Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gathering of the Raw Materials
2.2. Pelletization of Samples
2.3. NIR Analysis
2.4. Data Processing
3. Results and Discussion
3.1. Spectra (PCA)
3.2. Classification Models (PLS-DA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glavonjić, B.D.; Krajnc, N.; Palus, H. Development of Wood Pellets Market in South East Europe. Therm. Sci. 2015, 19, 781–792. [Google Scholar] [CrossRef]
- Proskurina, S.; Alakangas, E.; Heinimö, J.; Mikkilä, M.; Vakkilainen, E. A Survey Analysis of the Wood Pellet Industry in Finland: Future Perspectives. Energy 2017, 118, 692–704. [Google Scholar] [CrossRef]
- Schipfer, F.; Kranzl, L.; Olsson, O.; Lamers, P. The European Wood Pellets for Heating Market-Price Developments, Trade and Market Efficiency. Energy 2020, 212, 118636. [Google Scholar] [CrossRef]
- Eurostat Data Browser-Roundwood, Fuelwood and Other Basic Products. Available online: https://ec.europa.eu/eurostat/databrowser/ (accessed on 31 October 2023).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of Regions; A Green Deal Industrial Plan for the Net-Zero, Age; COM (2023) 62, ch II; European Commission: Luxembourg, 2023.
- Johansson, L.S.; Leckner, B.; Gustavsson, L.; Cooper, D.; Tullin, C.; Potter, A. Emission Characteristics of Modern and Old-Type Residential Boilers Fired with Wood Logs and Wood Pellets. Atmos. Environ. 2004, 38, 4183–4195. [Google Scholar] [CrossRef]
- Ozgen, S.; Caserini, S.; Galante, S.; Giugliano, M.; Angelino, E.; Marongiu, A.; Hugony, F.; Migliavacca, G.; Morreale, C. Emission Factors from Small Scale Appliances Burning Wood and Pellets. Atmos. Environ. 2014, 94, 144–153. [Google Scholar] [CrossRef]
- Dahal, K.; Tissari, J.; Hartmann, H.; Schön, C.; Fraboulet, I.; Cea, B.; Kubesa, P.; Horak, J. Technical Report on Review of Particulate Emissions Produced from the Small-Scale Solid Fuel Combustion; University of Eastern Finland: Kuopio, Finland, 2022. [Google Scholar] [CrossRef]
- Bäfver, L.S.; Leckner, B.; Tullin, C.; Berntsen, M. Particle Emissions from Pellets Stoves and Modern and Old-Type Wood Stoves. Biomass Bioenergy 2011, 35, 3648–3655. [Google Scholar] [CrossRef]
- Toscano, G.; Duca, D.; Amato, A.; Pizzi, A. Emission from Realistic Utilization of Wood Pellet Stove. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Arranz, J.I.; Miranda, M.T.; Montero, I.; Sepúlveda, F.J.; Rojas, C.V. Characterization and Combustion Behaviour of Commercial and Experimental Wood Pellets in South West Europe. Fuel 2015, 142, 199–207. [Google Scholar] [CrossRef]
- Stubenberger, G.; Scharler, R.; Zahirović, S.; Obernberger, I. Experimental Investigation of Nitrogen Species Release from Different Solid Biomass Fuels as a Basis for Release Models. Fuel 2008, 87, 793–806. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Zamorano, M.; Fernandes, U.; Rabaçal, M.; Costa, M. Relationship between Fuel Quality and Gaseous and Particulate Matter Emissions in a Domestic Pellet-Fired Boiler. Fuel 2014, 119, 141–152. [Google Scholar] [CrossRef]
- Mack, R.; Schön, C.; Kuptz, D.; Hartmann, H.; Brunner, T.; Obernberger, I.; Behr, H.M. Influence of Pellet Length, Content of Fines, and Moisture Content on Emission Behavior of Wood Pellets in a Residential Pellet Stove and Pellet Boiler. Biomass Convers. Biorefinery 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Wöhler, M.; Jaeger, D.; Reichert, G.; Schmidl, C.; Pelz, S.K. Influence of Pellet Length on Performance of Pellet Room Heaters under Real Life Operation Conditions. Renew. Energy 2017, 105, 66–75. [Google Scholar] [CrossRef]
- Thunman, H.; Leckner, B. Influence of Size and Density of Fuel on Combustion in a Packed Bed. Proc. Combust. Inst. 2005, 30, 2939–2946. [Google Scholar] [CrossRef]
- Mack, R.; Schön, C.; Kuptz, D.; Hartmann, H.; Brunner, T.; Obernberger, I.; Behr, H.M. Influence of Wood Species and Additives on Emission Behavior of Wood Pellets in a Residential Pellet Stove and a Boiler. Biomass Convers. Biorefinery 2023, 1, 1–20. [Google Scholar] [CrossRef]
- ISO 17225-2:2021; Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets. ISO: Geneva, Switzerland, 2021.
- Risholm-Sundman, M.; Vestin, E. Emissions during Combustion of Particleboard and Glued Veneer. Eur. J. Wood Wood Prod. 2005, 63, 179–185. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, J.; Wu, Y.; Qu, W. The Influence of Ammonium Polyphosphate on the Smoke Toxicity of Wood Materials. Thermochim. Acta 2023, 725, 179534. [Google Scholar] [CrossRef]
- Hagel, S.; Saake, B. Fractionation of Waste MDF by Steam Refining. Molecules 2020, 25, 2165. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M.; Zajiczek, Ż.; Mościcki, K. Detection of Emissions from the Combustion of Wood-Based Materials Being Furniture Industry Waste. Atmos. Pollut. Res. 2021, 12, 375–385. [Google Scholar] [CrossRef]
- Ministero Dell’Ambiente e Della Tutela Del Territorio e Del Mare; Italian Ministerial Decree November 2017, n. 186.; Gazzetta Ufficiale: Rome, Italy, 2017.
- Regione Marche. Allegato-A. Misure Contingenti 2021/2022 Per La Riduzione Della Concentrazione Degli Inquinanti In Aria Ambiente Nel Territorio Dei Comuni Della Zona Costiera E Valliva; Deliberazione Della Giunta Regionale; Decision of the regional government 2021/2022; Regione Marche: Ancona, Italy, 2022. [Google Scholar]
- Gillespie, G.D.; Everard, C.D.; McDonnell, K.P. Prediction of Biomass Pellet Quality Indices Using near Infrared Spectroscopy. Energy 2015, 80, 582–588. [Google Scholar] [CrossRef]
- Sánchez-Gatón, M.Á.; Campos, M.I.; Segovia, J.J. Prediction for Total Moisture Content in Wood Pellets by near Infrared Spectroscopy (NIRS). Dyna 2021, 93, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Posom, J.; Shrestha, A.; Saechua, W.; Sirisomboon, P. Rapid Non-Destructive Evaluation of Moisture Content and Higher Heating Value of Leucaena Leucocephala Pellets Using near Infrared Spectroscopy. Energy 2016, 107, 464–472. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Wen, B.; Wu, H.; Li, J.; Lin, H.; Li, Q.; Li, Y.; Huang, J.; Liu, Z. The Quality Control of Tea by Near-Infrared Reflectance (NIR) Spectroscopy and Chemometrics. J. Spectrosc. 2019, 2019, 8129648. [Google Scholar] [CrossRef]
- Segelke, T.; Schelm, S.; Ahlers, C.; Fischer, M. Food Authentication: Truffle (Tuber Spp.) Species Differentiation by FT-NIR and Chemometrics. Foods 2020, 9, 922. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Stocchero, M.; De Nardi, M.; Scarpa, B. PLS for Classification. Chemom. Intell. Lab. Syst. 2021, 216, 104374. [Google Scholar] [CrossRef]
- Brandily, M.L.; Monbet, V.; Bureau, B.; Boussard-Plédel, C.; Loréal, O.; Adam, J.L.; Sire, O. Identification of Foodborne Pathogens within Food Matrices by IR Spectroscopy. Sens. Actuators B. Chem. 2011, 160, 202–206. [Google Scholar] [CrossRef]
- Duca, D.; Mancini, M.; Rossini, G.; Mengarelli, C.; Foppa Pedretti, E.; Toscano, G.; Pizzi, A. Soft Independent Modelling of Class Analogy Applied to Infrared Spectroscopy for Rapid Discrimination between Hardwood and Softwood. Energy 2016, 117, 251–258. [Google Scholar] [CrossRef]
- Duca, D.; Pizzi, A.; Mancini, M.; Rossini, G.; Mengarelli, C.; Ilari, A.; Lucesoli, G.; Toscano, G.; Foppa Pedretti, E. Fast Measurement by Infrared Spectroscopy as Support to Woody Biofuels Quality Determination. J. Agric. Eng. 2016, 47, 17–21. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Zitek, A.; Hintestoisser, B.; Picchi, G. Development of Low-Cost Portable Spectrometers for Detection of Wood Defects. Sensors 2020, 20, 545. [Google Scholar] [CrossRef]
- Lixourgioti, P.; Goggin, K.A.; Zhao, X.; Murphy, D.J.; van Ruth, S.; Koidis, A. Authentication of Cinnamon Spice Samples Using FT-IR Spectroscopy and Chemometric Classification. LWT 2022, 154, 112760. [Google Scholar] [CrossRef]
- Dupuy, N.; Galtier, O.; Ollivier, D.; Vanloot, P.; Artaud, J. Comparison between NIR, MIR, Concatenated NIR and MIR Analysis and Hierarchical PLS Model. Application to Virgin Olive Oil Analysis. Anal. Chim. Acta 2010, 666, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Correia, R.M.; Tosato, F.; Domingos, E.; Rodrigues, R.R.T.; Aquino, L.F.M.; Filgueiras, P.R.; Lacerda, V.; Romão, W. Portable near Infrared Spectroscopy Applied to Quality Control of Brazilian Coffee. Talanta 2018, 176, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, J.C.; Kim, J.H.; Yang, S.Y.; Kwon, O.; Yeo, H.; Cho, K.C.; Choi, I.G. Possibility of Wood Classification in Korean Softwood Species Using Near-Infrared Spectroscopy Based on Their Chemical Compositions. J. Korean Wood Sci. Technol. 2017, 45, 202–212. [Google Scholar] [CrossRef]
- Cooper, P.A.; Jeremic, D.; Radivojevic, S.; Ung, Y.T.; Leblon, B. Potential of Near-Infrared Spectroscopy to Characterize Wood Products 1. Can. J. For. Res. 2011, 41, 2150–2157. [Google Scholar] [CrossRef]
- Duca, D.; Pizzi, A.; Rossini, G.; Mengarelli, C.; Foppa Pedretti, E.; Mancini, M. Prediction of Hardwood and Softwood Contents in Blends of Wood Powders Using Mid-Infrared Spectroscopy. Energy Fuels 2016, 30, 3038–3044. [Google Scholar] [CrossRef]
- Measurement of CO Concentration in Combustion Field Based on Mid-Infrared Absorption Spectroscopy-Web of Science Core Collection. Available online: https://www.webofscience.com (accessed on 2 November 2023).
- Nascimbem, L.B.L.R.; Rubini, B.R.; Poppi, R.J. Determination of Quality Parameters in Moist Wood Chips by Near Infrared Spectroscopy Combining PLS-DA and Support Vector Machines. J. Wood Chem. Technol. 2013, 33, 247–257. [Google Scholar] [CrossRef]
- Pfautsch, S.; Macfarlane, C.; Ebdon, N.; Meder, R. Assessing Sapwood Depth and Wood Properties in Eucalyptus and Corymbia Spp. Using Visual Methods and near Infrared Spectroscopy (NIR). Trees-Struct. Funct. 2012, 26, 963–974. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Da Silva, A.R. The Use of near Infrared Spectroscopy to Identify Solid Wood Specimens of Swietenia Macrophylla (Cites Appendix II). In Proceedings of the IAWA Journal; Brill Academic Publishers: Leiden, The Netherlands, 2011; Volume 32, pp. 285–296. [Google Scholar]
- Espinoza, J.A.; Hodge, G.R.; Dvorak, W.S. The Potential Use of near Infrared Spectroscopy to Discriminate between Different Pine Species and Their Hybrids. J. Near Infrared Spectrosc. 2012, 20, 437–447. [Google Scholar] [CrossRef]
- Mancini, M.; Taavitsainen, V.M.; Toscano, G. Comparison of Three Different Classification Methods Performance for the Determination of Biofuel Quality by Means of NIR Spectroscopy. J. Chemom. 2019, 33, e3145. [Google Scholar] [CrossRef]
- Mancini, M.; Rinnan; Pizzi, A.; Mengarelli, C.; Rossini, G.; Duca, D.; Toscano, G. Near Infrared Spectroscopy for the Discrimination between Different Residues of the Wood Processing Industry in the Pellet Sector. Fuel 2018, 217, 650–655. [Google Scholar] [CrossRef]
- Mancini, M.; Rinnan, Å.; Pizzi, A.; Toscano, G. Use of Fourier Transform near Infrared Spectroscopy for the Detection of Residues from Wood Processing Industry in the Pellet Sector. J. Chemom. 2019, 33, 77–84. [Google Scholar]
- Toscano, G.; Maceratesi, V.; Leoni, E.; Stipa, P.; Laudadio, E.; Sabbatini, S. FTIR Spectroscopy for Determination of the Raw Materials Used in Wood Pellet Production. Fuel 2022, 313, 123017. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC-Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: A Mature Analytical Technique with New Perspectives–A Review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Kobori, H. A Review of Recent Application of near Infrared Spectroscopy to Wood Science and Technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef]
- Toscano, G.; Rinnan, Å.; Pizzi, A.; Mancini, M. The Use of Near-Infrared (NIR) Spectroscopy and Principal Component Analysis (PCA) to Discriminate Bark and Wood of the Most Common Species of the Pellet Sector. Energy Fuels 2017, 31, 2814–2821. [Google Scholar] [CrossRef]
- Fujimoto, T.; Kurata, Y.; Matsumoto, K.; Tsuchikawa, S. Feasibility of Near-Infrared Spectroscopy for Online Multiple Trait Assessment of Sawn Lumber. J. Wood Sci. 2010, 56, 452–459. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A Review of Band Assignments in near Infrared Spectra of Wood and Wood Components. J. Near Infrared Spectrosc. 2011, 19, 287–308. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Pauliny, D.; Krasnoshlyk, V.; Hagman, O. Near Infrared Spectroscopy as a Tool for Estimation of Mechanical Stresses in Wood. Adv. Mater. Res. 2013, 778, 448–453. [Google Scholar] [CrossRef]
- Minopoulou, E.; Dessipri, E.; Chryssikos, G.D.; Gionis, V.; Paipetis, A.; Panayiotou, C. Use of NIR for Structural Characterization of Urea-Formaldehyde Resins. Int. J. Adhes. Adhes. 2003, 23, 473–484. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and Characterization of Lignin from Different Biomass Resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef]
Origin | Type | No. of Samples |
---|---|---|
T | Multilayer board | 9 |
T | Block board | 4 |
T | Medium-density fiberboard | 3 |
T | Particle board | 11 |
T | Oriented strand board | 4 |
V | Coniferous virgin wood | 1 |
V | Fir wood | 11 |
V | Beech wood | 1 |
V | Oak wood | 1 |
Predicted | |||
---|---|---|---|
POS | NEG | ||
Actual | POS | TP (true positive) | FN (false negative) |
NEG | FP (false positive) | TN (true negative) |
GR0 (p) | IN (p) | GR1 (p) | |
---|---|---|---|
Pretreatment | Mean SNV | Mean 9der1 | Mean 21der2 |
R2 | 0.82 | 0.37 | 0.70 |
RMSEP | 0.25 | 0.35 | 0.29 |
ROC | 0.5780 | 0.5440 | 0.6240 |
Sensitivity TP/(TP + FN) | 1.00 | 1.00 | 1.00 |
Specificity TN/(TN + FP) | 1.00 | 1.00 | 1.00 |
Accuracy | 1.00 | 1.00 | 1.00 |
Error | 0.00 | 0.00 | 0.00 |
Precision | 1.00 | 1.00 | 1.00 |
Misclassification | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leoni, E.; Gasperini, T.; Di Marzio, N.; Picchio, R.; Toscano, G.; Duca, D. Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion. Energies 2024, 17, 825. https://doi.org/10.3390/en17040825
Leoni E, Gasperini T, Di Marzio N, Picchio R, Toscano G, Duca D. Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion. Energies. 2024; 17(4):825. https://doi.org/10.3390/en17040825
Chicago/Turabian StyleLeoni, Elena, Thomas Gasperini, Nicolò Di Marzio, Rodolfo Picchio, Giuseppe Toscano, and Daniele Duca. 2024. "Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion" Energies 17, no. 4: 825. https://doi.org/10.3390/en17040825
APA StyleLeoni, E., Gasperini, T., Di Marzio, N., Picchio, R., Toscano, G., & Duca, D. (2024). Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion. Energies, 17(4), 825. https://doi.org/10.3390/en17040825