Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microscale Reconstruction and Simulation of Silica Aerogel with CFD Methods
2.1.1. Description of Microscale Conditions of Silica Aerogel
2.1.2. Microscale Data, Design, and Simulation Parameters
2.2. Mesoscale Prediction of Thermal Properties of Cement Mortars with Aerogel Inclusions
2.2.1. Two-Dimensional Mesoscale Calculations of Effective Properties Along the Depth
2.2.2. Three-Dimensional Mesoscale Calculations of Effective Properties in a Representative Layer
3. Results
3.1. Microscale Reconstruction and Analysis of Aerogel
Three-Dimensional Microscale Effective Properties of Aerogel
3.2. Mesoscale Results of Multphasic Cement Mortal with Aerogel Inclusions
3.2.1. Two-Dimensional Mesoscale Effective Properties Across the Depth
3.2.2. Three-Dimensional Mesoscale Effective Properties of a Representative Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J. Non-Cryst. Solids 2021, 553, 120517. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, Y.; Liu, Y.; Yang, J.; Zhang, H. Modeling Microstructure Effect on Thermal Conductivity of Aerogel-Based Vacuum Insulation Panels. Heat Transf. Eng. 2020, 41, 882–895. [Google Scholar] [CrossRef]
- Muthuraj, R.; Jimenez-Saelices, C.; Grohens, Y.; Seantier, B. Chapter 15 Applications of Polysaccharide and Protein Based Aerogels in Thermal Insulation. In Biobased Aerogels: Polysaccharide and Protein-Based Materials; The Royal Society of Chemistry: London, UK, 2018; pp. 261–294. [Google Scholar]
- Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; Li, Z. Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr. Build. Mater. 2018, 188, 747–757. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Ashish, D.K.; Rudžionis, Ž. Aerogel based thermal insulating cementitious composites: A review. Energy Build. 2021, 245, 111058. [Google Scholar] [CrossRef]
- Sen, S.; Singh, A.; Bera, C.; Roy, S.; Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: A review. Cellulose 2022, 29, 4805–4833. [Google Scholar] [CrossRef]
- Cheng, H.; Xue, H.; Hong, C.; Zhang, X. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird’s nest structure. Compos. Sci. Technol. 2017, 140, 63–72. [Google Scholar] [CrossRef]
- Lin, Y.; Ehlert, G.J.; Bukowsky, C.; Sodano, H.A. Superhydrophobic Functionalized Graphene Aerogels. ACS Appl. Mater. Interfaces 2011, 3, 2200–2203. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, J.C.; Yi, J.; Baeck, S.-H.; Yoon, J.R.; Song, I.K. Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr. Appl. Phys. 2010, 10, 682–686. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Guo, W.; Niu, H.; Song, L.; Hu, Y. Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability. J. Taiwan Inst. Chem. Eng. 2022, 131, 104159. [Google Scholar] [CrossRef]
- Jia, G.; Guo, J.; Li, Z. Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar. Constr. Build. Mater. 2023, 394, 132257. [Google Scholar] [CrossRef]
- Skouras, E.D.; Karagiannakis, N.P.; Burganos, V.N. Thermal Conduction in Hybrid Nanofluids and Aggregates. Nanomaterials 2024, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zheng, X.; Luo, X.; Yi, Y.; Yang, F. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials 2018, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Wang, Y.; Zheng, W.; Wu, J.Y.; Huang, Y.H. Effective thermal conductivity model of aerogel thermal insulation composite. Int. J. Therm. Sci. 2022, 179, 107654. [Google Scholar] [CrossRef]
- Abidi, S.; Nait-Ali, B.; Joliff, Y.; Favotto, C. Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: Experimental and numerical approaches. Compos. Part B Eng. 2015, 68, 392–400. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, Y.; Wang, G.; Nan, Y.; Wang, L. Development of a Numerical Model to Calculate Heat Transfer in a Cement-Based Material Incorporated with Expanded Perlite Filled with Aerogel. Int. J. Thermophys. 2020, 41, 148. [Google Scholar] [CrossRef]
- Bourantas, G.C.; Skouras, E.D.; Loukopoulos, V.C.; Burganos, V.N. Heat transfer and natural convection of nanofluids in porous media. Eur. J. Mech. B/Fluids 2014, 43, 45–56. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.; Greif, R. Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel. J. Heat Transf. 1995, 117, 1055–1058. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, S.; Wang, Z.; Xie, L.; Wang, G.; Chen, Z.; Wu, X.; Li, Z. Hierarchically theoretical calculation and 3D reconstruction simulation of effective thermal conductivity for MTMS-based silica aerogels. J. Sol-Gel Sci. Technol. 2024, 111, 324–335. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E.; Belloni, E. Aerogel plasters for building energy efficiency. In Nano and Biotech Based Materials for Energy Building Efficiency; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–40. [Google Scholar]
- Thorne-Banda, H.; Miller, T. Aerogel by Cabot Corporation: Versatile Properties for Many Applications. In Aerogels Handbook; Aegerter, M.A., Leventis, N., Koebel, M.M., Eds.; Springer: New York, NY, USA, 2011; pp. 847–856. [Google Scholar]
- Wei, G.; Liu, Y.; Du, X.; Zhang, X. Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials. J. Heat Transf. 2012, 134, 041301. [Google Scholar] [CrossRef]
- Hoseini, A.; McCague, C.; Andisheh-Tadbir, M.; Bahrami, M. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transf. 2016, 93, 1124–1131. [Google Scholar] [CrossRef]
- Kalarakis, A.N.; Michalis, V.K.; Skouras, E.D.; Burganos, V.N. Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media. Transp. Porous Media 2012, 94, 385–398. [Google Scholar] [CrossRef]
- Michalis, V.K.; Kalarakis, A.N.; Skouras, E.D.; Burganos, V.N. Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluidics 2010, 9, 847–853. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.; Greif, R. Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium. J. Heat Transf. 1995, 117, 758–761. [Google Scholar] [CrossRef]
- Beskok, A.; Karniadakis, G.E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Beskok, A. Validation of a new velocity-slip model for separated gas microflows. Numer. Heat Transf. Part B-Fundam. 2001, 40, 451–471. [Google Scholar] [CrossRef]
- Landauer, R. The Electrical Resistance of Binary Metallic Mixtures. J. Appl. Phys. 1952, 23, 779–784. [Google Scholar] [CrossRef]
- Böhm, H.J.; Nogales, S. Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos. Sci. Technol. 2008, 68, 1181–1187. [Google Scholar] [CrossRef]
- Wang, M.; Pan, N. Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 2008, 63, 1–30. [Google Scholar] [CrossRef]
Parameter | Value/Formula | Description |
---|---|---|
L | 20 mm | total length of representative specimen |
n | 8 | number of monomers per direction |
a | L/n | unit cell length |
ϕ | 0–100% | volume fraction of the aerogel phase |
kaero | 0.019 W/m K | thermal conductivity of aerogel |
kplaster | 0.45 W/m K | thermal conductivity of paste |
Tupstream | 300 K | temperature at upstream face (along the imposed temperature gradient) |
Tdownsteam | Tupstream-1 K | temperature at downstream face (along the imposed temperature gradient) |
Thickness of the aerogel phase according to the design configuration: | ||
b | resistances in series or parallel | |
b | dispersed phase in continuous phase |
ol [-] | keff [W/m K] | vfsph [-] |
---|---|---|
0.0 | 0.011 | 0.018 |
0.1 | 0.013 | 0.020 |
keff/km | keff [W/m K] | vfsph | |
---|---|---|---|
nchain = 4 | |||
ol = 0, Resolution Level #3 | 0.620 | 0.0159 | 0.170 |
ol = 0, Resolution Level #2 | 0.628 | 0.0159 | 0.170 |
ol = 0, Resolution Level #1 | 0.625 | 0.0160 | 0.170 |
ol = 0.005, Resolution Level #1 | 0.934 | 0.0239 | 0.171 |
ol = 0.010, Resolution Level #1 | 1.094 | 0.0280 | 0.173 |
nchain = 5 | |||
ol = 0, Resolution Level #1 | 0.551 | 0.0141 | 0.109 |
ol = 0.005, Resolution Level #1 | 0.735 | 0.0188 | 0.110 |
#Aerogel Spheres | Resolution Level | Vcyl | Vaerogel | vfaerogel | xaerogel | keff |
---|---|---|---|---|---|---|
[-] | [μm3] | [μm3] | [% vol] | [% mass] | [W/m K] | |
10 | #3 | 0.10053 | 0.0000078744 | 0.0078% | 0.00083% | 0.46996 |
100 | #3 | 0.0034962 | 0.0002555 | 7.30% | 0.826% | 0.43609 |
500 | #3 | 0.0034962 | 0.0010598 | 30.3% | 4.398% | 0.32842 |
800 | #3 | 0.0034962 | 0.0014371 | 41.1% | 6.877% | 0.27813 |
800 | #2 | -“- | -“- | -“- | -“- | 0.26368 |
800 | #1 | -“- | -“- | -“- | -“- | 0.25159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skouras, E.D.; Tsolou, G.; Kalarakis, A.N. Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions. Energies 2024, 17, 5898. https://doi.org/10.3390/en17235898
Skouras ED, Tsolou G, Kalarakis AN. Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions. Energies. 2024; 17(23):5898. https://doi.org/10.3390/en17235898
Chicago/Turabian StyleSkouras, Eugene D., Georgia Tsolou, and Alexandros N. Kalarakis. 2024. "Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions" Energies 17, no. 23: 5898. https://doi.org/10.3390/en17235898
APA StyleSkouras, E. D., Tsolou, G., & Kalarakis, A. N. (2024). Hierarchical Modeling of the Thermal Insulation Performance of Novel Plasters with Aerogel Inclusions. Energies, 17(23), 5898. https://doi.org/10.3390/en17235898