Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies
Abstract
:1. Introduction
2. Methods
2.1. Data Gathering
2.2. Data Normalization
2.3. Machine Learning Models
2.3.1. Hydrogen Uptake Prediction
2.3.2. Modulus Prediction
2.4. Model Performance Evaluation
3. Results and Discussion
3.1. Gravimetric and Volumetric Uptakes at PS Data
3.2. Evaluation of ML Models
3.3. H2 Uptake Prediction
3.4. Univariate Feature Importance
3.5. Modulus Prediction
4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohno, H.; Mukae, Y. Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal–Organic Framework. J. Phys. Chem. C 2016, 120, 23963–23968. [Google Scholar] [CrossRef]
- Thornton, A.W.; Simon, C.M.; Kim, J.; Kwon, O.; Deeg, K.S.; Konstas, K.; Pas, S.J.; Hill, M.R.; Winkler, D.A.; Haranczyk, M.; et al. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. Chem. Mater. 2017, 29, 2844–2854. [Google Scholar] [CrossRef]
- Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gómez-Gualdrón, D.A. Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chem. Mater. 2018, 30, 6325–6337. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Q.; Jiang, J. Computational screening of hydrophobic metal–organic frameworks for the separation of H2S and CO2 from natural gas. J. Mater. Chem. A 2018, 6, 18898–18905. [Google Scholar] [CrossRef]
- Dureckova, H.; Krykunov, M.; Aghaji, M.Z.; Woo, T.K. Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. J. Phys. Chem. C 2019, 123, 4133–4139. [Google Scholar] [CrossRef]
- Wu, X.; Xiang, S.; Su, J.; Cai, W. Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal-Organic Frameworks Based on Machine Learning. J. Phys. Chem. C 2019, 123, 8550–8559. [Google Scholar] [CrossRef]
- Bucior, B.J.; Bobbitt, N.S.; Islamoglu, T.; Goswami, S.; Gopalan, A.; Yildirim, T.; Farha, O.K.; Bagheri, N.; Snurr, R.Q. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol. Syst. Des. Eng. 2019, 4, 162–174. [Google Scholar] [CrossRef]
- Samantaray, S.S.; Putnam, S.T.; Stadie, N.P. Volumetrics of hydrogen storage by physical adsorption. Inorganics 2021, 9, 45. [Google Scholar] [CrossRef]
- Ahmed, A.; Siegel, D.J. Predicting hydrogen storage in MOFs via machine learning. Patterns 2021, 2, 100291. [Google Scholar] [CrossRef]
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC-Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 2018, 20, 132–142. [Google Scholar] [CrossRef]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Taylor, M.K.; Runčevski, T.; Oktawiec, J.; Gonzalez, M.I.; Siegelman, R.L.; Mason, J.A.; Ye, J.; Brown, C.M.; Long, J.R. Tuning the Adsorption-Induced Phase Change in the Flexible Metal-Organic Framework Co(bdp). J. Am. Chem. Soc. 2016, 138, 15019–15026. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Lin, X.; Jia, J.; Champness, N.R.; Hubberstey, P.; Schröder, M. Metal-organic framework materials for hydrogen storage, Solid-State Hydrog. Storage Mater. Chem. 2008, 288–312. [Google Scholar] [CrossRef]
- Tian, T.; Zeng, Z.; Vulpe, D.; Casco, M.E.; Divitini, G.; Midgley, P.A.; Silvestre-Albero, J.; Tan, J.C.; Moghadam, P.Z.; Fairen-Jimenez, D. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat. Mater. 2018, 17, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Pascanu, V.; Miera, G.G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef] [PubMed]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chem.-Int. Ed. 2009, 48, 7502–7513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef] [PubMed]
- De Wu, C. Crystal Engineering of Metal-Organic Frameworks for Heterogeneous Catalysis. In Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 271–298. [Google Scholar] [CrossRef]
- Rajoub, B. Supervised and unsupervised learning. In Biomedical Signal Processing and Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 51–89. [Google Scholar] [CrossRef]
- Chong, S.; Lee, S.; Kim, B.; Kim, J. Applications of machine learning in metal-organic frameworks. Coord. Chem. Rev. 2020, 423, 213487. [Google Scholar] [CrossRef]
- Seko, A. Descriptors for machine learning of materials data. arXiv 2017, arXiv:1709.01666. [Google Scholar]
- Luna, A.S.; Alberton, K.P.F. Applications of artificial neural networks in chemistry and chemical engineering. Artif. Neural Netw. New Res. 2017, 17, 25–44. [Google Scholar]
- Tsamardinos, I.; Fanourgakis, G.S.; Greasidou, E.; Klontzas, E.; Gkagkas, K.; Froudakis, G.E. An Automated Machine Learning architecture for the accelerated prediction of Metal-Organic Frameworks performance in energy and environmental applications. Microporous Mesoporous Mater. 2020, 300, 110160. [Google Scholar] [CrossRef]
- Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S.L.; Srivastava, R. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). ACS Comb. Sci. 2017, 19, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yang, W.; Li, S.; Liang, H.; Shi, Z.; Qiao, Z. Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air. Appl. Sci. 2020, 10, 569. [Google Scholar] [CrossRef]
- Moghadam, P.Z.; Rogge, S.M.J.; Li, A.; Chow, C.M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D.A.; Van Speybroeck, V.; et al. Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning. Matter 2019, 1, 219–234. [Google Scholar] [CrossRef]
- Ren, J.; North, B. Shaping Porous Materials for Hydrogen Storage Applications: A Review. J. Technol. Innov. Renew. Energy 2014, 3, 12–20. [Google Scholar] [CrossRef]
- Paula García-Holley, O.K.F.; Schweitzer, B.; Islamoglu, T.; Liu, Y.; Lin, L.; Rodriguez, S.; Weston, M.H.; Hupp, J.T.; Gómez-Gualdrón, D.A.; Yildirim, T.; et al. Benchmark Study of Hydrogen Storage in Metal−Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett. 2018, 3, 748–754. [Google Scholar] [CrossRef]
- Ahmed, A.; Liu, Y.; Purewal, J.; Tran, L.D.; Wong-Foy, A.G.; Veenstra, M.; Matzger, A.J.; Siegel, D.J. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 2017, 10, 2459–2471. [Google Scholar] [CrossRef]
- Shibata, K.; Ikeda, Y. Effect of Number of Hidden Neurons on Learning in Large-Scale Layered Neural Networks; ICCAS-SICE: Fukuoka, Japan, 2009; pp. 5008–5013. [Google Scholar]
- Miles, J. R-Squared, Adjusted R-Squared. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Ardabili, S.F.; Najapi, B.; Shamshirband, S. Fuzzy Logic Method for the prediction of Cetane Number using Carbon Number, Double Bounds, Iodic, and Saponification Values of Biodiesel Fuels. Environ. Prog. Sustain. Energy 2019, 38, 584–599. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Mao, J. Probabilistic Framework with Bayesian Optimization for Predicting Typhoon-Induced Dynamic Responses of a Long-Span Bridge. J. Struct. Eng. 2021, 147, 04020297. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Wang, H. Multi-Head Attention-Based Probabilistic CNN-BiLSTM for Day-Ahead Wind Speed Forecasting. Energy 2023, 278, 127865. [Google Scholar] [CrossRef]
Year | Application | Machine Learning Method | Best Performing Algorithm | Ref. |
---|---|---|---|---|
2016 | CH4 storage | Gaussian Process Regression (GPR) | - | [1] |
2016 | CH4 storage | Principal Component Analysis (PCA), Gaussian Process (GP), Support Vector Regression (SVR), Neural Network (NN), Linear Regression (LR) | GP | [1] |
2017 | H2 storage | Neural Network (NN) | - | [2] |
2017 | CH4 storage | Decision Trees (DT) Poisson Support Vector Machines (SVMs), Random Forest (RF) | RF | [26] |
2018 | CO2 capture, CO2/N2 and CO2/H2 separation | Multilinear Regression (MLR), Gradient Boosting Machines (GBMs), NN, DT, RF | GBM | [3] |
2018 | CO2/N2/CH4 separation | PCA, MLR, DT | - | [4] |
2019 | H2 storage | Artificial Neural Networks (ANNs) | - | [7] |
2019 | CO2/H2 separation | Gradient Boosted Regression Trees (GBRTs) | - | [5] |
2019 | CH4 storage | RF, DT, SVM | RF | [6] |
2020 | CO2 capture from air | Back Propagation Neural Network (BPNN), DT, SVM, RF | RF | [27] |
2021 | H2 storage | Extremely Randomized Trees | - | [9] |
Feature | Unit |
---|---|
Crystal density () | g cm−3 |
Pore volume (PV) | cm3 g−1 |
Void fraction (VF) | - |
Pore Limiting Diameter (PLD) | Å |
Largest Cavity Diameter (LCD) | Å |
ML Algorithm | Hyperparameters and Presets Used |
---|---|
DT (Fine Tree) | Minimum leaf size = 4, Surrogate decision splits = Off |
Random Forest | Minimum leaf size = 8, Number of learners = 30 |
Boosted Trees | Minimum leaf size = 8, Number of learners = 30, Learning rate = 0.1 |
Quadratic SVM | Kernel function = Quadratic, Kernel scale = Automatic, Box constraint = Automatic, Epsilon = Automatic, Standardized data = True |
Linear SVM | Kernel function = Linear, Kernel scale = Automatic, Box constraint = Automatic, Epsilon = Automatic, Standardized data = True |
Exponential GPR | Basis function = Constant, Kernel function = Exponential, Use isotropic kernel = True, Kernel scale = Automatic, Signal standard deviation = Automatic, Sigma = Automatic, Standardize = True, Optimize numeric parameters = True |
Matern 5/2 GPR | Basis function = Constant, Kernel function = Matern 5/2, Use isotropic kernel = True, Kernel scale = Automatic, Signal standard deviation = Automatic, Sigma = automatic, Standardize = True, Optimize numeric parameters = True |
Rational Quadratic GPR | Basis Function = Constant, Kernel function = Rational Quadratics, Use isotropic kernel = True, Kernel scale = Automatic, Signal standard deviation = Automatic, Sigma = Automatic, Standardize = True, Optimize numeric parameters = True |
Bi-layered Neural Network | Fully connected layer = 2, First layer size = 10, Second layer size = 10, Activation = ReLU, Iteration limit = 1000, Regularization strength (lambda) = 0, Standardized data = Yes |
Tri-layered Neural Network | Fully connected layer = 3, First layer size = 10, Second layer size = 10, Third layer size = 10, Activation = ReLU, Iteration limit = 1000, Regularization strength (lambda) = 0, Standardized data = Yes |
Narrow Neural Network | Fully connected layer = 1, First layer size = 10, Activation = ReLU, Iteration limit = 100, Regularization strength (lambda) = 0, Standardized data = Yes |
Medium Neural Network | Fully connected layer = 1, First layer size = 25, Activation = ReLU, Iteration limit = 1000, Regularization strength (lambda) = 0, Standardized data = Yes |
Wide Neural Network | Fully connected layer = 1, First layer size = 100, Activation = ReLU, Iteration limit = 1000, Regularization strength (lambda) = 0, Standardized data = Yes |
Feature | Unit |
---|---|
Crystal density () | g cm−3 |
Void fraction (VF) | - |
Largest cavity diameter (LCD) | Å |
Gravimetric surface area (GSA) | m2 g−1 |
ML Algorithm | UG | UV | ||||||
---|---|---|---|---|---|---|---|---|
MS | RMSE | MAE | R2 | MSE | RMSE | MAE | R2 | |
DT (Fine Tree) | 0.23736 | 0.4872 | 0.24973 | 0.98 | 4.2562 | 2.0631 | 1.4417 | 0.97 |
Random Forest (RF) | 0.31249 | 0.5590 | 0.22022 | 0.98 | 3.1772 | 1.7825 | 1.2571 | 0.97 |
Boosted Trees (BT) | 0.31756 | 0.5635 | 0.27857 | 0.98 | 4.3197 | 2.0784 | 1.6089 | 0.96 |
Quadratic SVM (QSVM) | 0.23116 | 0.4808 | 0.25987 | 0.98 | 6.3876 | 2.5274 | 1.5874 | 0.95 |
Linear SVM (LSVM) | 2.0368 | 1.4272 | 0.5023 | 0.84 | 25.894 | 5.0886 | 3.0743 | 0.79 |
Exponential GPR (GPR-E) | 0.081152 | 0.2849 | 0.16338 | 0.99 | 2.8525 | 1.6889 | 1.15 | 0.98 |
Matern 5/2 GPR (GPR-M) | 0.11929 | 0.3454 | 0.15802 | 0.99 | 2.8764 | 1.6960 | 1.1226 | 0.98 |
Rational Quadratic Kernel GPR (GPR-RQK) | 0.11649 | 0.3413 | 0.15935 | 0.99 | 2.9242 | 1.7100 | 1.1298 | 0.98 |
Bi-layered NN (Bi-NN) | 0.076928 | 0.2774 | 0.16577 | 0.99 | 2.9854 | 1.7278 | 1.1848 | 0.98 |
Tri-layered NN (Tri-NN) | 0.056056 | 0.2368 | 0.16005 | 1.00 | 3.5125 | 1.8742 | 1.1972 | 0.97 |
Narrow NN (N-NN) | 0.075871 | 0.2755 | 0.1635 | 0.99 | 2.9605 | 1.7206 | 1.1706 | 0.98 |
Medium NN (M-NN) | 0.067059 | 0.2590 | 0.16678 | 0.99 | 3.0895 | 1.7577 | 1.1802 | 0.97 |
Wide NN (W-NN) | 0.07361 | 0.2713 | 0.17357 | 0.99 | 1.9125 | 1.9125 | 3.6575 | 0.97 |
MOF | Usable Gravimetric Uptake (UG) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exp. [30] | GCMC [9] | ERT [9] | Fine Tree | RF | GPR-E | LSVM | QSVM | Tri-NN | M-NN | N-NN | |
HKUST-1 | 2.00 | 2.19 | 2.37 | 1.99 | 5.13 | 1.71 | 2.09 | 1.93 | 1.73 | 1.78 | 1.63 |
NU-125 | 4.10 | 3.76 | 3.78 | 4.06 | 3.73 | 4.09 | 4.05 | 4.01 | 3.83 | 3.59 | 3.73 |
rht-MOF-7 | 1.80 | 2.30 | 3.00 | 2.50 | 2.63 | 2.80 | 3.05 | 2.81 | 2.57 | 2.51 | 2.64 |
PCN-250 | 1.80 | 1.81 | 1.53 | 1.99 | 1.62 | 1.60 | 1.85 | 1.65 | 1.61 | 1.62 | 1.54 |
CYCU-Al | 5.50 | 4.4 | 5.1 | 5.13 | 5.47 | 5.14 | 5.87 | 5.47 | 4.81 | 4.83 | 4.72 |
Zn2(bdc)2 (dabco) | 1.60 | 1.1 | 1.48 | 1.77 | 1.59 | 1.42 | 1.87 | 1.59 | 1.46 | 1.42 | 1.45 |
MOF | Usable Volumetric Uptake (UV) | |||
---|---|---|---|---|
Exp. [30] | ERT [9] | GCMC [9] | W-NN [This Work] | |
HKUST-1 | 17 | 23.4 | 21.04 | 17.13 |
NU-125 | 24 | 25.93 | 25.6 | 19.21 |
rht-MOF-7 | 14 | 23.76 | 20 | 20.39 |
PCN-250 | 16 | 15.2 | 17.45 | 16.75 |
CYCU-Al | 27 | 25.84 | 24.21 | 26.89 |
Zn2(bdc)2(dabco) | 14 | 15.03 | 10.99 | 14.33 |
Method | MSE |
---|---|
ERT | 23.8 |
GCMC | 12.3 |
W-NN | 10.7 |
ML Algorithm | Number of Hidden Neurons | R-Squared |
---|---|---|
ANN [this work] | 20 | 0.761 |
ANN [28] | 30 | 0.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borja, N.K.; Fabros, C.J.E.; Doma, B.T., Jr. Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies. Energies 2024, 17, 927. https://doi.org/10.3390/en17040927
Borja NK, Fabros CJE, Doma BT Jr. Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies. Energies. 2024; 17(4):927. https://doi.org/10.3390/en17040927
Chicago/Turabian StyleBorja, Nicole Kate, Christine Joy E. Fabros, and Bonifacio T. Doma, Jr. 2024. "Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies" Energies 17, no. 4: 927. https://doi.org/10.3390/en17040927
APA StyleBorja, N. K., Fabros, C. J. E., & Doma, B. T., Jr. (2024). Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies. Energies, 17(4), 927. https://doi.org/10.3390/en17040927