Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application
Abstract
:1. Introduction
2. Proposed System
2.1. Overall System Construction
2.2. Design of the Proposed Bidirectional DC-DC Converter
2.2.1. Mode 1: Boost Mode Mathematical Model
2.2.2. Mode 2: Buck Mode Mathematical Model
2.2.3. Bidirectional DC-DC Converter Control System
3. Results and Discussion
3.1. Mode 1: Buck Mode Converter
3.2. Mode 2: Boost Mode Converter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, F.; Su, S.; Diao, R.; Cheng, H.; Meng, D.; Lu, S. Prediction-Based EV-PV Coordination Strategy for Charging Stations Using Reinforcement Learning. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2022, Haining, China, 28–31 October 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NY, USA, 2022. [Google Scholar]
- Li, L.-L.; Liu, Z.-F.; Tseng, M.-L.; Chiu, A.S. Enhancing the Lithium-Ion Battery Life Predictability Using a Hybrid Method. Appl. Soft Comput. J. 2019, 74, 110–121. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Maghrabie, H.M.; Sayed, E.T.; Rezk, H.; Radi, M.A.; Obaideen, K.; Abdelkareem, M.A. Application of Artificial Intelligence for Prediction, Optimization, and Control of Thermal Energy Storage Systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S.; Duan, F. Smart Techno-Economic Operation of Electric Vehicle Charging Station in Egypt. Energy 2023, 264, 126151. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S. Theoretical and Experimental Analysis of a New Intelligent Charging Controller for Off-Board Electric Vehicles Using PV Standalone System Represented by a Small-Scale Lithium-Ion Battery. Sustainability 2022, 14, 7396. [Google Scholar] [CrossRef]
- Abou Yassine, A.H.; Khoshbakhtnejad, E.; Sojoudi, H. Economics of Snow Accumulation on Photovoltaic Modules. Energies 2024, 17, 2962. [Google Scholar] [CrossRef]
- Abou Yassine, A.H.; Namdari, N.; Mohammadian, B.; Sojoudi, H. Understanding Mechanisms of Snow Removal from Photovoltaic Modules. Sol. Energy 2022, 231, 175–184. [Google Scholar] [CrossRef]
- Aragon Aviles, S.M. Design and Development of a Novel DC/DC Bidirectional Converter with Dual Solar/PV-Based Snow Removal and EV Charging Functionality. Master’s Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2022. [Google Scholar]
- Ross, M.M.D.; Usher, E.P. Photovoltaic Array Icing and Snow Accumulation: A Study of a Passive Melting Technology. In Proceedings of the 21st Annual Conference of the Solar Energy Society of Canada, Toronto, ON, Canada, 31 October–2 November 1995; pp. 21–26. [Google Scholar]
- Borrebæk, P.-O.A.; Jelle, B.P.; Zhang, Z. Avoiding Snow and Ice Accretion on Building Integrated Photovoltaics–Challenges, Strategies, and Opportunities. Sol. Energy Mater. Sol. Cells 2020, 206, 110306. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A Comprehensive Review of Different Types of Solar Photovoltaic Cells and Their Applications. Int. J. Ambient Energy 2021, 42, 1200–1217. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells: A Review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, W.; Cui, T.; Wang, H.; Chen, F.; Gao, Y.; Fan, L.; Omer, A.A.A.; Ingenhoff, J.; Zhang, X.; et al. A Novel Domino-like Snow Removal System for Roof PV Arrays: Feasibility, Performance, and Economic Benefits. Appl. Energy 2023, 333, 120554. [Google Scholar] [CrossRef]
- Weiss, A.; Weiss, H. Photovoltaic Cell Electrical Heating System for Removing Snow on Panel Including Verification. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 995–1000. [Google Scholar] [CrossRef]
- Yan, C.; Qu, M.; Chen, Y.; Feng, M. Snow Removal Method for Self-Heating of Photovoltaic Panels and Its Feasibility Study. Sol. Energy 2020, 206, 374–380. [Google Scholar] [CrossRef]
- Rahmatmand, A.; Harrison, S.J.; Oosthuizen, P.H. An Experimental Investigation of Snow Removal from Photovoltaic Solar Panels by Electrical Heating. Sol. Energy 2018, 171, 811–826. [Google Scholar] [CrossRef]
- Trinh, H.-A.; Nguyen, D.G.; Phan, V.-D.; Duong, T.-Q.; Truong, H.-V.; Choi, S.-J.; Ahn, K.K. Robust Adaptive Control Strategy for a Bidirectional DC-DC Converter Based on Extremum Seeking and Sliding Mode Control. Sensors 2023, 23, 457. [Google Scholar] [CrossRef] [PubMed]
- Danyali, S.; Shirkhani, M.; Tavoosi, J.; Razi, A.G.; Salah, M.M.; Shaker, A. Developing an Integrated Soft-Switching Bidirectional DC/DC Converter for Solar-Powered LED Street Lighting. Sustainability 2023, 15, 15022. [Google Scholar] [CrossRef]
- Gorji, S.A.; Sahebi, H.G.; Ektesabi, M.; Rad, A.B. Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview. IEEE Access 2019, 7, 117997–118019. [Google Scholar] [CrossRef]
- Latin, I.; Transactions, A. Review of Bidirectional DC-DC Converters and Trends in Control Techniques for Applications in Electric Vehicles. IEEE Lat. Am. Trans. 2024, 22, 144–155. [Google Scholar]
- Wang, Y.; Li, Y.; Guan, Y.; Xu, D. Topology and Control Optimization of Bidirectional DC/DC Converter for Electric Vehicles. IEEE J. Emerg. Sel. Top. Power. Electron. 2024, 12, 257–268. [Google Scholar] [CrossRef]
- Prajapati, S.; Garg, M.M.; Prithvi, B. Design of Fractional-Order PI Controller for DC-DC Power Converters. In Proceedings of the 2018 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 13–15 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ibrahim, O.; Yahaya, N.Z.; Saad, N. Comparative Studies of PID Controller Tuning Methods on a DC-DC Boost Converter. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, M.; Liu, X.; Lee, K.Y. Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control. Energies 2020, 13, 1304. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S. Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery Based on Cuckoo Optimization Algorithm (COA). IEEE Access 2020, 8, 140486–140496. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems. Future Transp. 2022, 2, 281–299. [Google Scholar] [CrossRef]
- Aragon-Aviles, S.; Kadam, A.H.; Sidhu, T.; Williamson, S.S. Modeling, Analysis, Design, and Simulation of a Bidirectional DC-DC Converter with Integrated Snow Removal Functionality for Solar PV Electric Vehicle Charger Applications. Energies 2022, 15, 2961. [Google Scholar] [CrossRef]
- Zhang, J.; Lai, J.-S.; Yu, W. Bidirectional DC-DC Converter Modeling and Unified Controller with Digital Implementation. In Proceedings of the 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 24–28 February 2008; pp. 1747–1753. [Google Scholar] [CrossRef]
- Shan, Y.; Hu, J.; Chan, K.W.; Fu, Q.; Guerrero, J.M. Model Predictive Control of Bidirectional DC-DC Converters and AC/DC Interlinking Converters—A New Control Method for PV-Wind-Battery Microgrids. IEEE Trans. Sustain. Energy 2019, 10, 1823–1833. [Google Scholar] [CrossRef]
- Xu, Q.; Vafamand, N.; Chen, L.; Dragicevic, T.; Xie, L.; Blaabjerg, F. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1205–1221. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S.; Duan, F. Impacts of Electric Vehicle Fast Charging under Dynamic Temperature and Humidity: Experimental and Theoretically Validated Model Analyses. Energy 2022, 261, 125335. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
PV Nominal Voltage | 729 V |
EV Nominal Voltage | 360 V |
Maximum Input Current | 35.82 A |
Nominal EV Discharging Current (A) | 65.2174 A |
EV Rated Capacity | 150 Ah |
EV SOC | 45% |
Power Rating | 26.113 kW |
Efficiency | 95% |
Inductance | 13 mH |
EV Capacitance | 20 µF |
PV Capacitance | 1 mF |
Switching Frequency | 30 kHz |
Output and Input Voltage Variations | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elakkad, S.; Hesham, M.; Bastawrous, H.A.; Makeen, P. Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application. Energies 2024, 17, 6468. https://doi.org/10.3390/en17246468
Elakkad S, Hesham M, Bastawrous HA, Makeen P. Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application. Energies. 2024; 17(24):6468. https://doi.org/10.3390/en17246468
Chicago/Turabian StyleElakkad, Salma, Mohamed Hesham, Hany Ayad Bastawrous, and Peter Makeen. 2024. "Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application" Energies 17, no. 24: 6468. https://doi.org/10.3390/en17246468
APA StyleElakkad, S., Hesham, M., Bastawrous, H. A., & Makeen, P. (2024). Design, Control, and Evaluation of a Photovoltaic Snow Removal Strategy Based on a Bidirectional DC-DC Converter for Photovoltaic–Electric Vehicle Application. Energies, 17(24), 6468. https://doi.org/10.3390/en17246468