Research on the Impact Effects of the Thermal Power Industry and Other High-Haze-Pollution Industries on the Atmospheric Environment
Abstract
:1. Introduction
1.1. Research Background
1.2. Relevant Literature
1.2.1. Research on Haze Pollution
1.2.2. Spatial Spillover Effects of Atmospheric Pollution
1.2.3. The Impact of Environmental Regulations on the Atmospheric Environment
1.2.4. The Impact of Green Technological Innovation on Atmospheric Environmental Quality
1.2.5. The Impact of High-Pollution Industries on the Atmospheric Environment
2. Research Design
2.1. Main Research Methodologies
2.1.1. Static Panel Model
2.1.2. Panel Threshold Regression Model
2.1.3. Spatial Durbin Model
2.2. Research Hypotheses
2.2.1. Relationship Between Thermal Power Industry and Other High-Haze-Pollution Industries and Atmospheric Environmental Quality
2.2.2. Spatial Spillover Effects of Thermal Power Industry and Other High-Haze-Pollution Industries on Air Pollution
2.2.3. Threshold Effects of Environmental Regulations on Atmospheric Environmental Quality in Thermal Power Industry and Other High-Haze Pollution Industries
2.2.4. Threshold Effects of Green Technological Innovation on Atmospheric Environmental Quality in Thermal Power Industry and Other High-Haze-Pollution Industries
2.2.5. Threshold Effects of Rainfall on Atmospheric Environmental Quality in Thermal Power Industry and Other High-Haze-Pollution Industries
2.3. Variable Selection
2.3.1. Dependent Variable
2.3.2. Key Independent Variable
2.3.3. Threshold Variables
2.3.4. Control Variables
2.4. Descriptive Statistics of Variables
2.5. Data Source
3. Empirical Analysis
3.1. Analysis of Spatial Durbin Model
3.1.1. Main Regression Coefficients
3.1.2. Indirect Effect Analysis
3.2. Analysis of Panel Threshold Regression
3.2.1. wLNY-wlnx1-wLnk1-Threshold Test
3.2.2. LNY-lnx1-Lnk2-Threshold Test
3.2.3. LNY-lnx1-Lnk3-Threshold Test
4. Conclusions and Policy Recommendations
4.1. Conclusions
4.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatiotemporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- Ren, B.; Song, W. Discussion on the Economic Mechanism of Formation and Governance of Urban Haze Weather in China. J. Northwest Univ. (Philos. Soc. Sci. Ed.) 2014, 44, 77–84. [Google Scholar]
- Wang, X. Investigation on Haze Governance and Economic Development. Econ. Perspect. 2013, 84, 24–25. [Google Scholar]
- Wang, L.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F.; Su, J.; Meng, C.C.; Zhang, Q. The 2013 severe haze over southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmospheric Chem. Phys. 2013, 13, 28395–28451. [Google Scholar] [CrossRef]
- Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F.; Meng, W. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Yang, T.; Jiang, Q.; Dong, H.B.; Li, J.; Jia, J.J. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys. 2013, 13, 4577–4592. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Buseck, P.R. Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys. 2010, 10, 8119–8130. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Lin, Y.; Fu, J.S.; Wang, Q.; Liu, T.; Zhang, R.; Jiang, Y.; Deng, C.; Fu, Q.; et al. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. Atmos. Chem. Phys. 2012, 12, 105–124. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Regional differences of pollution emissions in China: Contributing factors and mitigation strategies. J. Clean. Prod. 2016, 112, 1454–1463. [Google Scholar] [CrossRef]
- Ma, Y.R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Keene, A.; Deller, S.C. Evidence of the environmental Kuznets’ curve among US counties and the impact of social capital. Int. Reg. Sci. Rev. 2015, 38, 358–387. [Google Scholar] [CrossRef]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: An index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef]
- Fu, Z.; Li, R. The contributions of socioeconomic indicators to global PM2. 5 based on the hybrid method of spatial econometric model and geographical and temporal weighted regression. Sci. Total Environ. 2020, 703, 135481. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J.H.; Yang, L.L. China’s economic policy choices for governing haze pollution based on spatial spillover effects. Econ. Res. J 2016, 51, 73–88. [Google Scholar]
- Liu, Z.; Davis, S.J.; Feng, K.; Hubacek, K.; Liang, S.; Anadon, L.D.; Chen, B.; Liu, J.; Yan, J.; Guan, D. Targeted opportunities to address the climate–trade dilemma in China. Nat. Clim. Chang. 2016, 6, 201–206. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2. 5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Sharifi, M.; Mousazadeh, H.; Zarea-Hosseinabadi, H. Life cycle assessment of medium-density fiberboard manufacturing process in the Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 351–358. [Google Scholar] [CrossRef]
- Liddle, B. Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses. Popul. Environ. 2014, 35, 286–304. [Google Scholar] [CrossRef]
- Zhu, L.; Hao, Y.; Lu, Z.N.; Wu, H.; Ran, Q. Do economic activities cause air pollution? Evidence from China’s major cities. Sustain. Cities Soc. 2019, 49, 101593. [Google Scholar] [CrossRef]
- Greenstone, M. The impacts of environmental regulations on industrial activity: Evidence from the Evidence from the 1970&1977 clean air Act amendments and the census of manufacturers. J. Political Econ. 2001, 110, 1175–1219. [Google Scholar]
- Schou, P. When environmental policy is superfluous: Growth and polluting resources. Scand. J. Econ. 2002, 104, 605–620. [Google Scholar] [CrossRef]
- Davis, L.W. The effect of driving restrictions on air quality in Mexico City. J. Political Econ. 2008, 116, 38–81. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ding, Y.; Wang, W. How does environmental regulation affect haze pollution governance? —An empirical test based on Chinese provincial panel data. Sci. Total Environ. 2019, 695, 133905. [Google Scholar] [CrossRef]
- Guo, S.; Lu, J. Jurisdictional air pollution regulation in China: A tragedy of the regulatory anti-commons. J. Clean. Prod. 2019, 212, 1054–1061. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, T. The Impact of Autonomous Technological Innovation on Carbon Emissions in China: An Empirical Study Based on Provincial Panel Data. Sci. Technol. Prog. Policy 2014, 31, 29–35. [Google Scholar]
- Lu, X.; Bai, T. How Can Green Technological Innovation Effectively Reduce Haze Pollution? China Soft Sci. 2020, 6, 174–182. [Google Scholar]
- Zhou, J.; Zhou, Y.; Bai, X. Can Green-Technology Innovation Reduce Atmospheric Environmental Pollution? Toxics 2023, 11, 403. [Google Scholar] [CrossRef]
- Li, F.; Sun, X.; Zhang, L. Industrial Agglomeration, Technological Innovation, and Environmental Pollution: An Empirical Analysis Based on Panel Data of China’s Industrial Industry. Technol. Econ. 2017, 36, 1–7. [Google Scholar]
- Chebbi, H.E. Long and short–run linkages between economic growth, energy consumption and CO2 emissions in Tunisia. Middle East Dev. J. 2010, 2, 139–158. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.D. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Cui, E.; Ren, L.; Sun, H. Evaluation of variations and affecting factors of eco-environmental quality during urbanization. Environ. Sci. Pollut. Res. 2015, 22, 3958–3968. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, Y.; Wen, Z.; Tan, Q. Analysis of relationship between Beijing’s environment and development based on Environmental Kuznets Curve. Ecol. Indic. 2016, 67, 474–483. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, L.; Li, M. Policy framework and Tool Optimization of air pollution prevention and control from the perspective of meta governance. China Popul. Res. Environ. 2019, 29, 126–134. [Google Scholar]
- Hansen, B. Threshold effects in non-dynamic panels: Estimation, testing and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J. Ownership structure, technology choice and industrial structure change. Econ. Rev. 2015, 191, 40–53. [Google Scholar]
- Zhu, Y.; Zhang, J. Can green finance assist in the construction of rural ecological civilization? J. Southwest Univ. (Soc. Sci. Ed.) 2023, 49, 103–115. [Google Scholar]
- He, F.; Xu, G. Is There a U-Shaped Relationship Between FDI and Income Disparity Between Urban and Rural Residents in China? Int. Trade Issues 2009, 35, 89–96. [Google Scholar]
- Chen, G.Q.; Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy 2010, 38, 6180–6193. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M.; Zhang, Y. Will the increase of urbanization rate inevitably aggravate haze pollution?—Discussing the spatial spillover effect of urbanization and haze pollution. Geogr. Res. 2017, 36, 1947–1958. [Google Scholar]
- Pan, H.; Wang, X.; Zhang, S. Analysis of the persistence and spatial spillover effect of haze pollution: Evidence from the Beijing-Tianjin-Hebei region. China Soft Sci. 2015, 30, 134–143. [Google Scholar]
- Ma, L.; Liu, S.; Zhang, X. Energy structure, transportation mode and haze pollution—Based on spatial econometric model research. Financ. Trade Econ. 2016, 37, 147–160. [Google Scholar]
- Testa, F.; Iraldo, F.; Frey, M. The Effect of Environmental Regulation on Firms’ Competitive Performance: The Case of the Building & Construction Sector in Some EU Regions. J. Environ. Manag. 2011, 92, 2136–2144. [Google Scholar] [CrossRef] [PubMed]
- Wanlley, W. The contribution of environmental regulations to slowdown in productivity growth. J. Environ. Manag. 1994, 8, 381–390. [Google Scholar]
- Li, P.; Mu, X. The analysis of the lag and optimal environmental regulation intensity of Porter’s hypothesis: A test based on system GMM and threshold effect. Ind. Econ. Res. 2013, 12, 21–29. [Google Scholar]
- Lan, J.A. Munro.Environmental Regulatory Stringency and the Market for Abatement Goods and Services in China. Grips Discuss. Pap. 2014, 14, 105–123. [Google Scholar]
- Huang, T.; Zhao, X.; Chen, K. Technological Innovation, Environmental Pollution, and Regulatory Policies: Perspectives on Transformational Innovation Policies. Sci. Sci. Manag. S T 2020, 41, 58. [Google Scholar]
- Duhanyan, N.; Roustan, Y. Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos. Environ. 2011, 45, 7201–7217. [Google Scholar] [CrossRef]
- Leung, L.R.; Gustafson, W.I., Jr. Potential regional climate change and implications to US air quality. Geophys. Res. Lett. 2005, 32, L16711. [Google Scholar] [CrossRef]
- Guo, L.C.; Bao, L.J.; She, J.W.; Zeng, E.Y. Significance of wet deposition to removal of atmospheric particulate matter and polycyclic aromatic hydrocarbons: A case study in Guangzhou, China. Atmos. Environ. 2014, 83, 136–144. [Google Scholar] [CrossRef]
- Yuan, Z. The effect of rains of different intensity on mass concentration of PM2.5 in Dongguan City. Guangdong Meteorol. 2014, 36, 32–35. [Google Scholar]
- Du, M. Research on Comprehensive Index of Environmental Quality Based on Principal Component Analysis. Master’s thesis, Sichuan University, Chengdu, China, 2007. [Google Scholar]
- Yang, T.; Zhang, D. Experience and Enlightenment of Haze Governance in London, UK. Contemp. Econ. Manag. 2014, 36, 93–97. [Google Scholar] [CrossRef]
- He, W.; Liu, C.; Liu, J.; Guo, S. Environmental Regulation, Technological Progress, and Atmospheric Environmental Quality: An Empirical Analysis Based on Panel Data from Tianjin. Sci. Sci. Manag. S T 2015, 36, 51–61. [Google Scholar]
- Ding, S. Green Technology; Jiangsu Science and Technology Press: Nanjing, China, 1993; p. 46. [Google Scholar]
- Porter, M.E.; Linde, C.V.D. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
Variable Type | Abbreviation | Name | Calculation Method |
---|---|---|---|
Dependent Variable | y | Atmospheric environmental quality | Comprehensive Atmospheric Environmental Pollution Index |
Independent Variable | x1 | Total industrial output value of thermal power industry and other high-haze-pollution industries | Total economic value of thermal power industry and five other high-haze-pollution industries |
x2 | Industrial sales value of thermal power industry and other high-haze-pollution industries | Industrial sales value of thermal power industry and five other high-haze-pollution industries | |
Threshold Variables | k1 | Environmental regulation | Industrial sulfur dioxide removal quantity |
k2 | Green technological innovation | ||
k3 | Cumulative precipitation | ||
Control Variables | m1 | Energy efficiency | |
m2 | Built-up area | ||
m3 | Level of economic development | GDP per capita | |
m4 | Industrial structure | Proportion of the secondary industry in GDP | |
m5 | Level of openness to the outside world | Actual utilized foreign investment amount/GDP | |
m6 | Population density | Population density (persons per square kilometer) |
Variables | Sample | Mean | Standard | Minimum | Maximum |
---|---|---|---|---|---|
lny | 589 | −2.286 | 0.023 | −2.302 | −2.083 |
lnx1 | 589 | 6.065 | 1.559 | 0.025 | 9.020 |
lnx2 | 589 | 6.087 | 1.482 | −0.045 | 9.035 |
lnk1 | 589 | −2.286 | 0.014 | −2.302 | −2.194 |
lnk2 | 589 | 5.825 | 2.043 | −2.303 | 10.262 |
lnk3 | 589 | 6.647 | 0.649 | 4.971 | 7.825 |
lnm1 | 589 | −1.533 | 0.301 | −1.988 | −0.376 |
lnm2 | 589 | 6.867 | 0.881 | 4.278 | 8.706 |
lnm3 | 589 | 10.058 | 0.854 | 7.887 | 11.925 |
lnm4 | 589 | −0.605 | 0.173 | −1.271 | −0.336 |
lnm5 | 589 | −0.902 | 0.672 | −1.917 | 1.748 |
lnm6 | 589 | 5.289 | 1.523 | 0.789 | 8.250 |
wlny | 589 | −2.289 | 0.011 | −2.300 | −2.267 |
wlnx1 | 589 | 6.166 | 1.173 | 4.211 | 7.881 |
wlnx2 | 589 | 6.152 | 1.171 | 4.184 | 7.835 |
wlnk1 | 589 | −2.288 | 0.009 | −2.298 | −2.270 |
wlnk2 | 589 | 5.923 | 1.555 | 3.500 | 8.284 |
wlnk3 | 589 | 6.660 | 0.569 | 5.707 | 7.421 |
wlnm1 | 589 | −1.550 | 0.233 | −1.851 | −1.079 |
wlnm2 | 589 | 6.905 | 0.662 | 5.677 | 7.842 |
wlnm3 | 589 | 10.057 | 0.767 | 8.807 | 11.111 |
wlnm4 | 589 | −0.586 | 0.116 | −0.806 | −0.440 |
wlnm5 | 589 | −0.924 | 0.579 | −1.606 | 0.139 |
wlnm6 | 589 | 5.353 | 1.193 | 3.007 | 6.903 |
(1) | (2) | |
---|---|---|
wlny | wlny | |
Main | ||
wlnx1 | −0.000988 *** | |
(−2.649) | ||
wlnk1 | −0.102 *** | −0.0983 *** |
(−4.509) | (−4.391) | |
wlnm1 | 0.00767 *** | 0.00753 *** |
(4.298) | (4.265) | |
wlnm2 | −0.00915 *** | −0.00859 *** |
(−7.941) | (−7.312) | |
wlnm3 | −0.00802 *** | −0.00800 *** |
(−11.850) | (−12.013) | |
wlnm4 | 0.00378 ** | 0.00451 ** |
(1.967) | (2.344) | |
wlnm5 | −0.00252 *** | −0.00252 *** |
(−3.484) | (−3.528) | |
wlnm6 | 0.0147 *** | 0.0164 *** |
(3.052) | (3.454) | |
wlnx2 | −0.00122 *** | |
(−3.288) | ||
Wx | ||
wlnx1 | −0.000148 | |
(−1.005) | ||
wlnk1 | 0.0441 *** | 0.0457 *** |
(5.274) | (5.491) | |
wlnm1 | −0.00631 *** | −0.00618 *** |
(−7.072) | (−6.978) | |
wlnm2 | 0.00239 *** | 0.00237 *** |
(4.113) | (4.198) | |
wlnm3 | −0.000843 ** | −0.000792 ** |
(−2.368) | (−2.340) | |
wlnm4 | 0.00197 ** | 0.00230 *** |
(2.438) | (2.872) | |
wlnm5 | 0.000753 ** | 0.000615 ** |
(2.508) | (2.033) | |
wlnm6 | 0.00353 | 0.00325 |
(1.364) | (1.290) | |
wlnx2 | −0.000200 | |
(−1.477) | ||
Spatial | ||
rho | 0.0563 *** | 0.0535 *** |
(4.727) | (4.467) | |
Variance | ||
sigma2_e | 0.00000773 *** | 0.00000763 *** |
(17.046) | (17.058) | |
N | 589 | 589 |
(1) | (2) | |
---|---|---|
wlny | wlny | |
LR_Indirect | ||
wlnx1 | −0.00114 | |
(−1.354) | ||
wlnk1 | 0.229 *** | 0.237 *** |
(4.755) | (5.031) | |
wlnm1 | −0.0352 *** | −0.0340 *** |
(−6.458) | (−6.440) | |
wlnm2 | 0.0115 *** | 0.0114 *** |
(3.177) | (3.334) | |
wlnm3 | −0.00795 *** | −0.00735 *** |
(−4.558) | (−4.619) | |
wlnm4 | 0.0130 *** | 0.0149 *** |
(2.675) | (3.145) | |
wlnm5 | 0.00363 ** | 0.00281 * |
(2.132) | (1.688) | |
wlnm6 | 0.0262 * | 0.0245 * |
(1.862) | (1.813) | |
wlnx2 | −0.00149 ** | |
(−1.976) | ||
N | 589 | 589 |
Thresholds | 95% CI | ||
---|---|---|---|
Single Model | −2.2768 | −2.2771 | −2.2767 |
Double Model | |||
Ito1 | −2.2768 | −2.2771 | −2.2767 |
Ito2 | −2.2872 | −2.2872 | −2.2871 |
Model | Threshold | F | p-Value | BS-Reps | 10% | 5% | 1% |
---|---|---|---|---|---|---|---|
Single-threshold | Single | 22.610 | 0.023 | 300 | 15.159 | 18.977 | 26.003 |
Dual-threshold | Single | 22.610 | 0.020 | 300 | 12.824 | 18.044 | 27.199 |
Double | 4.600 | 0.633 | 300 | 11.072 | 13.839 | 17.117 |
(1) | (2) | |
---|---|---|
wlny | Wlny | |
wlnx1 | −0.002 *** | −0.002 *** |
(0.000) | (0.000) | |
wlnm1 | 0.002 | 0.002 |
(0.002) | (0.002) | |
wlnm2 | −0.005 *** | −0.006 *** |
(0.001) | (0.001) | |
wlnm3 | −0.010 *** | −0.010 *** |
(0.001) | (0.001) | |
wlnm4 | 0.004 ** | 0.004 * |
(0.002) | (0.002) | |
wlnm5 | −0.003 *** | −0.003 *** |
(0.001) | (0.001) | |
wlnm6 | 0.027 *** | 0.027 *** |
(0.005) | (0.005) | |
0._cat#c.wlnk1 | −0.139 *** | −0.206 *** |
(0.030) | (0.045) | |
1._cat#c.wlnk1 | −0.141 *** | −0.207 *** |
(0.031) | (0.046) | |
2._cat#c.wlnk1 | −0.208 *** | |
(0.046) | ||
_cons | −2.599 *** | −2.751 *** |
(0.070) | (0.104) | |
N | 589 | 589 |
Thresholds | 95% CI | ||
---|---|---|---|
Single Model | 4.737 | 4.688 | 4.746 |
Double Model | |||
Ito1 | 4.861 | 4.833 | 4.884 |
Ito2 | 4.079 | 4.036 | 4.113 |
Model | Threshold | F | p-Value | BS-Reps | 10% | 5% | 1% |
---|---|---|---|---|---|---|---|
Single-threshold | Single | 126.650 | 0.000 | 300 | 30.563 | 37.812 | 54.126 |
Dual-threshold | Single | 126.650 | 0.000 | 300 | 31.814 | 41.614 | 53.580 |
Double | 45.670 | 0.010 | 300 | 26.730 | 34.221 | 45.645 |
(1) | (2) | |
---|---|---|
wlny | wlny | |
wlnx1 | −0.002 *** | −0.002 *** |
(0.000) | (0.000) | |
wlnm1 | 0.003 * | 0.006 *** |
(0.002) | (0.002) | |
wlnm2 | −0.003 ** | −0.003 ** |
(0.001) | (0.001) | |
wlnm3 | −0.010 *** | −0.010 *** |
(0.001) | (0.001) | |
wlnm4 | 0.008 *** | 0.009 *** |
(0.002) | (0.002) | |
wlnm5 | −0.003 *** | −0.003 *** |
(0.001) | (0.001) | |
wlnm6 | 0.026 *** | 0.023 *** |
(0.004) | (0.004) | |
0._cat#c.wlnk2 | 0.002 *** | 0.003 *** |
(0.000) | (0.000) | |
1._cat#c.wlnk2 | 0.001 ** | 0.002 *** |
(0.000) | (0.000) | |
2._cat#c.wlnk2 | 0.001 *** | |
(0.000) | ||
_cons | −2.295 *** | −2.280 *** |
(0.025) | (0.024) | |
N | 589 | 589 |
Thresholds | 95% CI | ||
---|---|---|---|
Single Model | 5.949 | 5.910 | 5.964 |
Double Model | |||
Ito1 | 5.949 | 5.910 | 5.964 |
Ito2 | 7.177 | 7.158 | 7.178 |
Model | Threshold | F | p-Value | BS-Reps | 10% | 5% | 1% |
---|---|---|---|---|---|---|---|
Single | Single | 32.760 | 0.003 | 300 | 15.205 | 19.554 | 25.528 |
Double | Single | 32.760 | 0.007 | 300 | 17.105 | 20.767 | 29.013 |
Double | 9.610 | 0.163 | 300 | 10.867 | 13.036 | 19.206 |
(1) | (2) | |
---|---|---|
wlny | wlny | |
wlnx1 | −0.0020 *** | −0.0019 *** |
(0.000) | (0.000) | |
wlnm1 | −0.0003 | −0.0002 |
(0.002) | (0.002) | |
wlnm2 | −0.0051 *** | −0.0051 *** |
(0.001) | (0.001) | |
wlnm3 | −0.0102 *** | −0.0103 *** |
(0.001) | (0.001) | |
wlnm4 | 0.0042 ** | 0.0043 ** |
(0.002) | (0.002) | |
wlnm5 | −0.0030 *** | −0.0030 *** |
(0.001) | (0.001) | |
wlnm6 | 0.0307 *** | 0.0304 *** |
(0.005) | (0.005) | |
0._cat#c.wlnk3 | 0.0019 * | 0.0007 |
(0.001) | (0.001) | |
1._cat#c.wlnk3 | 0.0011 | −0.0001 |
(0.001) | (0.001) | |
2._cat#c.wlnk3 | 0.0002 | |
(0.001) | ||
_cons | −2.3123 *** | −2.3020 *** |
(0.025) | (0.025) | |
N | 589 | 589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhou, J.; Li, Y. Research on the Impact Effects of the Thermal Power Industry and Other High-Haze-Pollution Industries on the Atmospheric Environment. Energies 2024, 17, 6487. https://doi.org/10.3390/en17246487
Zhou Y, Zhou J, Li Y. Research on the Impact Effects of the Thermal Power Industry and Other High-Haze-Pollution Industries on the Atmospheric Environment. Energies. 2024; 17(24):6487. https://doi.org/10.3390/en17246487
Chicago/Turabian StyleZhou, Yunkai, Jingkun Zhou, and Yating Li. 2024. "Research on the Impact Effects of the Thermal Power Industry and Other High-Haze-Pollution Industries on the Atmospheric Environment" Energies 17, no. 24: 6487. https://doi.org/10.3390/en17246487
APA StyleZhou, Y., Zhou, J., & Li, Y. (2024). Research on the Impact Effects of the Thermal Power Industry and Other High-Haze-Pollution Industries on the Atmospheric Environment. Energies, 17(24), 6487. https://doi.org/10.3390/en17246487