Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid
Abstract
:1. Introduction
1.1. Changes in the Value of the Supply Voltage
1.2. Voltage Asymmetry
1.3. Voltage Waveform Distortion
2. Characteristics of the Tested Object and Measuring Equipment
3. Analysis of Results from Simulation Calculations
4. Field Test Results and Measurement Data Analysis
5. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Villa-Ávila, E.; Arévalo, P.; Aguado, R.; Ochoa-Correa, D.; Iñiguez-Morán, V.; Jurado, F.; Tostado-Véliz, M. Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory. Energies 2023, 16, 5386. [Google Scholar] [CrossRef]
- Wu, J.-C.; Jou, H.-L.; Chang, C.-H. Power Conversion Interface for a Small-Capacity Photovoltaic Power Generation System. Energies 2023, 16, 1097. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Kang, S. Effect of the Coupled Pitch–Yaw Motion on the Unsteady Aerodynamic Performance and Structural Response of a Floating Offshore Wind Turbine. Processes 2021, 9, 290. [Google Scholar] [CrossRef]
- Skibko, Z.; Hołdyński, G.; Borusiewicz, A. Impact of Wind Power Plant Operation on Voltage Quality Parameters—Example from Poland. Energies 2022, 15, 5573. [Google Scholar] [CrossRef]
- EN 50160:2022; Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC: Brussels, Belgium, 2022. Available online: https://standards.cencenelec.eu/dyn/www/f?p=CENELEC:110:::::FSP_PROJECT,FSP_ORG_ID:71003,1258595&cs=177F89A233554A3CA651BC5AAA21C3EB3 (accessed on 12 January 2024).
- The Internet System of Legal Acts—ISAP Regulation of the Minister of Climate and Environment of March 22, 2023 on Detailed Conditions for the Operation of the Power System. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230000819 (accessed on 12 January 2024).
- Angelo, B. Handbook of Power Quality; Baggini, A., Ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780470065617. [Google Scholar]
- Singh, B.; Chandra, A.; Al-Haddad, K. (Eds.) Power Quality Problems and Mitigation Techniques; Wiley: Hoboken, NJ, USA, 2015; ISBN 9781118922057. [Google Scholar]
- Tang, L.; Han, Y.; Yang, P.; Wang, C.; Zalhaf, A.S. A Review of Voltage Sag Control Measures and Equipment in Power Systems. Energy Rep. 2022, 8, 207–216. [Google Scholar] [CrossRef]
- Gandoman, F.H.; Ahmadi, A.; Sharaf, A.M.; Siano, P.; Pou, J.; Hredzak, B.; Agelidis, V.G. Review of FACTS Technologies and Applications for Power Quality in Smart Grids with Renewable Energy Systems. Renew. Sustain. Energy Rev. 2018, 82, 502–514. [Google Scholar] [CrossRef]
- Zajkowski, K.; Duer, S. Decomposition of the Voltages in a Three-Phase Asymmetrical Circuit with a Non-Sinusoidal Voltage Source. Energies 2023, 16, 7616. [Google Scholar] [CrossRef]
- Machowski, J.; Lubosny, Z.; Bialek, J.W.; Bumby, J.R.; James, R. Power System Dynamics: Stability and Control; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 855. [Google Scholar]
- Mroz, M.; Chmielowiec, K.; Hanzelka, Z. Voltage Fluctuations in Networks with Distributed Power Sources. In Proceedings of the 2012 IEEE 15th International Conference on Harmonics and Quality of Power, Hong Kong, China, 17–20 June 2012; pp. 920–925. [Google Scholar]
- Nempu, P.B.; Sabhahit, J.N.; Gaonkar, D.N.; Rao, V.S. Novel Power Smoothing Technique for a Hybrid AC-DC Microgrid Operating with Multiple Alternative Energy Sources. Adv. Electr. Comput. Eng. 2021, 21, 99–106. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Wu, X.; Hu, R.; Tang, F.; Zhang, W. Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment. Sustainability 2019, 11, 1324. [Google Scholar] [CrossRef]
- Krishan, O.; Suhag, S. A Novel Control Strategy for a Hybrid Energy Storage System in a Grid-independent Hybrid Renewable Energy System. Int. Trans. Electr. Energy Syst. 2020, 30, e12262. [Google Scholar] [CrossRef]
- Chong, L.W.; Wong, Y.W.; Rajkumar, R.K.; Isa, D. An Optimal Control Strategy for Standalone PV System with Battery-Supercapacitor Hybrid Energy Storage System. J. Power Sources 2016, 331, 553–565. [Google Scholar] [CrossRef]
- Wu, T.; Yu, W.; Guo, L. A Study on Use of Hybrid Energy Storage System Along with Variable Filter Time Constant to Smooth DC Power Fluctuation in Microgrid. IEEE Access 2019, 7, 175377–175385. [Google Scholar] [CrossRef]
- Hołdyński, G.; Skibko, Z.; Borusiewicz, A. Analysis of the Influence of Load on the Value of Zero-Voltage Asymmetry in Medium-Voltage Networks Operating with Renewable Energy Sources. Energies 2023, 16, 580. [Google Scholar] [CrossRef]
- Kim, Y.-J. Development and Analysis of a Sensitivity Matrix of a Three-Phase Voltage Unbalance Factor. IEEE Trans. Power Syst. 2018, 33, 3192–3195. [Google Scholar] [CrossRef]
- Neukirchner, L.; Görbe, P.; Magyar, A. Voltage Unbalance Reduction in the Domestic Distribution Area Using Asymmetric Inverters. J. Clean Prod. 2017, 142, 1710–1720. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; PG Abas, A.E. Power Quality Assessment of Grid-Connected PV System in Compliance with the Recent Integration Requirements. Electronics 2020, 9, 366. [Google Scholar] [CrossRef]
- Moller, F.; Meyer, J. Survey of Voltage Unbalance and Unbalanced Power in German Public LV Networks. In Proceedings of the 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, 29 May–1 June 2022; pp. 1–6. [Google Scholar]
- Paranavithana, P.; Perera, S.; Koch, R.; Emin, Z. Global Voltage Unbalance in MV Networks Due to Line Asymmetries. IEEE Trans. Power Deliv. 2009, 24, 2353–2360. [Google Scholar] [CrossRef]
- Püvi, V.; Lehtonen, M. Convex Model for Estimation of Single-Phase Photovoltaic Impact on Existing Voltage Unbalance in Distribution Networks. Appl. Sci. 2020, 10, 8884. [Google Scholar] [CrossRef]
- Schwanz, D.; Moller, F.; Ronnberg, S.K.; Meyer, J.; Bollen, M.H.J. Stochastic Assessment of Voltage Unbalance Due to Single-Phase-Connected Solar Power. IEEE Trans. Power Deliv. 2017, 32, 852–861. [Google Scholar] [CrossRef]
- Kuboń, M.; Skibko, Z.; Tabor, S.; Malaga-Toboła, U.; Borusiewicz, A.; Romaniuk, W.; Zarajczyk, J.; Neuberger, P. Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation. Energies 2023, 16, 6189. [Google Scholar] [CrossRef]
- Burg, V.; Bowman, G.; Haubensak, M.; Baier, U.; Thees, O. Valorization of an Untapped Resource: Energy and Greenhouse Gas Emissions Benefits of Converting Manure to Biogas through Anaerobic Digestion. Resour. Conserv. Recycl. 2018, 136, 53–62. [Google Scholar] [CrossRef]
- Roy, R.B.; Alahakoon, S.; Arachchillage, S.J. Grid Impacts of Uncoordinated Fast Charging of Electric Ferry. Batteries 2021, 7, 13. [Google Scholar] [CrossRef]
- Nour, M.; Chaves-Ávila, J.P.; Magdy, G.; Sánchez-Miralles, Á. Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems. Energies 2020, 13, 4675. [Google Scholar] [CrossRef]
- Rodríguez-Pajarón, P.; Hernández, A.; Milanović, J.V. Probabilistic Assessment of the Impact of Electric Vehicles and Nonlinear Loads on Power Quality in Residential Networks. Int. J. Electr. Power Energy Syst. 2021, 129, 106807. [Google Scholar] [CrossRef]
- Held, L.; Mueller, F.; Steinle, S.; Barakat, M.; Suriyah, M.R.; Leibfried, T. An Optimal Power Flow Algorithm for the Simulation of Energy Storage Systems in Unbalanced Three-Phase Distribution Grids. Energies 2021, 14, 1623. [Google Scholar] [CrossRef]
- Weckx, S.; Driesen, J. Load Balancing With EV Chargers and PV Inverters in Unbalanced Distribution Grids. IEEE Trans. Sustain. Energy 2015, 6, 635–643. [Google Scholar] [CrossRef]
- Figueira, H.H.; Hey, H.L.; Schuch, L.; Rech, C.; Michels, L. Brazilian Grid-Connected Photovoltaic Inverters Standards: A Comparison with IEC and IEEE. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 1104–1109. [Google Scholar]
- ANRE Anre.Ro—Autoritatea Națională de Reglementare În Domeniul Energiei. RAE–Regulatory Authority for Energy. Technical Transmission Grid Code of the Romanian Power System. Available online: https://anre.ro/ (accessed on 21 January 2024).
- Petružela, M.; Blažek, V.; Vysocký, J. Analysis of Appliance Impact on Total Harmonic Distortion in Off-Grid System. In AETA 2018-Recent Advances in Electrical Engineering and Related Sciences: Theory and Application; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 844–849. [Google Scholar]
- Aboutaleb, A.M.; Desmet, J.; Knockaert, J. Impact of Grid-Connected Inverter Parameters on the Supraharmonic Emissions in Distributed Power Generation Systems. Machines 2023, 11, 1014. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Xu, Q.; Xie, X.; Jin, Z.; Shi, F.; Zhang, H. Harmonic Contribution Evaluation Based on the Distribution-Level PMUs. IEEE Trans. Power Deliv. 2021, 36, 909–919. [Google Scholar] [CrossRef]
- Gao, B.; Wang, Y.; Xu, W. An Improved Model of Voltage Source Converters for Power System Harmonic Studies. IEEE Trans. Power Deliv. 2022, 37, 3051–3061. [Google Scholar] [CrossRef]
- Torquato, R.; Hax, G.R.T.; Freitas, W.; Nassif, A. Impact Assessment of High-Frequency Distortions Produced by PV Inverters. IEEE Trans. Power Deliv. 2021, 36, 2978–2987. [Google Scholar] [CrossRef]
- Tarafdar Hagh, M.; Khalili, T. A Review of Fault Ride through of PV and Wind Renewable Energies in Grid Codes. Int. J. Energy Res. 2019, 43, 1342–1356. [Google Scholar] [CrossRef]
- Lee, J.H.; Ho Yoon, Y.; Kim, J.M. Analysis of IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface. Int. J. Internet Broadcast. Commun. 2015, 7, 90–95. [Google Scholar] [CrossRef]
- IEEE SA Board of Governors IEEE SA—IEEE 1547a-2014. Available online: https://standards.ieee.org/ieee/1547a/5531/ (accessed on 21 January 2024).
- IEEE Std 519-1992; IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems IEEE Industry Applications Society/Power Engineering Society. The Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 1993.
- Green System Operator ECM–Energy Commission Malaysia. Grid Code for Peninsular Malaysia. Available online: https://www.gso.org.my/ (accessed on 21 January 2024).
- Kopicka, M.; Ptacek, M.; Toman, P. Analysis of the Power Quality and the Impact of Photovoltaic Power Plant Operation on Low-Voltage Distribution Network. In Proceedings of the 2014 Electric Power Quality and Supply Reliability Conference (PQ), Rakvere, Estonia, 11–13 June 2014; pp. 99–102. [Google Scholar]
- Abdul Kadir, A.F.; Khatib, T.; Elmenreich, W. Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges. Int. J. Photoenergy 2014, 2014, 321826. [Google Scholar] [CrossRef]
- Amirullah; Penangsang, O.; Soeprijanto, A. Effect of Installation of Photovoltaic (PV) Generation to Power Quality in Industrial and Residential Customers Distribution Network. In Proceedings of the 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 20–21 May 2015; pp. 193–200. [Google Scholar]
- Barker, P.P.; De Mello, R.W. Determining the Impact of Distributed Generation on Power Systems. I. Radial Distribution Systems. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 16–20 July 2000; pp. 1645–1656. [Google Scholar]
- Kim, S.-K.; Jeon, J.-H.; Cho, C.-H.; Kim, E.-S.; Ahn, J.-B. Modeling and Simulation of a Grid-Connected PV Generation System for Electromagnetic Transient Analysis. Sol. Energy 2009, 83, 664–678. [Google Scholar] [CrossRef]
- Elshahed, M.A. Assessment of Sudden Voltage Changes and Flickering for a Grid-Connected Photovoltaic Plant. Int. J. Renew. Energy Res. 2016, 6, 1328–1335. [Google Scholar] [CrossRef]
- Salah Saidi, A.; Ben-Kilani, K.; Elleuch, M. Impact of Large Scale Photovoltaic Generation on Voltage Stability in Distribution Networks. Eur. J. Electr. Eng. 2016, 18, 117–138. [Google Scholar] [CrossRef]
- Till, J.; You, S.; Liu, Y.; Du, P. Impact of High PV Penetration on Voltage Stability. In Proceedings of the 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Chicago, IL, USA, 12–15 October 2020; pp. 1–5. [Google Scholar]
- Hossain, E.; Tur, M.R.; Padmanaban, S.; Ay, S.; Khan, I. Analysis and Mitigation of Power Quality Issues in Distributed Generation Systems Using Custom Power Devices. IEEE Access 2018, 6, 16816–16833. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
AC output power | 225 kW |
Maximum AC output current | 180.5 A |
Rated AC voltage | 800 V |
AC voltage range | 680–880 V |
Rated grid frequency | 50 Hz |
Total harmonic distortion factor | THD < 3% |
DC component of current | <0.5% In |
Power factor | 0.8 inductive–0.8 capacitive |
Maximum efficiency | 99.00% |
Maximum PV input voltage | 1500 V |
MPP voltage range | 500–1500 V |
Number of independent MPP inputs | 12 |
Parameter | Value |
---|---|
Rated power | 2000 kVA |
Maximal voltage rating | 15 kV |
Minimum voltage rating | 0.8 kV |
Connection group | Dy11 |
Rated frequency | 50 Hz |
Rated current of the medium voltage side | 630 A |
Short circuit voltage | 7.5% |
Load losses | 12.8 kW |
Idle losses | 4.8 kW |
Parameter | Value |
---|---|
Unit resistance for a positive-sequence component | R1 0.44 Ω/km |
Unit reactance for a positive-sequence component | X1 0.391 Ω/km |
Unit capacity for a positive-sequence component | C1 0.009 µF/km |
Specific resistance for a zero-sequence component | R0 0.588 Ω/km |
Unit reactance for a zero-sequence component | X0 1.521 Ω/km |
Long-term current-carrying capacity | 290 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołdyński, G.; Skibko, Z.; Firlit, A.; Walendziuk, W. Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid. Energies 2024, 17, 623. https://doi.org/10.3390/en17030623
Hołdyński G, Skibko Z, Firlit A, Walendziuk W. Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid. Energies. 2024; 17(3):623. https://doi.org/10.3390/en17030623
Chicago/Turabian StyleHołdyński, Grzegorz, Zbigniew Skibko, Andrzej Firlit, and Wojciech Walendziuk. 2024. "Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid" Energies 17, no. 3: 623. https://doi.org/10.3390/en17030623
APA StyleHołdyński, G., Skibko, Z., Firlit, A., & Walendziuk, W. (2024). Analysis of the Impact of a Photovoltaic Farm on Selected Parameters of Power Quality in a Medium-Voltage Power Grid. Energies, 17(3), 623. https://doi.org/10.3390/en17030623