Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends
Abstract
:1. Introduction
2. Materials and Methods
- Anticipation of future research trends in a given area;
- Identification of areas in need of research (search for knowledge gaps);
- Identification of links between research areas;
- Identification of areas of relatively high research saturation;
- Trend analysis of a research area.
- Trend analysis is an assessment of the dynamics of changes in the number of publications over the analysed period.
- Citation analysis is used to assess and compare publications on the basis of frequency of citations. A citation index indicates the level of interest of other authors on a particular publication.
- Co-word analysis is based on counting the frequency of occurrence of word pairs in the analysed text. Such an analysis makes it possible to identify the regularity of the co-occurrence of words.
- Co-occurrence of words can signal the existence of sub-areas of research or identify the directions of development of a research area. The analysis can be carried out at the level of different text elements, including titles, abstracts, keywords, the actual text of publications or on the basis of various combinations of these elements.
- Assessment of changes in the number of publications in the study area analysed over a specific time horizon in the Scopus database;
- Identification of publications of key relevance to the research area under analysis based on citations;
- Identification of research sub-areas in the bibliometric dataset based on an analysis of the most frequent phraseological compounds in the SCOPUS database using VOSviewer.
3. Results and Discussion
3.1. Trend Analysis
3.2. Citation Analysis
3.3. Bibliographic Coupling Analysis
- Geological and reservoir aspects—Cluster 1 (10 items): gas storage, geology, hydrocarbon reservoir, hydrogen, hydrogen, hydrogen storage, oil field equipment, porous medium, rock, underground gas storage and underground storage.
- Reservoir engineering aspects—Cluster 2 (6 items): cushion gas, depleted gas reservoir, gases, numerical models, petroleum reservoir engineering and petroleum reservoirs.
- Hydrogeological aspects—Cluster 3 (4 items): aquifers, dissolution, hydrogeology and underground hydrogen storage.
- Petrophysical aspects—Cluster 4 (4 items): caprock, contact angle, sandstone and wetting.
3.4. Key Research Trends—Current Status and Prospects
3.5. Bibliometric Analysis—Limitations and Perspectives
4. Conclusions
- Currently, hydrogen storage in aquifers is in the research phase.
- Most of the studies reviewed in this paper recognise that the most important issues related to this topic are the efficiency of the hydrogen storage process (injection, hydrogen withdrawal and the safety of the process).
- Parameters such as porosity and permeability of the storage formation, geochemical and microbial reactions, geomechanical interactions, and the tightness of overburden rocks are related to these issues. These parameters, in turn, depend on many other factors, such as reservoir pressure, capillary pressure, wettability and phase tension.
- In addition to the technical interdependence of the parameters analysed, there are also interrelationships between scientific publications addressing the above-mentioned issues.
- Science mapping is becoming increasingly important due to the rapidly growing number of publications, and their fragmentation knowledge accumulation is becoming increasingly complex.
- Bibliometric methods have great potential in quantitatively confirming subjectively delineated research fields and/or examining unexplored areas.
- The results of the literature analysis on hydrogen storage in porous rocks presented in this paper may constitute the basis for further in-depth analyses. More detailed research on citations, e.g., co-citations, their clustering, or analysis of bibliographic connections, could allow for the identification of research trends for the analysed topic and the relationships between them.
- To identify research trends and their evolution, as well as the emergence and disappearance of problem areas in the field of hydrogen storage in porous rocks, it can be beneficial to use the method of co-occurrence of terms taken from publication titles (hotspots), and so-called additional words (KeyWords Plus).
- The use of advanced research methods for bibliographic analyses is necessary due to the large number of publishers, publications, and scientific disciplines. The research algorithms used by these methods are becoming more complex. Without their use, conducting in-depth bibliographic analyses is now impossible.
- The weakness of bibliographic descriptions, which may translate into low-quality analyses, is the poorly specified article titles, keywords, and article summaries. The authors of the publication can solve this problem by being more careful in preparing all components of the publication.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Olabi, A.G.; bahri, A.S.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Shi, Z.; Jessen, K.; Tsotsis, T.T. Impacts of the subsurface storage of natural gas and hydrogen mixtures. Int. J. Hydrogen Energy 2020, 45, 8757–8773. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wang, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Langmi, H.W.; Engelbrecht, N.; Modisha, P.M.; Bessarabov, D. Hydrogen storage. In Electrochemical Power Sources: Fundamentals, Systems, and Applications Hydrogen Production by Water Electrolysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–486. ISBN 9780128194249. [Google Scholar]
- Crotogino, F.; Donadei, S.; Bünger, U.; Landinger, H. Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies. In Proceedings of the WHEC, May 16–21 2010, Essen Schriften des Forschungszentrums Jülich/Energy & Environment, Vol. 78-4; Stolten, D., Grube, T., Eds.; Institute of Energy Research—Fuel Cells: Essen, Germany, 2010; pp. 37–45. [Google Scholar]
- Gabrielli, P.; Poluzzi, A.; Kramer, G.J.; Spiers, C.; Mazzotti, M.; Gazzani, M. Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. Renew. Sustain. Energy Rev. 2020, 121, 109629. [Google Scholar] [CrossRef]
- Heinemann, N.; Booth, M.G.; Haszeldine, R.S.; Wilkinson, M.; Scafidi, J.; Edlmann, K. Hydrogen storage in porous geological formations—Onshore play opportunities in the midland valley (Scotland, UK). Int. J. Hydrogen Energy 2018, 43, 20861–20874. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B.; Tarkowski, P. Storage of hydrogen, natural gas, and carbon dioxide—Geological and legal conditions. Int. J. Hydrogen Energy 2021, 46, 20010–20022. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Panfilov, M. Underground and pipeline hydrogen storage. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 91–115. [Google Scholar]
- Uliasz-Misiak, B.; Lewandowska-Śmierzchalska, J.; Matuła, R.; Tarkowski, R. Prospects for the Implementation of Underground Hydrogen Storage in the EU. Energies 2022, 15, 9535. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Evans, D.J. A review of underground fuel storage events and putting risk into perspective with other areas of the energy supply chain. Geol. Soc. Spec. Publ. 2009, 313, 173–216. [Google Scholar] [CrossRef]
- Okoroafor, E.R.; Saltzer, S.D.; Kovscek, A.R. Toward underground hydrogen storage in porous media: Reservoir engineering insights. Int. J. Hydrogen Energy 2022, 47, 33781–33802. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2021, 20, 153–188. [Google Scholar] [CrossRef]
- Dopffel, N.; Jansen, S.; Gerritse, J. Microbial side effects of underground hydrogen storage—Knowledge gaps, risks and opportunities for successful implementation. Int. J. Hydrogen Energy 2021, 46, 8594–8606. [Google Scholar] [CrossRef]
- Ebigbo, A.; Golfier, F.; Quintard, M. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage. Adv. Water Resour. 2013, 61, 74–85. [Google Scholar] [CrossRef]
- Yekta, A.E.; Pichavant, M.; Audigane, P. Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage. Appl. Geochem. 2018, 95, 182–194. [Google Scholar] [CrossRef]
- Zeng, L.; Vialle, S.; Ennis-King, J.; Esteban, L.; Sarmadivaleh, M.; Sarout, J.; Dautriat, J.; Giwelli, A.; Xie, Q. Role of geochemical reactions on caprock integrity during underground hydrogen storage. J. Energy Storage 2023, 65, 107414. [Google Scholar] [CrossRef]
- Ghaedi, M.; Andersen, P.Ø.; Gholami, R. Hydrogen diffusion into caprock: A semi-analytical solution and a hydrogen loss criterion. J. Energy Storage 2023, 64, 107134. [Google Scholar] [CrossRef]
- Hosseini, M.; Fahimpour, J.; Ali, M.; Keshavarz, A.; Iglauer, S. Capillary Sealing Efficiency Analysis of Caprocks: Implication for Hydrogen Geological Storage. Energy Fuels 2022, 36, 4065–4075. [Google Scholar] [CrossRef]
- Hosseini, M.; Ali, M.; Fahimpour, J.; Keshavarz, A.; Iglauer, S. Assessment of rock-hydrogen and rock-water interfacial tension in shale, evaporite and basaltic rocks. J. Nat. Gas Sci. Eng. 2022, 106, 104743. [Google Scholar] [CrossRef]
- Sainz-Garcia, A.; Abarca, E.; Rubi, V.; Grandia, F. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. Int. J. Hydrogen Energy 2017, 42, 16657–16666. [Google Scholar] [CrossRef]
- Heinemann, N.; Scafidi, J.; Pickup, G.; Thaysen, E.M.; Hassanpouryouzband, A.; Wilkinson, M.; Satterley, A.K.; Booth, M.G.; Edlmann, K.; Haszeldine, R.S. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. Int. J. Hydrogen Energy 2021, 46, 39284–39296. [Google Scholar] [CrossRef]
- Lysyy, M.; Fernø, M.; Ersland, G. Seasonal hydrogen storage in a depleted oil and gas field. Int. J. Hydrogen Energy 2021, 49, 25160–25174. [Google Scholar] [CrossRef]
- Zamehrian, M.; Sedaee, B. Underground hydrogen storage in a partially depleted gas condensate reservoir: Influence of cushion gas. J. Pet. Sci. Eng. 2022, 212, 110304. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Jiang, D.; Shi, X.; Li, Y.; Damen, J.J.K.; Yang, C. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC). Appl. Energy 2016, 178, 703–720. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Makhnenko, R.; Gheibi, S. Geomechanical analysis of the influence of CO2 injection location on fault stability. J. Rock Mech. Geotech. Eng. 2016, 8, 805–818. [Google Scholar] [CrossRef]
- Song, Y.; Jun, S.; Na, Y.; Kim, K.; Jang, Y.; Wang, J. Geomechanical challenges during geological CO2 storage: A review. Chem. Eng. J. 2023, 456, 140968. [Google Scholar] [CrossRef]
- Rutqvist, J. The Geomechanics of CO2 Storage in Deep Sedimentary Formations. Geotech. Geol. Eng. 2012, 30, 525–551. [Google Scholar] [CrossRef]
- Dautriat, J.; Gland, N.; Guelard, J.; Dimanov, A.; Raphanel, J.L. Axial and Radial Permeability Evolutions of Compressed Sandstones: End Effects and Shear-band Induced Permeability Anisotropy. Pure Appl. Geophys. 2009, 166, 1037–1061. [Google Scholar] [CrossRef]
- Ostermeier, R.M. Deepwater Gulf of Mexico Turbidites—Compaction Effects on Porosity and Permeability. SPE Form. Eval. 1995, 10, 79–85. [Google Scholar] [CrossRef]
- Suckale, J. Moderate-to-large seismicity induced by hydrocarbon production. Lead. Edge 2010, 29, 310–319. [Google Scholar] [CrossRef]
- Hangx, S.; Bakker, E.; Bertier, P.; Nover, G.; Busch, A. Chemical–mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure—A case study of the Werkendam natural CO2 analogue field. Earth Planet. Sci. Lett. 2015, 428, 230–242. [Google Scholar] [CrossRef]
- Song, J.; Zhang, D. Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration. Environ. Sci. Technol. 2012, 47, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.; Zweigel, P. Best Practice for the Storage of CO2 in Saline Aquifers. Observations and Guidelines from the SACS and CO2STORE Projects; British Geological Survey Occasional Publication: Nottingham, UK, 2008. [Google Scholar]
- Ismail, I.; Gaganis, V. Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review. Clean Technol. 2023, 5, 609–637. [Google Scholar] [CrossRef]
- Nicot, J.P. Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: An example from the Texas Gulf Coast Basin. Int. J. Greenh. Gas Control 2008, 2, 582–593. [Google Scholar] [CrossRef]
- Dewhurst, D.N.; Piane, C.D.; Esteban, L.; Sarout, J.; Josh, M.; Pervukhina, M.; Ben Clennell, M. Microstructural, Geomechanical, and Petrophysical Characterization of Shale Caprocks. Geophys. Monogr. Ser. 2018, 238, 1–30. [Google Scholar] [CrossRef]
- Bardelli, F.; Mondelli, C.; Didier, M.; Vitillo, J.G.; Cavicchia, D.R.; Robinet, J.C.; Leone, L.; Charlet, L. Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology. Appl. Geochem. 2014, 49, 168–177. [Google Scholar] [CrossRef]
- Mondelli, C.; Bardelli, F.; Vitillo, J.G.; Didier, M.; Brendle, J.; Cavicchia, D.R.; Robinet, J.-C.; Charlet, L. Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature. Int. J. Hydrogen Energy 2015, 40, 2698–2709. [Google Scholar] [CrossRef]
- van Noort, R. Effects of clay swelling or shrinkage on shale caprock integrity. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; Volume 2018, pp. 1–5. [Google Scholar] [CrossRef]
- Spiers, C.J.; Hangx, S.J.T.; Niemeijer, A.R. New approaches in experimental research on rock and fault behaviour in the Groningen gas field. Neth. J. Geosci. 2017, 96, s55–s69. [Google Scholar] [CrossRef]
- Saeed, M.; Jadhawar, P.; Bagala, S. Geochemical Effects on Storage Gases and Reservoir Rock during Underground Hydrogen Storage: A Depleted North Sea Oil Reservoir Case Study. Hydrogen 2023, 4, 323–337. [Google Scholar] [CrossRef]
- Bo, Z.; Zeng, L.; Chen, Y.; Xie, Q. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. Int. J. Hydrogen Energy 2021, 46, 19998–20009. [Google Scholar] [CrossRef]
- Hassannayebi, N.; Azizmohammadi, S.; De Lucia, M.; Ott, H. Underground hydrogen storage: Application of geochemical modelling in a case study in the Molasse Basin, Upper Austria. Environ. Earth Sci. 2019, 78, 177. [Google Scholar] [CrossRef]
- Hemme, C.; van Berk, W. Potential risk of H2S generation and release in salt cavern gas storage. J. Nat. Gas Sci. Eng. 2017, 47, 114–123. [Google Scholar] [CrossRef]
- Hagemann, B.; Rasoulzadeh, M.; Panfilov, M.; Ganzer, L.; Reitenbach, V. Hydrogenization of underground storage of natural gas: Impact of hydrogen on the hydrodynamic and biochemical behavior. Comput. Geosci. 2016, 20, 595–606. [Google Scholar] [CrossRef]
- Gregory, S.P.; Barnett, M.J.; Field, L.P.; Milodowski, A.E. Subsurface Microbial Hydrogen Cycling: Natural Occurrence and Implications for Industry. Microorganisms 2019, 7, 53. [Google Scholar] [CrossRef]
- Bernardez, L.A.; De Lima, L.R.P.A.; De Jesus, E.B.; Ramos, C.L.S.; Almeida, P.F. A kinetic study on bacterial sulfate reduction. Bioprocess Biosyst. Eng. 2013, 36, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, B.B.; Isaksen, M.F.; Jannasch, H.W. Bacterial Sulfate Reduction Above 100C in Deep-Sea Hydrothermal Vent Sediments. Science 1992, 258, 1756–1757. [Google Scholar] [CrossRef]
- Machel, H.G. Bacterial and thermochemical sulfate reduction in diagenetic settings—Old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Thaysen, E.M.; McMahon, S.; Strobel, G.J.; Butler, I.B.; Ngwenya, B.T.; Heinemann, N.; Wilkinson, M.; Hassanpouryouzband, A.; McDermott, C.I.; Edlmann, K. Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renew. Sustain. Energy Rev. 2021, 151, 111481. [Google Scholar] [CrossRef]
- Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T. Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Pet. Sci. Eng. 2022, 210, 110091. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Li, J.; Xu, Y.; Xin, H. Effect of Interface Structure and Behavior on the Fluid Flow Characteristics and Phase Interaction in the Petroleum Industry: State of the Art Review and Outlook. Energy Fuels 2023, 37, 9914–9937. [Google Scholar] [CrossRef]
- Hematpur, H.; Abdollahi, R.; Rostami, S.; Haghighi, M.; Blunt, M.J. Review of underground hydrogen storage: Concepts and challenges. Adv. Geo-Energy Res. 2023, 7, 111–131. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual, version 1.6.19.; Univeristeit Leiden: Leiden, The Netherlands, 2023. [Google Scholar]
- van Eck, N.J.; Waltman, L. VOSviewer—Visualizing Scientific Landscapes. Available online: www.vosviewer.com (accessed on 18 December 2023).
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Taylor, J.B.; Alderson, J.E.A.; Kalyanam, K.M.; Lyle, A.B.; Phillips, L.A. Technical and economic assessment of methods for the storage of large quantities of hydrogen. Int. J. Hydrogen Energy 1986, 11, 5–22. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media—The scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- Bai, M.; Song, K.; Sun, Y.; He, M.; Li, Y.; Sun, J. An overview of hydrogen underground storage technology and prospects in China. J. Pet. Sci. Eng. 2014, 124, 132–136. [Google Scholar] [CrossRef]
- Hemme, C.; van Berk, W. Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields. Appl. Sci. 2018, 8, 2282. [Google Scholar] [CrossRef]
- Feldmann, F.; Hagemann, B.; Ganzer, L.; Panfilov, M. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environ. Earth Sci. 2016, 75, 1165. [Google Scholar] [CrossRef]
- Flesch, S.; Pudlo, D.; Albrecht, D.; Jacob, A.; Enzmann, F. Hydrogen underground storage—Petrographic and petrophysical variations in reservoir sandstones from laboratory experiments under simulated reservoir conditions. Int. J. Hydrogen Energy 2018, 43, 20822–20835. [Google Scholar] [CrossRef]
- Luboń, K.; Tarkowski, R. Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland. Int. J. Hydrogen Energy 2020, 45, 2068–2083. [Google Scholar] [CrossRef]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Glänzel, W.; Czerwon, H.J. A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics 1996, 37, 195–221. [Google Scholar] [CrossRef]
- Lewandowska-Śmierzchalska, J.; Tarkowski, R.; Uliasz-Misiak, B. Screening and ranking framework for underground hydrogen storage site selection in Poland. Int. J. Hydrogen Energy 2018, 43, 4401–4414. [Google Scholar] [CrossRef]
- Reitenbach, V.; Ganzer, L.; Albrecht, D.; Hagemann, B. Influence of added hydrogen on underground gas storage: A review of key issues. Environ. Earth Sci. 2015, 73, 6927–6937. [Google Scholar] [CrossRef]
- Bin Navaid, H.; Emadi, H.; Watson, M.; Herd, B.L. A comprehensive literature review on the challenges associated with underground hydrogen storage. Int. J. Hydrogen Energy 2022, 48, 10603–10635. [Google Scholar] [CrossRef]
- Hangx, S.J.T.; Spiers, C.J.; Peach, C.J. Mechanical behavior of anhydrite caprock and implications for CO2 sealing capacity. J. Geophys. Res. Solid Earth 2010, 115, B07402. [Google Scholar] [CrossRef]
- Sadeghi, S.; Sedaee, B. Mechanistic simulation of cushion gas and working gas mixing during underground natural gas storage. J. Energy Storage 2022, 46, 103885. [Google Scholar] [CrossRef]
- Aslannezhad, M.; Ali, M.; Kalantariasl, A.; Sayyafzadeh, M.; You, Z.; Iglauer, S.; Keshavarz, A. A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Prog. Energy Combust. Sci. 2023, 95, 101066. [Google Scholar] [CrossRef]
- Hashemi, L.; Glerum, W.; Farajzadeh, R.; Hajibeygi, H. Contact angle measurement for hydrogen/brine/sandstone system using captive-bubble method relevant for underground hydrogen storage. Adv. Water Resour. 2021, 154, 103964. [Google Scholar] [CrossRef]
- Miocic, J.M.; Heinemann, N.; Alcalde, J.; Edlmann, K.; Schultz, R. Enabling Asecure Subsurface Storage in Future Energy Systems; Special Publications; Geological Society Publications: London, UK, 2023; Volume 528, pp. 1–7. [Google Scholar] [CrossRef]
- Neff, M.W.; Corley, E.A. 35 years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics 2009, 80, 657–682. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, J.; Wang, Q.; Nie, C.; Shi, Z.; Wang, X.; Gao, Z. A bibliometric analysis of micro/nano-bubble related research: Current trends, present application, and future prospects. Scientometrics 2016, 109, 53–71. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, X.; Ho, Y.-S. Bibliometric Analysis of Atmospheric Simulation Trends in Meteorology and Atmospheric Science Journals. Croat. Chem. Acta 2009, 82, 695–705. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.H.; Ho, Y.S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Change 2011, 77, 13–20. [Google Scholar] [CrossRef]
Country | Documents | Citations |
---|---|---|
United States | 50 | 617 |
Australia | 45 | 934 |
China | 39 | 496 |
Germany | 34 | 1117 |
Saudi Arabia | 29 | 385 |
United Kingdom | 25 | 775 |
The Netherlands | 19 | 539 |
Poland | 19 | 316 |
France | 18 | 742 |
Austria | 12 | 96 |
Iran | 11 | 375 |
Canada | 10 | 338 |
Norway | 10 | 167 |
Italy | 9 | 31 |
United Arab Emirates | 9 | 8 |
Malaysia | 8 | 464 |
India | 5 | 157 |
Authors | Title | Year | Journal | Citations |
---|---|---|---|---|
Zivar, D., Kumar, S., Foroozesh, J. | “Underground hydrogen storage: A comprehensive review” [18] | 2021 | International Journal of Hydrogen Energy | 340 |
Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, Suzanne J. T., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E.M., Strobel, G.J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M. Bentham, M.S., Haszeldine, R. Carbonell, R., Rudloff, A. | “Enabling large-scale hydrogen storage in porous media-the scientific challenges” [72] | 2021 | Energy and Environmental Science | 262 |
Matos, C.R., Carneiro, J.F., Silva, P.P. | “Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification” [73] | 2019 | Journal of Energy Storage | 210 |
Taylor, J.B., Alderson, J.E.A., Kalyanam, K.M., Lyle, A.B., Phillips, L.A. | “Technical and economic assessment of methods for the storage of large quantities of hydrogen” [71] | 1986 | International Journal of Hydrogen Energy | 140 |
Panfilov, M. | “Underground and pipeline hydrogen storage” [19] | 2015 | Compendium of Hydrogen Energy: Hydrogen Storage, Distribution and Infrastructure: Volume 2 | 132 |
Bai, M., Song, K., Sun, Y., He, M., Li, Y., Sun, J. | “An overview of hydrogen underground storage technology and prospects in China” [74] | 2014 | Journal of Petroleum Science and Engineering | 131 |
Hemme, C., van Berk, W. | “Hydrogeochemical modelling to identify potential risks of underground hydrogen storage in depleted gas fields” [75] | 2018 | Applied Sciences (Switzerland) | 115 |
Feldmann, F., Hagemann, B., Ganzer, L., Panfilov, M. | “Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages” [76] | 2016 | Environmental Earth Sciences | 114 |
Flesch, S., Pudlo, D., Albrecht, D., Jacob, A., Enzmann, F. | “Hydrogen underground storage—Petrographic and petrophysical variations in reservoir sandstones from laboratory experiments under simulated reservoir conditions” [77] | 2018 | International Journal of Hydrogen Energy | 111 |
Luboń, K., Tarkowski, R. | “Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland” [78] | 2020 | International Journal of Hydrogen Energy | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliasz-Misiak, B.; Misiak, J.; Lewandowska-Śmierzchalska, J. Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends. Energies 2024, 17, 805. https://doi.org/10.3390/en17040805
Uliasz-Misiak B, Misiak J, Lewandowska-Śmierzchalska J. Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends. Energies. 2024; 17(4):805. https://doi.org/10.3390/en17040805
Chicago/Turabian StyleUliasz-Misiak, Barbara, Jacek Misiak, and Joanna Lewandowska-Śmierzchalska. 2024. "Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends" Energies 17, no. 4: 805. https://doi.org/10.3390/en17040805
APA StyleUliasz-Misiak, B., Misiak, J., & Lewandowska-Śmierzchalska, J. (2024). Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends. Energies, 17(4), 805. https://doi.org/10.3390/en17040805