Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs
Abstract
:1. Introduction
2. Design of the Reference House Models
2.1. Construction Physics
2.2. Heating System
2.3. Cooling System
3. Design of the Trombe Wall
4. Location Parameters
5. Simulation Scenarios
6. Energy, Environmental and Economic Flows
7. Results and Discussion
- ❖
- The heating functional line (0 m) is below the heating functional line (1 m).
- ❖
- The cooling functional line (0 m) is above the cooling functional line (1 m).
- ❖
- The functional lines (0 m and 1 m) are approximately parallel to each other in the case of heating, regardless of the location, with a positive slope towards the ordinate axis.
- ❖
- Functional lines (0 m and 1 m) in the cooling case are characterized by different inclination angles towards the ordinate axis, where the slope is negative.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghamari, M.; Sundaram, S. Solar wall technology and its impact on building performance. Energies 2024, 17, 1075. [Google Scholar] [CrossRef]
- Elsaid, A.M.; Hashem, F.A.; Mohamed, H.A.; Ahmed, M.S. The energy savings achieved by various Trombe solar wall enhancement techniques for heating and cooling applications: A detailed review. Sol. Energy Mater. Sol. Cells 2023, 254, 112228. [Google Scholar] [CrossRef]
- Briga Sá, A.C.; Martins, A.; Boaventura-Cunha, J.; Carlos Lanzinha, J.; Paiva, A. An analytical approach to assess the influence of the massive wall material, thickness and ventilation system on the Trombe wall thermal performance. J. Build. Phys. 2018, 41, 445–468. [Google Scholar] [CrossRef]
- Bulmez, A.M.; Brezeanu, A.I.; Dragomir, G.; Fratu, M.; Iordan, N.F.; Bolocan, S.I.; Rozorea, L.; Popa, E.C.; Năstase, G. CFD Analysis for a New Trombe Wall Concept. Buildings 2024, 14, 579. [Google Scholar] [CrossRef]
- Prozuments, A.; Borodinecs, A.; Bebre, G.; Bajare, D. A review on Trombe wall technology feasibility and applications. Sustainability 2023, 15, 3914. [Google Scholar] [CrossRef]
- Mokni, A.; Lashin, A.; Ammar, M.; Mhiri, H. Thermal analysis of a Trombe wall in various climatic conditions: An experimental study. Sol. Energy 2022, 243, 247–263. [Google Scholar] [CrossRef]
- Zhang, H.; Shu, H. A comprehensive evaluation on energy, economic and environmental performance of the Trombe wall during the heating season. J. Therm. Sci. 2019, 28, 1141–1149. [Google Scholar] [CrossRef]
- Dhahri, M.; Yüksel, A.; Aouinet, H.; Wang, D.; Arıcı, M.; Sammouda, H. Efficiency assessment on roof geometry and Trombe wall shape for improving buildings’ heating performance. Buildings 2024, 14, 1297. [Google Scholar] [CrossRef]
- Szyszka, J. From direct solar gain to Trombe wall: An overview on past, present and future developments. Energies 2022, 15, 8956. [Google Scholar] [CrossRef]
- Szyszka, J.; Kogut, J.; Skrzypczak, I.; Kokoszka, W. Selective internal heat distribution in modified trombe wall. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042018. [Google Scholar] [CrossRef]
- Oltarzewska, A.; Krawczyk, D.A. Trombe walls–characteristic, overview and simple case study for different climate conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 943, 012027. [Google Scholar] [CrossRef]
- Lichołai, L.; Starakiewicz, A.; Krasoń, J.; Miąsik, P. The influence of glazing on the functioning of a Trombe wall containing a phase change material. Energies 2021, 14, 5243. [Google Scholar] [CrossRef]
- Szyszka, J. Experimental evaluation of the heat balance of an interactive glass wall in a heating season. Energies 2020, 13, 632. [Google Scholar] [CrossRef]
- Szyszka, J.; Bevilacqua, P.; Bruno, R. A statistical analysis of an innovative concept of Trombe wall by experimental tests. J. Build. Eng. 2022, 62, 105382. [Google Scholar] [CrossRef]
- Błotny, J.; Nemś, M. Analysis of the impact of the construction of a Trombe wall on the thermal comfort in a building located in Wrocław, Poland. Atmosphere 2019, 10, 761. [Google Scholar] [CrossRef]
- Dragićević, S.M.; Lambić, M.R. Numerical study of a modified Trombe wall solar collector system. Therm. Sci. 2009, 13, 195–204. [Google Scholar] [CrossRef]
- Dragićević, S.; Lambic, M. Influence of constructive and operating parameters on a modified Trombe wall efficiency. Arch. Civ. Mech. Eng. 2011, 11, 825–838. [Google Scholar] [CrossRef]
- Bojic, M.; Lukic, N. The influence of the Trombe wall on energy consumption for heating and cooling of net zero energy house. In Proceedings of the 7th International Quality Conference, Kragujevac, Serbia, 24 May 2013; Faculty of Engineering University of Kragujevac: Kragujevac, Serbia, 2013. [Google Scholar]
- Bojić, M.; Johannes, K.; Kuznik, F. Optimizing energy and environmental performance of passive Trombe wall. Energy Build. 2014, 70, 279–286. [Google Scholar] [CrossRef]
- Bajc, T.; Todorović, M.N.; Svorcan, J. CFD analyses for passive house with Trombe wall and impact to energy demand. Energy Build. 2015, 98, 39–44. [Google Scholar] [CrossRef]
- Djordjević, A.V.; Radosavljević, J.M.; Vukadinović, A.V.; Malenović Nikolić, J.R.; Bogdanović Protić, I.S. Estimation of indoor temperature for a passive solar building with a combined passive solar system. J. Energy Eng. 2017, 143, 04017008. [Google Scholar] [CrossRef]
- Randjelovic, D.; Vasov, M.; Ignjatovic, M.; Stojiljkovic, M.; Bogdanovic, V. Investigation of a passive design approach for a building facility: A case study. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–19. [Google Scholar] [CrossRef]
- Randjelovic, D.J.; Vasov, M.; Ignjatovic, M.; Protic, I.B.; Kostic, D. Impact of trombe wall construction on thermal comfort and building energy consumption. Facta Univ. Ser. Archit. Civ. Eng. 2018, 16, 279–292. [Google Scholar] [CrossRef]
- Vukadinović, A.; Radosavljević, J.; Đorðević, A. Impact of green roofing on the energy performance of a detached passive residential building with a Trombe wall. Ann. Fac. Eng. Hunedoara 2022, 20, 99–102. [Google Scholar]
- Šetrajčić, J.; Vučenović, S.; Vojnović, N.; Ilić, D. Simulation of the insulation properties by modification of the Trombe wall. Innov. Mech. Eng. 2023, 2, 79–88. [Google Scholar]
- Nešović, A.M.; Cvetković, D.Z. Traditional Serbian country cottage equipped with passive Trombe wall. Agric. Eng. 2024, 43–51. [Google Scholar] [CrossRef]
- Climate—National Oceanic and Atmospheric Administration. Available online: https://www.climate.gov (accessed on 25 November 2024).
- World Meteorological Organization. Available online: https://wmo.int (accessed on 26 November 2024).
- Polish Institute of Meteorology and Water Management. Available online: www.imgw.pl (accessed on 28 November 2024).
- Republic Hydrometeorological Services of Serbia. Available online: https://www.hidmet.gov.rs (accessed on 28 November 2024).
- Majewski, G.; Telejko, M.; Orman, Ł.J. Preliminary results of thermal comfort analysis in selected buildings. E3S Web Conf. 2017, 17, 00056. [Google Scholar] [CrossRef]
- Nešović, A.; Kowalik, R.; Bojović, M.; Janaszek, A.; Adamczak, S. Elevational Earth-Sheltered Buildings with Horizontal Overhang Photovoltaic-Integrated Panels—New Energy-Plus Building Concept in the Territory of Serbia. Energies 2024, 17, 2100. [Google Scholar] [CrossRef]
- Nešović, A.; Kowalik, R.; Cvetković, D.; Janaszek, A. Multi-Criteria Decision-Making Method for Simple and Fast Dimensioning and Selection of Glass Tube Collector Type Based on the Iterative Thermal Resistance Calculation Algorithm with Experimental Validation. Appl. Sci. 2024, 14, 6603. [Google Scholar] [CrossRef]
- Dąbek, L.; Kapjor, A.; Orman, Ł.J. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces. AIP Conf. Proc. 2016, 1745, 020005. [Google Scholar] [CrossRef]
- PL Poland—Building Typology. Available online: https://episcope.eu (accessed on 22 November 2024).
- Typology of National Buildings of Serbia. Available online: http://eekalkulator.mgsi.gov.rs (accessed on 22 November 2024).
- Kaczorek, D.; Bekierski, D. Implementation of the EPBD in Poland—Status in 2020. Available online: https://confluence.external-share.com/content/18675/ca_epbd_v_database_2020_(public)/1861813055/2181701270 (accessed on 22 November 2024).
- Ministry of Construction Transport and Infrastructure of Serbia—Rulebook of Energy Efficiency. Available online: https://www.mgsi.gov.rs (accessed on 14 June 2024).
- EnergyPlus Software—Engineering Reference. Available online: https://energyplus.net (accessed on 10 June 2024).
- Repository of Building Simulation Climate Data from the Creators of the EPW. Available online: https://climate.onebuilding.org (accessed on 17 June 2024).
- United Nations—Climate Action. Available online: https://www.un.org/ (accessed on 7 December 2024).
- NASA Earth Observatory. Available online: https://earthobservatory.nasa.gov/ (accessed on 7 December 2024).
- Balaras, C.A.; Dascalaki, E.G.; Psarra, I.; Cholewa, T. Primary energy factors for electricity production in Europe. Energies 2020, 16, 93. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emission for Natural Gas in Poland. Available online: https://www.iea.org (accessed on 23 November 2024).
- Statista. CO2 Emission for Electricity in Poland. Available online: https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/ (accessed on 23 November 2024).
- Natural Gas—Clean, Convenient, Competitive. Available online: https://www.elenger.pl (accessed on 23 November 2024).
- Energy Value of Natural Gas. Available online: https://www.cefix.rs (accessed on 24 November 2024).
- Energy Regulatory Office. Available online: https://www.ure.gov.pl (accessed on 22 November 2024).
- SerbiaGas. Available online: https://www.srbijagas.com (accessed on 23 November 2024).
- Electricity Prices in Poland. Available online: http://cena-pradu.pl (accessed on 25 November 2024).
- Serbian Electricity Industry. Available online: https://www.eps.rs (accessed on 25 November 2024).
Ordinal Number | TZ | Mark | A [m2] | V [m3] | ||
---|---|---|---|---|---|---|
Kielce (Poland) | Kragujevac (Serbia) | Kielce (Poland) | Kragujevac (Serbia) | |||
TZ1 | Hall 1 | H1 | 6.84 | 4.32 | 17.78 | 11.23 |
TZ2 | Multifunctional room | MR | 34.18 | 18 | 88.87 | 46.80 |
TZ3 | Children’s room | CR | 17.61 | 10.5 | 45.77 | 27.30 |
TZ4 | Bathroom | BT | 5.8 | 6.25 | 15.08 | 16.25 |
5TZ | Attic space | AS | 67.18 | 46.9 | 81.93 | 60.97 |
6TZ | Storage room | SR | 2.75 | - | 7.15 | - |
TZ7 | Hall 2 | H2 | - | 3.75 | - | 9.75 |
Σ | 134.36 | 89.72 | 256.58 | 172.3 |
Exterior House Element | Mark | Umax [W/(m2K)] | |
---|---|---|---|
Kielce (Poland [37]) | Kragujevac (Serbia [38]) | ||
Floor | F | 0.25 | 0.3 |
Wall | W | 0.2 | |
Slope roof | SR | 0.3 | |
Window | WW | 0.9 | 1.5 |
Door | D | 1.6 | |
Intermediate floor construction | IFC | - | 0.2 |
Description | Mark | Unit | Layer | |||
---|---|---|---|---|---|---|
Glazing | Air Layer | Selective Coating | Massive Wall | |||
Thickness | δ | [m] | 0.003 | 0.1 | 0.0016 | 0.4 |
Thermal conductivity | λ | [W/(mK)] | 0.9 | - | 393 | 1.73 |
Density | ρ | [kg/m3] | - | - | 8907 | 2242 |
Specific heat | cp | [J/(kgK)] | - | - | 370 | 837 |
Solar transmittance | ST | [-] | 0.899 | - | - | - |
Solar reflectance | SR | [-] | 0.079 | - | - | - |
Absorptance | α | [-] | - | - | 0.94 | 0.65 |
Emissivity | ε | [-] | - | 0.06 | 0.9 |
Mark | Unit | Kielce (Poland) | Kragujevac (Serbia) |
---|---|---|---|
ηr | [-] | 0.98 [37,38] | |
ηrs | 0.95 [37,38] | ||
ηpn | 0.98 [37,38] | ||
ηgb | 0.87 [37,38] | ||
COP | 2.61 [37,38] | ||
Rng | 1.1 [37,38] | ||
Rel | 2.32 [43] | 2.5 [38] | |
eng | [kg/m3] | 2.2 [44] | 1.9 [38] |
eel | [kg/kWh] | 0.758 [45] | 0.53 [39] |
hng | [kWh/m3] | 10.5 [46] | 9.24 [47] |
png | [€/m3] | 0.95 [48] | 0.49 [49] |
pel | [€/kWh] | 0.24 [50] | 0.052 [51] |
Kielce (Poland) | Kragujevac (Serbia) | ||||
---|---|---|---|---|---|
Mark | Unit | Heating | Cooling | Heating | Cooling |
Atot | [m2] | 134.36 | 89.72 | ||
Anet | 57.59 | 34.75 | |||
Euse | [kWh/a] | 10606.85 | 288.01 | 5057.22 | 468.6 |
Efin | 13362.62 | 110.35 | 6371.14 | 179.54 | |
Epry | 14698.88 | 256.01 | 7008.25 | 448.85 | |
mCO2 | [kg/a] | 3079.77 | 194.06 | 1441.09 | 237.89 |
P | [€/a] | 1209 | 26.48 | 337.86 | 9.34 |
Heating | Kielce | 0 m | (9) | |
1 m | (10) | |||
Kragujevac | 0 m | (11) | ||
1 m | (12) | |||
Cooling | Kielce | 0 m | (13) | |
1 m | (14) | |||
Kragujevac | 0 m | (15) | ||
1 m | (16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, R.; Nešović, A.; Cvetković, D.; Janaszek, A.; Kozłowski, T. Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs. Energies 2024, 17, 6275. https://doi.org/10.3390/en17246275
Kowalik R, Nešović A, Cvetković D, Janaszek A, Kozłowski T. Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs. Energies. 2024; 17(24):6275. https://doi.org/10.3390/en17246275
Chicago/Turabian StyleKowalik, Robert, Aleksandar Nešović, Dragan Cvetković, Agata Janaszek, and Tomasz Kozłowski. 2024. "Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs" Energies 17, no. 24: 6275. https://doi.org/10.3390/en17246275
APA StyleKowalik, R., Nešović, A., Cvetković, D., Janaszek, A., & Kozłowski, T. (2024). Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs. Energies, 17(24), 6275. https://doi.org/10.3390/en17246275