] [CrossRef]
- Abdelaal, A.K.; El-Fergany, A. Estimation of optimal tilt angles for photovoltaic panels in Egypt with experimental verifications. Sci. Rep. 2023, 13, 3268. [Google Scholar] [CrossRef]
- Teyabeen, A.A.; Mohamed, F. Modelling and Estimation of The Optimum Tilt Angle of Photovoltaic Systems; Case Study: Libya. In Proceedings of the 2022 13th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 13–15 December 2022. [Google Scholar]
- Nfaoui, M.; El-Hami, K. Extracting the maximum energy from solar panels. Energy Rep. 2018, 4, 536–545. [Google Scholar] [CrossRef]
- Karinka, S.; Upadhyaya, V. Concept of annual solar window and simple calculation for optimal monthly tilt angle to maximize solar power generation. Mater. Today Proc. 2022, 52, 2166–2171. [Google Scholar] [CrossRef]
- Prunier, Y.; Chuet, D.; Nicolay, S.; Hamon, G.; Darnon, M. Optimization of photovoltaic panel tilt angle for short periods of time or multiple reorientations. Energy Convers. Manag. X 2023, 20, 100417. [Google Scholar] [CrossRef]
- Mamun, M.A.; Islam, M.M.; Hasanuzzaman, M.; Selvaraj, J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy Built Environ. 2022, 3, 278–290. [Google Scholar] [CrossRef]
- Awad, H.; Salim, K.E.; Gül, M. Multi-objective design of grid-tied solar photovoltaics for commercial flat rooftops using particle swarm optimization algorithm. J. Build. Eng. 2020, 28, 101080. [Google Scholar] [CrossRef]
- Kornelakis, A. Multiobjective particle swarm optimization for the optimal design of photovoltaic grid-connected systems. Sol. Energy 2010, 84, 2022–2033. [Google Scholar] [CrossRef]
- Shaddel, M.; Javan, D.S.; Baghernia, P. Estimation of hourly global solar irradiation on tilted absorbers from horizontal one using Artificial Neural Network for case study of Mashhad. Renew. Sustain. Energy Rev. 2016, 53, 59–67. [Google Scholar] [CrossRef]
- Jeyaprabha, S.B.; Selvakumar, A.I. Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India. Energy Build. 2015, 96, 40–52. [Google Scholar] [CrossRef]
- Talebizadeh, P.; Mehrabian, M.A.; Abdolzadeh, M. Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm. Energy Build. 2011, 43, 2998–3005. [Google Scholar] [CrossRef]
- Čongradac, V.; Prica, M.; Paspalj, M.; Bojanić, D.; Čapko, D. Algorithm for blinds control based on the optimization of blind tilt angle using a genetic algorithm and fuzzy logic. Sol. Energy 2012, 86, 2762–2770. [Google Scholar] [CrossRef]
- Sangiorgio, S.; Sherwali, H.H.; Abufares, H.; Ashour, H. Investigation of optimum monthly tilt angles for photovoltaic panels in tripoli through solar radiation measurement. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 565–569. [Google Scholar]
- Mansour, F.A.; Nizam, M.; Anwar, M. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya. In IOP Conference Series: Materials Science and Engineering 2017; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Nassar, Y.F.; Hafez, A.A.; Belhaj, S.; Alsadi, S.Y.; Abdunnabi, M.J.; Belgasim, B.; Sbeta, M.N. A Generic Model for Optimum Tilt Angle of Flat-Plate Solar Harvesters for Middle East and North Africa Region. Appl. Sol. Energy 2022, 58, 800–812. [Google Scholar] [CrossRef]
- Nassar, Y.F.; El-Khozondar, H.J.; Abouhmod, N.M.; Abubaker, A.A.; Ahmed, A.A.; Alsharif, A.; Khaleel, M.M.; Elnaggar, M.; El-Khozondar, R.J. Regression model for optimum solar collectors’ tilt angles in Libya. In Proceedings of the 2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES), Gaza, Palestine, 6 March 2023; pp. 1–6. [Google Scholar]
- Kipp & Zonen. Instruction Manual, CMP Series Pyranometer, CMA Series Albedometer. 2013. Available online: https://www.kippzonen.com (accessed on 28 September 2022).
- Piri, J.; Shamshirband, S.; Petković, D.; Tong, C.W.; ur Rehman, M.H. Prediction of the solar radiation on the earth using support vector regression technique. Infrared Phys. Technol. 2015, 68, 179–185. [Google Scholar] [CrossRef]
- Pereira, A.B.; Nova, N.V.; Galvani, E. Estimation of global solar radiation flux density in Brazil from a single measurement at solar noon. Biosyst. Eng. 2003, 86, 27–34. [Google Scholar] [CrossRef]
- Fernández-Peruchena, C.M.; Gastón, M.; Sánchez, M.; García-Barberena, J.; Blanco, M.; Bernardos, A. MUS: A multiscale stochastic model for generating plausible meteorological years designed for multiyear solar energy yield simulations. Sol. Energy 2015, 120, 244–256. [Google Scholar] [CrossRef]
- Obiakor, P.I.; Awachie, I.R. Solar radiation pattern at Awka, Nigeria. Energy Convers. Manag. 1989, 29, 83–87. [Google Scholar] [CrossRef]
- Taşdemirolu, E.; Sever, R. Estimation of total solar radiation from bright sunshine hours in Turkey. Energy 1989, 14, 827–830. [Google Scholar] [CrossRef]
- Esteves, A.; De Rosa, C. A simple method for correcting the solar radiation readings of a Robitzsch-type pyranometer. Sol. Energy 1989, 42, 9–13. [Google Scholar] [CrossRef]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/download/libya (accessed on 28 September 2022).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Teyabeen, A.A.; Elhatmi, N.B.; Essnid, A.A.; Mohamed, F. Estimation of monthly global solar radiation over twelve major cities of Libya. Energy Built Environ. 2024, 5, 46–57. [Google Scholar] [CrossRef]
- Danandeh, M.A. Solar irradiance estimation models and optimum tilt angle approaches: A comparative study. Renew. Sustain. Energy Rev. 2018, 92, 319–330. [Google Scholar] [CrossRef]
- Zang, H.; Guo, M.; Wei, Z.; Sun, G. Determination of the optimal tilt angle of solar collectors for different climates of China. Sustainability 2016, 8, 654. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S.S. Tilt angle optimization to maximize incident solar radiation: A review. Renew. Sustain. Energy Rev. 2013, 23, 503–513. [Google Scholar] [CrossRef]
- Ashetehe, A.A.; Gessesse, B.B.; Shewarega, F. A generalized approach for the determination of optimum tilt angle for solar photovoltaic modules with selected locations in Ethiopia as illustration examples. Sci. Afr. 2022, 18, e01433. [Google Scholar] [CrossRef]
- Teyabeen, A.A.; Jwaid, A.E. Modelling, Validation, and Simulation of Solar Photovoltaic Modules. Electrica 2023, 23, 48–60. [Google Scholar] [CrossRef]
- Sharma, A.; Kallioğlu, M.A.; Awasthi, A.; Chauhan, R.; Fekete, G.; Singh, T. Correlation formulation for optimum tilt angle for maximizing the solar radiation on solar collector in the Western Himalayan region. Case Stud. Therm. Eng. 2021, 26, 101185. [Google Scholar] [CrossRef]
- Teyabeen, A.A.; Elhatmi, N.B.; Essnid, A.A.; Mohamed, F. Comparison of seven empirical models for estimating monthly global solar radiation,(case study: Libya). In Proceedings of the 2021 12th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 26–28 October 2021; pp. 1–6. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Location | Latitude | Longitude |
---|---|---|
Bengazi | N | E |
Ajdabia | N | E |
Jalu | N | E |
Kufra | N | E |
Sebha | N | E |
Hun | N | E |
Elgariyat | N | E |
Tripoli | N | E |
Nalut | N | E |
Ghadames | N | E |
Ghat | N | E |
Sirt | N | E |
Month | Declination | Date | ith Day of the Month | Day of the Year |
---|---|---|---|---|
Jan | −20.92 | 17 Jan | 17 | |
Feb | −12.95 | 16 Feb | 47 | |
Mar | −2.42 | 16 Mar | 75 | |
Apr | 9.41 | 15 Apr | 105 | |
May | 18.79 | 15 May | 135 | |
Jun | 23.09 | 11 Jun | 162 | |
Jul | 21.18 | 17 Jul | 198 | |
Aug | 13.45 | 16 Aug | 228 | |
Sep | 2.22 | 15 Sep | 258 | |
Oct | −9.60 | 15 Oct | 288 | |
Nov | −18.91 | 14 Nov | 318 | |
Dec | −23.05 | 10 Dec | 344 |
(Degree) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bengazi | Ajdabiya | Jalu | Kufra | Sebha | Hun | Elgariyat | Tripoli | Nalut | Ghadames | Ghat | Sirt | |||
Months | Jan | 54 | 53 | 54 | 51 | 54 | 53 | 55 | 56 | 54 | 56 | 51 | 53 | |
Feb | 46 | 45 | 44 | 41 | 43 | 45 | 45 | 45 | 46 | 47 | 42 | 44 | ||
Mar | 32 | 31 | 30 | 26 | 29 | 30 | 31 | 34 | 31 | 32 | 26 | 30 | ||
Apr | 15 | 14 | 13 | 9 | 11 | 13 | 14 | 16 | 14 | 14 | 9 | 14 | ||
May | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||
Jun | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Jul | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Aug | 9 | 8 | 7 | 2 | 5 | 7 | 8 | 10 | 9 | 8 | 3 | 8 | ||
Sep | 26 | 25 | 23 | 19 | 23 | 24 | 23 | 27 | 25 | 25 | 20 | 25 | ||
Oct | 42 | 40 | 40 | 37 | 40 | 41 | 39 | 43 | 38 | 43 | 38 | 39 | ||
Nov | 53 | 53 | 51 | 48 | 52 | 52 | 52 | 54 | 50 | 54 | 47 | 51 | ||
Dec | 56 | 56 | 57 | 52 | 56 | 56 | 57 | 59 | 57 | 57 | 52 | 57 | ||
Season | Jan | Winter | 52 | 51 | 52 | 48 | 51 | 51 | 52 | 53 | 52 | 53 | 48 | 51 |
Feb | 52 | 51 | 52 | 48 | 51 | 51 | 52 | 53 | 52 | 53 | 48 | 51 | ||
Mar | Spring | 16 | 15 | 14 | 12 | 13 | 14 | 15 | 17 | 15 | 15 | 12 | 15 | |
Apr | 16 | 15 | 14 | 12 | 13 | 14 | 15 | 17 | 15 | 15 | 12 | 15 | ||
May | 16 | 15 | 14 | 12 | 13 | 14 | 15 | 17 | 15 | 15 | 12 | 15 | ||
Jun | Summer | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 3 | |
Jul | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 3 | ||
Aug | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 3 | ||
Sep | Autumn | 40 | 39 | 38 | 35 | 38 | 39 | 38 | 41 | 38 | 41 | 35 | 38 | |
Oct | 40 | 39 | 38 | 35 | 38 | 39 | 38 | 41 | 38 | 41 | 35 | 38 | ||
Nov | 40 | 39 | 38 | 35 | 38 | 39 | 38 | 41 | 38 | 41 | 35 | 38 | ||
Dec | 52 | 51 | 52 | 48 | 51 | 51 | 52 | 53 | 52 | 53 | 48 | 51 | ||
Yearly | 28 | 27 | 27 | 24 | 26 | 27 | 27 | 29 | 27 | 28 | 24 | 27 |
City | Gain in Monthly Compared to Fixed (%) | Gain in Seasonal Compared to Fixed (%) |
---|---|---|
Bengazi | 5.95 | 4.83 |
Ajdabiya | 6.15 | 4.88 |
Jalu | 6.58 | 5.56 |
Kufra | 6.89 | 5.79 |
Sebha | 7.03 | 5.94 |
Hun | 6.41 | 5.23 |
Elgariyat | 6.45 | 5.23 |
Tripoli | 6.39 | 5.15 |
Nalut | 5.96 | 5.00 |
Ghadames | 6.87 | 5.59 |
Ghat | 6.08 | 5.24 |
Sirt | 6.04 | 5.07 |
Model No. | Regression Coefficients | Statistical Criteria | ||||||
---|---|---|---|---|---|---|---|---|
MBE | RMSE | |||||||
1 | 26.93 | −1.307 | −0.0017 | 2.0895 | 0.9883 | |||
2 | 26.53 | −1.307 | 0.001511 | −0.0049 | 2.0696 | 0.9884 | ||
3 | 26.51 | −1.519 | 0.001501 | 0.0005262 | 0.0015 | 1.7136 | 0.9899 | |
4 | 21.44 | −0.04614 | −1.0423 | 5.9915 | 0.9573 | |||
5 | 54.59 | −23.38 | 26.27 | −0.4846 | 2.6419 | 0.9862 | ||
6 | 27.95 | −1.421 | −32.39 | 0.04696 | −0.0050 | 1.7203 | 0.9899 | |
7 | 10.04 | −0.07208 | −1.4062 | 8.5018 | 0.9200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teyabeen, A.A.; Mohamed, F. Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya. Energies 2024, 17, 5891. https://doi.org/10.3390/en17235891
Teyabeen AA, Mohamed F. Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya. Energies. 2024; 17(23):5891. https://doi.org/10.3390/en17235891
Chicago/Turabian StyleTeyabeen, Alhassan Ali, and Faisal Mohamed. 2024. "Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya" Energies 17, no. 23: 5891. https://doi.org/10.3390/en17235891
APA StyleTeyabeen, A. A., & Mohamed, F. (2024). Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya. Energies, 17(23), 5891. https://doi.org/10.3390/en17235891