The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Parameters of Sugar Beet Pulp
3.2. Sugar Content in the SBP Hydrolysates
3.3. Sugar Uptake during Fermentation
3.4. Ethanol Yield from Sugar Beet Pulp
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CEFS Statistics 2021/22. Available online: https://cefs.org/wp-content/uploads/2023/04/European-Sugar-Statistics-Report-for-the-marketing-year-2021-22-1.pdf (accessed on 24 December 2023).
- FAO. Sugar Beet White Sugar Agribusiness Handbook. Internet Access. 2009. Available online: https://www.fao.org/3/ae377e/ae377e.pdf (accessed on 23 December 2023).
- Bioethanol–European Biomass Industry Association. Internet Access. 2023. Available online: https://www.Eubia.Org/Cms/Wiki-Biomass/Biofuels/Bioethanol/ (accessed on 23 December 2023).
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef]
- Prasad, S.; Singh, A.; Joshi, H.C. Ethanol as an Alternative Fuel from Agricultural, Industrial and Urban Residues. Resour. Conserv. Recycl. 2007, 50, 1–39. [Google Scholar] [CrossRef]
- Yu, C.; Ahmadi, S.; Shen, S.; Wu, D.; Xiao, H.; Ding, T.; Liu, D.; Ye, X.; Chen, S. Structure and Fermentation Characteristics of Five Polysaccharides Sequentially Extracted from Sugar Beet Pulp by Different Methods. Food Hydrocoll. 2022, 126, 107462. [Google Scholar] [CrossRef]
- Lin, Y.; Tanaka, S. Ethanol Fermentation from Biomass Resources: Current State and Prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.W.; Anderson, W.A.; Moo-Young, M. Ethanol Fermentation Technologies from Sugar and Starch Feedstocks. Biotechnol. Adv. 2008, 26, 89–105. [Google Scholar] [CrossRef] [PubMed]
- McMillan, J.D. Xylose Fermentation to Ethanol: A Review; No. NREL/TP-421-4944; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1993; p. 10117941. [Google Scholar]
- Liang, M.; Damiani, A.; He, Q.P.; Wang, J. Elucidating Xylose Metabolism of Scheffersomyces Stipitis for Lignocellulosic Ethanol Production. ACS Sustain. Chem. Eng. 2014, 2, 38–48. [Google Scholar] [CrossRef]
- Berlowska, J.; Cieciura-Włoch, W.; Kalinowska, H.; Kregiel, D.; Borowski, S.; Pawlikowska, E.; Binczarski, M.; Witonska, I. Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production. Food Technol. Biotechnol. 2018, 56, 188–196. [Google Scholar] [CrossRef]
- Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Saucedo, E. Ethanol Production from Eucalyptus Wood Hemicellulose Hydrolysate by Pichia Stipitis. Biotechnol. Bioeng. 1992, 40, 753–759. [Google Scholar] [CrossRef]
- Delgenes, J.P.; Moletta, R.; Navarro, J.M. Fermentation of D-Xylose, D-Glucose, L-Arabinose Mixture by Pichia Stipitis: Effect of the Oxygen Transfer Rate on Fermentation Performance. Biotechnol. Bioeng. 1989, 34, 398–402. [Google Scholar] [CrossRef]
- Karagöz, P.; Özkan, M. Ethanol Production from Wheat Straw by Saccharomyces Cerevisiae and Scheffersomyces Stipitis Co-Culture in Batch and Continuous System. Bioresour. Technol. 2014, 158, 286–293. [Google Scholar] [CrossRef]
- Ruchala, J.; Kurylenko, O.O.; Dmytruk, K.V.; Sibirny, A.A. Construction of Advanced Producers of First- and Second-Generation Ethanol in Saccharomyces Cerevisiae and Selected Species of Non-Conventional Yeasts (Scheffersomyces Stipitis, Ogataea Polymorpha). J. Ind. Microbiol. Biotechnol. 2020, 47, 109–132. [Google Scholar] [CrossRef]
- Unrean, P.; Khajeeram, S. Model-Based Optimization of Scheffersomyces Stipitis and Saccharomyces cerevisiae Coculture for Efficient Lignocellulosic Ethanol Production. Bioresour. Bioprocess. 2015, 2, 41. [Google Scholar] [CrossRef]
- Sun, L.; Wu, B.; Zhang, Z.; Yan, J.; Liu, P.; Song, C.; Shabbir, S.; Zhu, Q.; Yang, S.; Peng, N.; et al. Cellulosic Ethanol Production by Consortia of Scheffersomyces Stipitis and Engineered Zymomonas Mobilis. Biotechnol. Biofuels 2021, 14, 221. [Google Scholar] [CrossRef]
- Kusumoto, K.-I.; Yamagata, Y.; Tazawa, R.; Kitagawa, M.; Kato, T.; Isobe, K.; Kashiwagi, Y. Japanese Traditional Miso and Koji Making. J. Fungi 2021, 7, 579. [Google Scholar] [CrossRef]
- Thanapimmetha, A.; Vuttibunchon, K.; Saisriyoot, M.; Srinophakun, P. Chemical and Microbial Hydrolysis of Sweet Sorghum Bagasse for Ethanol Production. In Proceedings of the World Renewable Energy Congress–Sweden, Linköping, Sweden, 8–13 May 2011; pp. 389–396. [Google Scholar]
- Sukumaran, R.K.; Singhania, R.R.; Pandey, A. Microbial Cellulases Production, Applications and Challenges. JSIR 2005, 64, 832–844. [Google Scholar]
- Ramalingam, S.; Revathi, D. De-Escalation of Saccharification Costs through Enforcement of Immobilization of Cellulase Synthesized by Wild Trichoderma Viride. Catalysts 2022, 12, 659. [Google Scholar] [CrossRef]
- Zakpaa, H.; Mak-Mensah, E.; Johnson, F. Saccharification of Maize Agrowastes by Cellulolytic Fungi Isolated from Ejura Farms in Ejura, Ghana. J. Sci. Technol. 2010, 30, 10–17. [Google Scholar] [CrossRef]
- Pessoa, A.; Mancilha, I.M.; Sato, S. Cultivation of Candida Tropicalis in Sugar Cane Hemicellulosic Hydrolyzate for Microbial Protein Production. J. Biotechnol. 1996, 51, 83–88. [Google Scholar] [CrossRef]
- Hoffer, A.; Kurschner, K. A New Quantitative Cellulose Determination. Chem. Unserer Zeit 1931, 161, 1811. [Google Scholar]
- Araschimovich, V.V.; Ermakov, A.I. Measurement of the Total Content of Hemicelluloses. In Methods for Biochemical Studies of Plants; Ermakov, A.I., Ed.; Agropromizdat: Saint Petersburg, Russia, 1987. [Google Scholar]
- Templeton, D.; Ehrman, T. Determination of Acidinsoluble Lignin in Biomass. In Chemical Analysis and Testing Task, Laboratory Analytical Procedure LAP-003; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 1995. [Google Scholar]
- AOAC International. Journal of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1995; Volume 2. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Berłowska, J.; Balcerek, M.; Dziugan, P.; Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Patelski, P.; Robak, K. Use of Saccharose and Structural Polysaccharides from Sugar Beet Biomass for Bioethanol Production. Int. Agrophys. 2020, 34, 151–159. [Google Scholar] [CrossRef]
- Bayashi, M.; Funane, K.; Ueyama, H.; Ohya, S.; Tanaka, M.; Kato, Y. Sugar Composition of Beet Pulp Polysaccharides and Their Enzymatic Hydrolysis. Biosci. Biotechnol. Biochem. 1993, 57, 998–1000. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Diwan, D.; Tripathi, M.; Whale, E.; Jayakody, L.N.; Moreau, B.; Thakur, V.K.; Tuohy, M.; Gupta, V.K. Valorization of Sugar Beet Pulp to Value-Added Products: A Review. Bioresour. Technol. 2022, 346, 126580. [Google Scholar] [CrossRef] [PubMed]
- Ptak, M.; Skowrońska, A.; Pińkowska, H.; Krzywonos, M. Sugar Beet Pulp in the Context of Developing the Concept of Circular Bioeconomy. Energies 2022, 15, 175. [Google Scholar] [CrossRef]
- Patelski, P.; Berlowska, J.; Dziugan, P.; Pielech-Przybylska, K.; Balcerek, M.; Dziekonska, U.; Kalinowska, H. Utilisation of Sugar Beet Bagasse for the Biosynthesis of Yeast SCP. J. Food Eng. 2015, 167, 32–37. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a Versatile Polysaccharide Present in Plant Cell Walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Kühnel, S.; Schols, H.A.; Gruppen, H. Aiming for the Complete Utilization of Sugar-Beet Pulp: Examination of the Effects of Mild Acid and Hydrothermal Pretreatment Followed by Enzymatic Digestion. Biotechnol. Biofuels 2011, 4, 14. [Google Scholar] [CrossRef]
- Micard, V.; Renard, C.M.G.C.; Thibault, J.-F. Enzymatic Saccharification of Sugar-Beet Pulp. Enzym. Microb. Technol. 1996, 19, 162–170. [Google Scholar] [CrossRef]
- Díez-Antolínez, R.; Hijosa-Valsero, M.; Paniagua-García, A.I.; Garita-Cambronero, J.; Gómez, X. Yeast Screening and Cell Immobilization on Inert Supports for Ethanol Production from Cheese Whey Permeate with High Lactose Loads. PLoS ONE 2018, 13, e0210002. [Google Scholar] [CrossRef]
- Cagnin, L.; Gronchi, N.; Basaglia, M.; Favaro, L.; Casella, S. Selection of Superior Yeast Strains for the Fermentation of Lignocellulosic Steam-Exploded Residues. Front. Microbiol. 2021, 12, 756032. [Google Scholar] [CrossRef]
- Lynd, L.R.; Elamder, R.T.; Wyman, C.E. Likely Features and Costs of Mature Biomass Ethanol Technology. Appl. Biochem. Biotechnol. 1996, 57–58, 741–761. [Google Scholar] [CrossRef]
- Toivari, M. Engineering the Pentose Phosphate Pathway of Saccharomyces Cerevisiae for Production of Ethanol and Xylitol. VTT-PUBS-641. ISBN: 978-951-38-7021-8. Available online: https://helda.helsinki.fi/server/api/core/bitstreams/c2b5fa5f-a896-44b1-922f-af3ace983a13/content (accessed on 20 December 2023).
- Rouhollah, H.; Iraj, N.; Giti, E.; Sorah, A. Mixed Sugar Fermentation by Pichia Stipitis, Sacharomyces Cerevisiaea, and an Isolated Xylosefermenting Kluyveromyces Marxianus and Their Cocultures. Afr. J. Biotechnol. 2007, 6, 1110–1114. [Google Scholar]
- Kwak, S.; Jin, Y.-S. Production of Fuels and Chemicals from Xylose by Engineered Saccharomyces Cerevisiae: A Review and Perspective. Microb. Cell Factories 2017, 16, 82. [Google Scholar] [CrossRef]
- Carrasco, C.; Baudel, H.; Roslander, C.; Galbe, M.; Lidén, G. Fermentation of the Straw Material Paja Brava by the Yeast Pichia Stipitis in a Simultaneous Saccharification and Fermentation Process. J. Sustain. Bioenergy Syst. 2013, 3, 99–106. [Google Scholar] [CrossRef]
- Thatipamala, R.; Rohani, S.; Hill, G.A. Effects of High Product and Substrate Inhibitions on the Kinetics and Biomass and Product Yields during Ethanol Batch Fermentation. Biotechnol. Bioeng. 1992, 40, 289–297. [Google Scholar] [CrossRef]
- Cheong, C.; Wackerbauer, K.; Beckmann, M.; Jang, K.-H.; Kang, S.A. Effect of Cultivation Conditions on Trehalose Content and Viability of Brewing Yeast Following Preservation via Filter Paper or Lyophilization Methods. Biotechnol. Bioproc E 2008, 13, 690–696. [Google Scholar] [CrossRef]
- Hastuti, N.; Agustini, L.; Aini, E.N.; Indrawan, D.A.; Pari, G.; Wibisono, H.S. Biological Degradation of Bamboo Paper by Two White-Rot Fungi Species. Indones. J. For. Res. 2023, 10, 239–249. [Google Scholar] [CrossRef]
- Nath, S.; Kango, N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022, 13, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Kathirgamanathan, M.; Abayasekara, C.L.; Kulasooriya, S.A.; Wanigasekera, A.; Ratnayake, R.R. Evaluation of 18 Isolates of Basidiomycetes for Lignocellulose Degrading Enzymes. Ceylon J. Sci. 2017, 46, 77. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Dry matter [g/kg] | 243.4 ± 8.8 |
pH | 5.8 ± 0.1 |
Reducing sugars as inverted sugar (g/kg DM) | 10.1 ± 0.48 |
Sucrose (g/kg DM) | 134.8 ± 10.52 |
Raffinose (g/kg DM) | 2.5 ± 0.04 |
Cellulose (g/kg DM) | 336.9 ± 16.6 |
Hemicellulose (g/kg DM) | 388.4 ± 15.8 |
Lignin (g/kg DM) | 1.3 ± 0.02 |
Sugar | PRE/H Combination; Sugar Concentration [g dm−3] | |||||
---|---|---|---|---|---|---|
WB/Eh | WB/Mh | AB/Eh | AB/Mh | AA/Eh | AA/Mh | |
SAC | 2.34 ± 0.1 | 2.45 ± 0.11 | 1.93 ± 0.09 | 1.86 ± 0.07 | 1.57 ± 0.08 | 1.82 ± 0.09 |
FRU | 2.74 ± 0.18 | 2.95 ± 0.19 | 3.66 ± 0.19 | 3.72 ± 0.21 | 5.48 ± 0.21 | 5.28 ± 0.21 |
GLU | 8.35 ± 0.35 | 8.97 ± 0.33 | 18.43 ± 0.37 | 19.13 ± 0.24 | 26.53 ± 0.64 | 28.72 ± 0.44 |
GAL | 2.33 ± 0.42 | 3.12 ± 0.38 | 4.91 ± 0.12 | 4.83 ± 0.18 | 6.63 ± 0.21 | 6.21 ± 0.18 |
ARA | 0.31 ± 0.012 | 1.21 ± 0.12 | 2.71 ± 0.13 | 2.42 ± 0.11 | 4.12 ± 0.18 | 4.92 ± 0.17 |
RHA | 1.03 ± 0.011 | 1.82 ± 0.06 | 3.84 ± 0.37 | 3.63 ± 0.31 | 6.63 ± 0.42 | 8.27 ± 0.22 |
XYL | 0.09 ± 0.008 | 0.99 ± 0.009 | 3.23 ± 0.12 | 3.43 ± 0.15 | 4.13 ± 0.17 | 4.92 ± 0.16 |
sum | 17.19 | 21.51 | 38.71 | 39.02 | 55.09 | 60.14 |
Sugar | PRE/H Combination; Sugar Concentration [g dm−3] | |||||
---|---|---|---|---|---|---|
WB/Eh | WB/Mh | AB/Eh | AB/Mh | AA/Eh | AA/Mh | |
SAC | 0.19 ± 0.005 | 0.35 ± 0.003 | 0.35 ± 0.002 | 0.82 ± 0.003 | 0.27 ± 0.006 | 0.82 ± 0.002 |
FRU | 0.21 ± 0.008 | 0.11 ± 0.003 | 0.46 ± 0.004 | 0.46 ± 0.003 | 0.21 ± 0.004 | 0.21 ± 0.005 |
GLU | 0.26 ± 0.011 | 0.73 ± 0.011 | 0.83 ± 0.01 | 1.01 ± 0.008 | 0.12 ± 0.002 | 0.62 ± 0.009 |
GAL | 1.53 ± 0.06 | 2.82 ± 0.08 | 2.32 ± 0.12 | 2.32 ± 0.04 | 2.12 ± 0.08 | 1.87 ± 0.07 |
ARA | 0.29 ± 0.01 | 1.23 ± 0.09 | 2.53 ± 0.04 | 2.42 ± 0.03 | 4.11 ± 0.12 | 4.88 ± 0.07 |
RHA | 0.94 ± 0.01 | 1.73 ± 0.02 | 3.81 ± 0.09 | 3.64 ± 0.09 | 6.54 ± 0.14 | 8.14 ± 0.11 |
XYL | 0.09 ± 0.008 | 0.94 ± 0.003 | 3.11 ± 0.04 | 3.33 ± 0.04 | 4.14 ± 0.07 | 4.81 ± 0.04 |
sum | 3.51 | 7.91 | 13.41 | 14 | 17.51 | 21.35 |
Sugar | PRE/H Combination; Concentration [g dm−3] | |||||
---|---|---|---|---|---|---|
WB/Eh | WB/Mh | AB/Eh | AB/Mh | AA/Eh | AA/Mh | |
SAC | 0.17 ± 0.005 | 0.25 ± 0.003 | 0.26 ± 0.002 | 0.62 ± 0.003 | 0.37 ± 0.006 | 0.32 ± 0.002 |
FRU | 0.16 ± 0.008 | 0.31 ± 0.003 | 0.26 ± 0.004 | 0.36 ± 0.003 | 0.31 ± 0.004 | 0.21 ± 0.005 |
GLU | 0.21 ± 0.011 | 0.23 ± 0.011 | 0.73 ± 0.006 | 1.11 ± 0.008 | 0.32 ± 0.002 | 0.42 ± 0.009 |
GAL | 0.62 ± 0.06 | 0.55 ± 0.03 | 0.84 ± 0.03 | 0.82 ± 0.02 | 0.57 ± 0.002 | 0.63 ± 0.02 |
ARA | 0.13 ± 0.006 | 0.33 ± 0.007 | 0.64 ± 0.004 | 0.56 ± 0.009 | 0.78 ± 0.004 | 0.14 ± 0.009 |
RHA | 0.32 ± 0.008 | 0.52 ± 0.005 | 0.49 ± 0.009 | 0.43 ± 0.009 | 0.32 ± 0.004 | 0.65 ± 0.07 |
XYL | 0.08 ± 0.008 | 0.34 ± 0.005 | 0.51 ± 0.004 | 0.66 ± 0.005 | 0.49 ± 0.008 | 0.34 ± 0.008 |
sum | 1.69 | 2.53 | 3.73 | 4.56 | 3.16 | 2.71 |
Yeast | PRE/H Combination; Ethanol Yield [kg × 100 kg−1 SBP] | |||||
---|---|---|---|---|---|---|
WB/Eh | WB/Mh | AB/Eh | AB/Mh | AA/Eh | AA/Mh | |
ER | 1.48 ± 0.04 | 1.53 ± 0.03 | 2.79 ± 0.13 | 2.71 ± 0.08 | 3.88 ± 0.13 | 3.97 ± 0.16 |
ER + SS | 1.73 ± 0.044 | 2.08 ± 0.083 | 3.72 ± 0.17 | 3.95 ± 0.14 | 5.33 ± 0.18 | 5.1 ± 0.11 |
Yeast | PRE/H Combination; Fermentation Yield [%] | |||||
---|---|---|---|---|---|---|
WB/Eh | WB/Mh | AB/Eh | AB/Mh | AA/Eh | AA/Mh | |
ER | 67.5 | 55.8 | 56.5 | 54.5 | 55.2 | 51.8 |
ER + SS | 78.9 | 75.8 | 75.4 | 79.4 | 75.9 | 66.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patelski, A.M.; Dziekońska-Kubczak, U.; Balcerek, M.; Pielech-Przybylska, K.; Dziugan, P.; Berłowska, J. The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride. Energies 2024, 17, 809. https://doi.org/10.3390/en17040809
Patelski AM, Dziekońska-Kubczak U, Balcerek M, Pielech-Przybylska K, Dziugan P, Berłowska J. The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride. Energies. 2024; 17(4):809. https://doi.org/10.3390/en17040809
Chicago/Turabian StylePatelski, Andrea Maria, Urszula Dziekońska-Kubczak, Maria Balcerek, Katarzyna Pielech-Przybylska, Piotr Dziugan, and Joanna Berłowska. 2024. "The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride" Energies 17, no. 4: 809. https://doi.org/10.3390/en17040809
APA StylePatelski, A. M., Dziekońska-Kubczak, U., Balcerek, M., Pielech-Przybylska, K., Dziugan, P., & Berłowska, J. (2024). The Ethanol Production from Sugar Beet Pulp Supported by Microbial Hydrolysis with Trichoderma viride. Energies, 17(4), 809. https://doi.org/10.3390/en17040809