Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies
Abstract
:1. Introduction
2. Cable Arrangement and Model
3. Method
3.1. Ampacity Calculation
3.2. Thermal External Resistance
4. Development of the Proposed Approach
4.1. Formulation of the Objective Function
4.2. Formulation of Constraints
4.3. Optimization Technique
Algorithm 1 Fundamental Steps of the Proposed PSO |
|
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Czapp, S.; Ratkowski, F. Optimization of thermal backfill configurations for desired high-voltage power cables ampacity. Energies 2021, 14, 1452. [Google Scholar] [CrossRef]
- Anders, G.J. Rating of Electric Power Cables in Unfavorable Thermal Environment; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- IEC 60287-1-1; Electric Cables—Calculation of the Current Rating—Part 1-1: Current Rating Equations (100% Load Factor) and Calculation of Losses—General. Tech. Rep.; International Electrotechnical Commission: Geneva, Switzerland, 2006.
- IEC 60287-2-1; Electric Cables—Calculation of the Current Rating, Part 2-1: Thermal Resistance—Calculation of Thermal Resistance. International Electrotechnical Commission: Geneva, Switzerland, 2006.
- Neher, J.H.; McGrath, M.H. The calculation or the temperature rise and load capability of cable systems. RATIO 1994, 50, 5. [Google Scholar] [CrossRef]
- De León, F. Major factors affecting cable ampacity. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006. [Google Scholar]
- De Leon, F. Calculation of underground cable ampacity. In Wire and Cable Handbook; The Electricity Forum: Pickering, ON, Canada, 2005. [Google Scholar]
- Ratkowski, F.; Kołtun, M.; Czapp, S. The effect of cable duct diameter on the ampacity of high-voltage power cables. Przegląd Elektrotech. 2022, 98, 141–144. [Google Scholar] [CrossRef]
- ETAP—Cable Thermal Software. Available online: https://etap.com/es/product/cable-thermal-software (accessed on 1 December 2022).
- Che, C.; Yan, B.; Fu, C.; Li, G.; Qin, C.; Liu, L. Improvement of cable current carrying capacity using COMSOL software. Energy Rep. 2022, 8, 931–942. [Google Scholar] [CrossRef]
- Al-Saud, M.S.; El-Kady, M.A.; Findlay, R.D. A new approach to underground cable performance assessment. Electr. Power Syst. Res. 2008, 78, 907–918. [Google Scholar] [CrossRef]
- Benato, R.; Colla, L.; Sessa, S.D.; Marelli, M. Review of high current rating insulated cable solutions. Electr. Power Syst. Res. 2016, 133, 36–41. [Google Scholar] [CrossRef]
- Williams, J.A.; Parmar, D.; Conroy, M.W. Controlled backfill optimization to achieve high ampacities on transmission cables. IEEE Trans. Power Deliv. 1994, 9, 544–552. [Google Scholar] [CrossRef]
- De León, F.; Anders, G.J. Effects of backfilling on cable ampacity analyzed with the finite element method. IEEE Trans. Power Deliv. 2008, 23, 537–543. [Google Scholar] [CrossRef]
- Saleeby, K.E.; Black, W.Z.; Hartley, J.G. Effective thermal resistivity for power cables buried in thermal backfill. IEEE Trans. Power Appar. Syst. 1979, 6, 2201–2214. [Google Scholar] [CrossRef]
- El-Kady, M.A. Optimization of power cable and thermal backfill configurations. IEEE Trans. Power Appar. Syst. 1982, 12, 4681–4688. [Google Scholar] [CrossRef]
- Klimenta, D.O.; Perovic, B.D.; Jevtic, M.D.; Radosavljevic, J.N.; Arsic, N.B. Thermal FEM-based procedure for design of energy-efficient underground cable lines. Univ. Sci. J. 2014, 10, 162–188. [Google Scholar]
- Cichy, A.; Sakowicz, B.; Kaminski, M. Economic optimization of an underground power cable installation. IEEE Trans. Power Deliv. 2017, 33, 1124–1133. [Google Scholar] [CrossRef]
- Zarchi, D.A.; Vahidi, B.; Haji, M.M. Optimal configuration of underground cables to maximise total ampacity considering current harmonics. IET Gener. Transm. Distrib. 2014, 8, 1090–1097. [Google Scholar] [CrossRef]
- Nahman, J.; Tanaskovic, M. Calculation of the loading capacity of high voltage cables laid in close proximity to heat pipelines using iterative finite-element method. Int. J. Electr. Power Energy Syst. 2018, 103, 310–316. [Google Scholar] [CrossRef]
- Al-Saud, M.S. PSO of power cable performance in complex surroundings. IET Gener. Transm. Distrib. 2018, 12, 2452–2461. [Google Scholar] [CrossRef]
- Ocłoń, P.; Cisek, P.; Taler, D.; Pilarczyk, M.; Szwarc, T. Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method. Energy 2015, 92, 230–239. [Google Scholar] [CrossRef]
- Ocłoń, P.; Rerak, M.; Rao, R.V.; Cisek, P.; Vallati, A.; Jakubek, D.; Rozegnał, B. Multiobjective optimization of underground power cable systems. Energy 2021, 215, 119089. [Google Scholar] [CrossRef]
- Perović, B.; Klimenta, D.; Tasić, D.; Raičević, N.; Milovanović, M.; Tomović, M.; Vukašinović, J. Increasing the ampacity of underground cable lines by optimising the thermal environment and design parameters for cable crossings. IET Gener. Transm. Distrib. 2022, 16, 2309–2318. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Li, D.; Ma, X.; Zhao, B.; Yang, Z. Research on optimal placement methodology of power cable in ductbank. Energy Rep. 2023, 9, 46–57. [Google Scholar] [CrossRef]
- Fan, D.; Huang, J.; Zhu, Z.; Liang, Y.; Liu, W. High-voltage Cable Arrangement Optimization Design Method. In Proceedings of the 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Tianjin, China, 14–16 April 2023; pp. 2561–2567. [Google Scholar]
- Chaki, S.; Bose, D. Optimisation of spot-welding process using Taguchi based Cuckoo search algorithm. Decis. Mak. Appl. Manag. Eng. 2022, 5, 316–328. [Google Scholar] [CrossRef]
- Mzili, T.; Riffi, M.E.; Mzili, I.; Dhiman, G. A novel discrete Rat swarm optimization (DRSO) algorithm for solving the traveling salesman problem. Decis. Mak. Appl. Manag. Eng. 2022, 5, 287–299. [Google Scholar] [CrossRef]
- Mzili, I.; Mzili, T.; Riffi, M.E. Efficient routing optimization with discrete penguins search algorithm for MTSP. Decis. Mak. Appl. Manag. Eng. 2023, 6, 730–743. [Google Scholar] [CrossRef]
- Bemani, A.; Xiong, Q.; Baghban, A.; Habibzadeh, S.; Mohammadi, A.H.; Doranehgard, M.H. Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO-LSSVM models. Renew. Energy 2020, 150, 924–934. [Google Scholar] [CrossRef]
- Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 years of particle swarm optimization: Flourishing voyage of two decades. Arch. Comput. Methods Eng. 2023, 30, 1663–1725. [Google Scholar] [CrossRef]
- Khan, A.; Hizam, H.; bin Abdul Wahab, N.I.; Lutfi Othman, M. Optimal power flow using hybrid firefly and particle swarm optimization algorithm. PLoS ONE 2020, 15, e0235668. [Google Scholar] [CrossRef]
- Wynn, S.L.L.; Boonraksa, T.; Boonraksa, P.; Pinthurat, W.; Marungsri, B. Decentralized Energy Management System in Microgrid Considering Uncertainty and Demand Response. Electronics 2023, 12, 237. [Google Scholar] [CrossRef]
- Dao, S.D. A Note On The Popularity of Stochastic Optimization Algorithms in Different Fields: A Quantitative Analysis from 2007 to 2017. arXiv 2019, arXiv:1907.01453. [Google Scholar]
- Haji, V.H.; Monje, C.A. Fractional order fuzzy-PID control of a combined cycle power plant using Particle Swarm Optimization algorithm with an improved dynamic parameters selection. Appl. Soft Comput. 2017, 58, 256–264. [Google Scholar] [CrossRef]
- Oyewola, O.M.; Petinrin, M.O.; Labiran, M.J.; Bello-Ochende, T. Thermodynamic optimisation of solar thermal Brayton cycle models and heat exchangers using particle swarm algorithm. Ain Shams Eng. J. 2023, 14, 101951. [Google Scholar] [CrossRef]
- Alam, S.; Zhao, X.; Niazi, I.K.; Khan, M.A. A comparative analysis of global optimization algorithms for surface electromyographic signal onset detection. Decis. Anal. J. 2023, 8, 100294. [Google Scholar] [CrossRef]
- Mahto, P.K.; Das, P.P.; Diyaley, S.; Kundu, B. Parametric optimization of solar air heaters with dimples on absorber plates using metaheuristic approaches. Appl. Therm. Eng. 2024, 2024, 122537. [Google Scholar] [CrossRef]
- Das, M.; Roy, A.; Maity, S.; Kar, S.; Sengupta, S. Solving fuzzy dynamic ship routing and scheduling problem through new genetic algorithm. Decis. Mak. Appl. Manag. Eng. 2022, 5, 329–361. [Google Scholar] [CrossRef]
- del-Pino-López, J.C.; Cruz-Romero, P.; Serrano-Iribarnegaray, L.; Martínez-Román, J. Magnetic field shielding optimization in underground power cable duct banks. Electr. Power Syst. Res. 2014, 114, 21–27. [Google Scholar] [CrossRef]
- Bravo-Rodríguez, J.C.; del-Pino-López, J.C.; Cruz-Romero, P. A survey on optimization techniques applied to magnetic field mitigation in power systems. Energies 2019, 12, 1332. [Google Scholar] [CrossRef]
- Quan, L.; Fu, C.; Si, W.; Yang, J.; Wang, Q. Numerical study of heat transfer in underground power cable system. Energy Procedia 2019, 158, 5317–5322. [Google Scholar] [CrossRef]
- da Silva, F.F.; Bak, C.L. Electromagnetic Transients in Power Cables; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- 127/220 kv Copper Conductor Xlpe Insulated Corrugated Aluminum Sheath Pvc Sheath Power Cable. 2018. Available online: http://gzny13922732011.voip366.com/ (accessed on 15 April 2023).
- Shabani, H.; Vahidi, B. A probabilistic approach for optimal power cable ampacity computation by considering uncertainty of parameters and economic constraints. Int. J. Electr. Power Energy Syst. 2019, 106, 432–443. [Google Scholar] [CrossRef]
- Anders, G.J. Rating of Electric Power Cables: Ampacity Computations for Transmission, Distribution, and Industrial Applications; IEEE: Piscataway, NJ, USA, 1997. [Google Scholar]
- Tong, Q.; Qi, J.; Wang, Y.; Liang, L.; Meng, X.; Zhang, Q. Power cable ampacity and influential factors analysis under operation. J. Inf. Process. Syst. 2018, 14, 1136–1149. [Google Scholar]
- Tessema, B.; Yen, G.G. A self adaptive penalty function based algorithm for constrained optimization. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 246–253. [Google Scholar]
- Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Barbosa, H.J.C.; Lemonge, A.C.C. An adaptive penalty scheme in genetic algorithms for constrained optimization problems. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 9–13 July 2002; pp. 287–294. [Google Scholar]
- Perović, B.D.; Tasić, D.S.; Klimenta, D.O.; Radosavljević, J.N.; Jevtić, M.J.; Milovanović, M.J. Optimising the thermal environment and the ampacity of underground power cables using the gravitational search algorithm. IET Gener. Transm. Distrib. 2018, 12, 423–430. [Google Scholar] [CrossRef]
- Alam, M.N.; Das, B.; Pant, V. A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Electr. Power Syst. Res. 2015, 128, 39–52. [Google Scholar] [CrossRef]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Panda, Dr. Comparing Different Characteristics of Deterministic and Stochastic Optimization Methods. 12 May 2020. Available online: https://learnwithpanda.com/2020/05/12/ (accessed on 15 December 2022).
- Dao, S.D.; Abhary, K.; Marian, R. An improved structure of genetic algorithms for global optimisation. Prog. Artif. Intell. 2016, 5, 155–163. [Google Scholar] [CrossRef]
- Adegoke, S.A.; Sun, Y.; Wang, Z. Minimization of active power loss using enhanced particle swarm optimization. Mathematics 2023, 11, 3660. [Google Scholar] [CrossRef]
- Kumar, D.; Chauhan, Y.K.; Pandey, A.S.; Srivastava, A.K.; Kumar, V.; Alsaif, F.; Elavarasan, R.M.; Islam, M.R.; Kannadasan, R. A Novel Hybrid MPPT Approach for Solar PV Systems Using Particle-Swarm-Optimization-Trained Machine Learning and Flying Squirrel Search Optimization. Sustainability 2023, 15, 5575. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Zhang, B. Mathematical modelling and a discrete cuckoo search particle swarm optimization algorithm for mixed model sequencing problem with interval task times. J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Lasabi, O.; Swanson, A.; Jarvis, L.; Aluko, A.; Goudarzi, A. Coordinated Hybrid Approach Based on Firefly Algorithm and Particle Swarm Optimization for Distributed Secondary Control and Stability Analysis of Direct Current Microgrids. Sustainability 2024, 16, 1204. [Google Scholar] [CrossRef]
- Ahmad, A.; Yadav, A.K.; Singh, A.; Singh, D.K.; Ağbulut, Ü. A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with ternary fuel blends. Energy 2024, 288, 129077. [Google Scholar] [CrossRef]
Description | Symbol and Unit | 220 kV Cable |
---|---|---|
Conductor | Milliken—5 seg. Cu | |
conductor cross section | S (mm2) | 2000 RSM |
conductor diameter | (mm) | 54.5 |
semiconductor screen thickness | (mm) | 3.5 |
Insulation | ||
insulation thickness | (mm) | 24.0 |
insulation outer diameter | (mm) | 107.1 |
Sheath | ||
aluminum sheath thickness | (mm) | 2.8 |
sheath outer diameter | (mm) | 137.4 |
Outer covering | ||
outer covering thickness | (mm) | 5.0 |
cable outer diameter | (mm) | 147.7 |
Physical parameters | ||
maximum conductor temperature | (°C) | 90 |
fundamental frequency | f (Hz) | 60 |
dielectric constant of the insulation | 2.3 | |
insulation loss factor | tan | 0.001 |
conductor resistance at 20 °C | km) | 0.0090 |
proximity effect constant | 0.37 | |
constant skin effect | 0.435 | |
temperature coefficient of Cu | ||
temperature coefficient of Al | ||
nominal voltage—phase to phase | (kV) | 220 |
Task | Base Cost | Term Cost |
---|---|---|
Excavation | $ | |
Remove the earth | $ | |
Backfill with thermal sand | $ |
Variable | Lower Limit (m) | Limite Superior (m) |
---|---|---|
0.5 | 2 | |
0.6 | 4 | |
1.2 | 4 | |
0.6 | 3 | |
2 | ||
0.3 | 2 |
Performance Metrics | Proposed PSO | Traditional PSO |
---|---|---|
Best solution | 1156.9150 | 1156.9107 |
Peor solución | 1149.5165 | 1145.0845 |
Range of variation | 7.3985 | 11.8263 |
Mean value | 1155.9221 | 1155.4815 |
Standard deviation | 1.3071 | 1.7837 |
Success Probability | 66.10% | 56.40% |
Backfill Dimensions | Parameters and Cost | ||
---|---|---|---|
Variable (m) | Values | Variable | Values |
L | 0.500 | Total cost ($) | 300 |
0.872 | Backfill cost ($) | 94.7 | |
w | 3.562 | Ampacity BackFill (A) | 1156.915 |
h | 1.344 | Ampacity Without backfill (A) | 969.9 |
s | 1.481 | (W/m) | 3 × 3.546 |
2.667 | (W/m) | 3 × 17.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atoccsa, B.A.; Puma, D.W.; Mendoza, D.; Urday, E.; Ronceros, C.; Palma, M.T. Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies. Energies 2024, 17, 1023. https://doi.org/10.3390/en17051023
Atoccsa BA, Puma DW, Mendoza D, Urday E, Ronceros C, Palma MT. Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies. Energies. 2024; 17(5):1023. https://doi.org/10.3390/en17051023
Chicago/Turabian StyleAtoccsa, Brayan A., David W. Puma, Daygord Mendoza, Estefany Urday, Cristhian Ronceros, and Modesto T. Palma. 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies" Energies 17, no. 5: 1023. https://doi.org/10.3390/en17051023
APA StyleAtoccsa, B. A., Puma, D. W., Mendoza, D., Urday, E., Ronceros, C., & Palma, M. T. (2024). Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies. Energies, 17(5), 1023. https://doi.org/10.3390/en17051023