Development of a Volkswagen Jetta MK5 Hybrid Vehicle for Optimized System Efficiency Based on a Genetic Algorithm
Abstract
:1. Introduction
1.1. Background
1.2. Establishment of Jetta MK5 Vehicle
1.3. Establishment of 2.0 TDI Diesel ICE
1.4. Research Aim, Objectives, and Contributions
2. Mathematical Modeling
2.1. Vehicle Dynamics
2.2. Hybrid Powertrain Modeling
2.3. Battery Modeling
2.4. PMSM Modeling
2.5. Engine Modeling
2.6. Gearshift
3. Control Design Description and Optimization
3.1. PID Controller Design
3.2. Optimization of the PID Controller Using Genetic Algorithm
4. VCDS Software Test Setup
5. MATLAB Models
6. Simulation and Experimental Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venditti, M. Analysis of the Performance of Different Machine Learning Techniques for the Definition of Rule-based Control Strategies in a Parallel HEV. Energy Procedia 2016, 101, 685–692. [Google Scholar] [CrossRef]
- D’ambrosio, S.; Di Dio, C.; Finesso, R. Model-Based Calibration and Control of Tailpipe Nitrogen Oxide Emissions in a Light-Duty Diesel Engine and Its Assessment through Model-In-The-Loop. Energies 2023, 16, 8030. [Google Scholar] [CrossRef]
- Ehsani, M.; Gao, Y.; Longo, S.; Ebrahimi, K. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, 3rd ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2018; Volume 3. [Google Scholar]
- Lai, L.A. Development of Design and Control Methodology for Next Generation Parallel Hybrid Electric Vehicle; Texas A&M University: College Station, TX, USA, 2012. [Google Scholar]
- Berjoza, V.P. Investigation in fuel consumption of a hybrid and conventional vehicle. Agron. Res. 2020, 18, 1027–1035. [Google Scholar] [CrossRef]
- Ventura, L.; Finesso, R.; Malan, S.A. Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm3 Diesel Engine and Its Assessment through Model-in-the-Loop. Energies 2023, 16, 907. [Google Scholar] [CrossRef]
- D’Agati, L.; Benomar, Z.; Longo, F.; Merlino, G.; Puliafito, A.; Tricomi, G. IoT/Cloud-Powered Crowdsourced Mobility Services for Green Smart Cities. In Proceedings of the 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA), Boston, MA, USA, 23–26 November 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Stamadianos, T.; Kyriakakis, N.A.; Marinaki, M.; Marinakis, Y. Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research. SN Oper. Res. Forum 2023, 4, 46. [Google Scholar] [CrossRef]
- Iodice, P.; Amoresano, A.; Langella, G.; Marra, F.S. Numerical Optimization and Energetic Advantages of an Innovative Solar Power System Based on Scheffler Receiver Coupled with Volumetric Expanders. Energy Environ. 2022, 34, 602–620. [Google Scholar] [CrossRef]
- Hata, R.; Isojima, S. The Road to Liquid Hydrogen Electric Vehicle Powered by High-Temperature Superconducting Motor—Utilizing Tank Trucks to Deliver LH2. SEI Tech. Rev. 2009, 69, 25–35. [Google Scholar]
- Oh, S.; Park, J. Numerical Prediction on In-Cylinder Mixture Formation and Combustion Characteristics for SIDI Engine Fueled with Hydrogen: Effect of Injection Angle and Equivalence Ratio. Energies 2023, 16, 7509. [Google Scholar] [CrossRef]
- Bisht, P.; Yadav, J. Optimal Speed Control of Hybrid Electric Vehicle Using GWO Based Fuzzy-PID Controller. In Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 21–22 August 2020; pp. 115–120. [Google Scholar] [CrossRef]
- Baz, R.; El Majdoub, K.; Giri, F.; Taouni, A. Self-tuning fuzzy PID speed controller for quarter electric vehicle driven by In-wheel BLDC motor and Pacejka’s tire model. IFAC-PapersOnLine 2022, 55, 598–603. [Google Scholar] [CrossRef]
- Saeks, R.; Cox, C.; Neidhoefer, J.; Mays, P.; Murray, J. Adaptive control of a hybrid electric vehicle. IEEE Trans. Intell. Transp. Syst. 2002, 3, 213–234. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, C. A quantitative analysis of model predictive control as energy management strategy for hybrid electric vehicles: A review. Energy Rep. 2021, 7, 6733–6755. [Google Scholar] [CrossRef]
- Schouten, N.; Salman, M.; Kheir, N. Fuzzy logic control for parallel hybrid vehicles. IEEE Trans. Control Syst. Technol. 2002, 10, 460–468. [Google Scholar] [CrossRef]
- Maaruf, M.; Hamanah, W.M.; Abido, M.A. Hybrid Backstepping Control of a Quadrotor Using a Radial Basis Function Neural Network. Mathematics 2023, 11, 991. [Google Scholar] [CrossRef]
- George, M.A.; Kamat, D.V.; Kurian, C.P. Electronically Tunable ACO Based Fuzzy FOPID Controller for Effective Speed Control of Electric Vehicle. IEEE Access 2021, 9, 73392–73412. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Li, G.; Liu, Y.; Chen, H.; Cunningham, G.; Early, J. Machine Learning-Based Vehicle Model Construction and Validation—Toward Optimal Control Strategy Development for Plug-In Hybrid Electric Vehicles. IEEE Trans. Transp. Electrif. 2021, 8, 1590–1603. [Google Scholar] [CrossRef]
- Korkmaz, M.; Aydogdu, O.; Dogan, H. Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller. In Proceedings of the 2012 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, 2–4 July 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Lü, X.; Wu, Y.; Lian, J.; Zhang, Y.; Chen, C.; Wang, P.; Meng, L. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manag. 2020, 205, 112474. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Volkswagen_Jetta_(A5)#cite_note-3 (accessed on 10 January 2024).
- Auto-Data.net. Available online: https://www.car.info/en-se/volkswagen/jetta/a5-typ-1k-52785/specs (accessed on 3 January 2024).
- Bodzás, S.; Tiba, Z.; Ailer, P.; Husi, G. Redesign of a Volkswagen Crafter vehicle to a hybrid vehicle having e-motor and diesel engine. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1237, 012008. [Google Scholar] [CrossRef]
- Abe, M. Fundamentals of Vehicle Dynamics. In Vehicle Handling Dynamics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 45–107. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Li, S. An overview on vehicle dynamics. Int. J. Dyn. Control 2013, 1, 385–395. [Google Scholar] [CrossRef]
- Zhang, W. Dynamics of Coupled Systems in High-Speed Railways Theory and Practice. In Dynamics of Coupled Systems in High-Speed Railways; Zhang, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–54. [Google Scholar] [CrossRef]
- Babangida, A.; Szemes, P.T. Electric Vehicle Modelling and Simulation of a Light Commercial Vehicle Using PMSM Propulsion. Hung. J. Ind. Chem. 2021, 49, 37–46. [Google Scholar] [CrossRef]
- Iodice, P.; Fornaro, E.; Cardone, M. Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance. Energies 2022, 15, 6312. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Coskun, S.; Pang, H.; Cui, Y.; Xi, J. Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook. Energies 2020, 13, 3352. [Google Scholar] [CrossRef]
- Miller, J.M. Propulsion Systems for Hybrid Vehicles; British Library Cataloguing in Publication Data: London, UK, 2008; Volume 45. [Google Scholar]
- Babangida, A.; Szemes, P.T. Electric Vehicle Modeling and Simulation of Volkswagen Crafter with 2.0 TDI CR Diesel Engine VW Vehicle 2020 Based PMSM Propulsion. Recent Innov. Mechatron. 2021, 8, 1–6. [Google Scholar]
- Zou, J.F.Y.; Zhang, X. Quantifying Electric Vehicle Battery’s Ohmic Resistance Increase Caused by Degradation from on-board Data. IFAC-PapersOnLine 2019, 52, 297–302. [Google Scholar] [CrossRef]
- Adams Intelligence. The Average Battery Size of Plug-in-Hybrids is Soaring. Available online: https://www.adamasintel.com/ev-increase-battery-capacity-average-kwh-phev-up-27-percent (accessed on 5 February 2024).
- Melkebeek, J.A. Electrical Machines and Drives Fundamentals and Advanced Modelling; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Szalay, I.; Kohlrusz, G.; Fodor, D. Modeling of slotless surface-mounted PM synchronous motor for sensorless applications. In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Virani, V.P.; Arya, S.V.; Baria, J.C. Modelling and Control of PMSM Drive by Field Oriented Control For HEV. Adv. Power Gener. Renew. Energy Sources 2019, 1–11. [Google Scholar] [CrossRef]
- Car.info. Available online: https://www.car.info/en-se/volkswagen/jetta/jetta-4-door-20-tdi-8168709/specs (accessed on 3 January 2024).
- Abdul, M.; Begh, W.; Herzog, H.-G. Comparison of Field Oriented Control and Direct Torque Control; Technische Universität München: Munich, Germany, 2018. [Google Scholar] [CrossRef]
- Amin, F.; Bin Sulaiman, E.; Utomo, W.M.; Soomro, H.A.; Jenal, M.; Kumar, R. Modelling and Simulation of Field Oriented Control Based Permanent Magnet Synchronous Motor Drive System. Indones. J. Electr. Eng. Comput. Sci. 2017, 6, 387–395. [Google Scholar] [CrossRef]
- Generic Internal Combustion Engine-MATLAB. Available online: https://www.mathworks.com/help/sdl/ref/genericengine.html (accessed on 5 January 2024).
- Popa, G.; Gheți, M.A. Locomotive Diesel Engine Operation with Optimal Specific Fuel Consumption. Procedia Manuf. 2020, 46, 440–444. [Google Scholar] [CrossRef]
- Ahssan, M.R.; Ektesabi, M.; Gorji, S. Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle. Energies 2020, 13, 5073. [Google Scholar] [CrossRef]
- Oglieve, C.J.; Mohammadpour, M.; Rahnejat, H. Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 883–899. [Google Scholar] [CrossRef]
- Volkswagen Jetta (A5). Available online: https://en.wikipedia.org/wiki/Volkswagen_Jetta_(A5) (accessed on 10 January 2024).
- Qin, Y.; Zhao, G.; Hua, Q.; Sun, L.; Nag, S. Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization. Sustainability 2019, 11, 3290. [Google Scholar] [CrossRef]
- Dhieb, Y.; Yaich, M.; Guermazi, A.; Ghariani, M. PID Controller Tuning using Ant Colony Optimization for Induction Motor. J. Electr. Syst. 2019, 15, 133–141. [Google Scholar]
- Elbayomy, K.M.; Zongxia, J.; Huaqing, Z. PID Controller Optimization by GA and Its Performances on the Elec-tro-hydraulic Servo Control System. Chin. J. Aeronaut. 2008, 21, 378–384. [Google Scholar] [CrossRef]
- Pradana, A.; Haque, M.; Nadarajah, M. Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review. Energies 2023, 16, 1782. [Google Scholar] [CrossRef]
- Maghfiroh, H.; Nizam, M.; Praptodiyono, S. PID optimal control to reduce energy consumption in DC-drive system. Int. J. Power Electron. Drive Syst. 2020, 11, 2164–2172. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Mahmood, A.K.; Sultan, N.S. Optimal PID controller of a brushless dc motor using genetic algorithm. Int. J. Power Electron. Drive Syst. 2018, 10, 822–830. [Google Scholar] [CrossRef]
- Krohling, R.; Rey, J. Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Trans. Evol. Comput. 2001, 5, 78–82. [Google Scholar] [CrossRef]
- Mirzal, A.; Yoshii, S.; Furukawa, M. PID parameters optimization by using genetic algorithm. ISTECS J. 2006, 8. [Google Scholar]
- Zhao, J.; Xi, M. Self-Tuning of PID Parameters Based on Adaptive Genetic Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 042028. [Google Scholar] [CrossRef]
- Somwanshi, D.; Bundele, M.; Kumar, G.; Parashar, G. Comparison of Fuzzy-PID and PID Controller for Speed Control of DC Motor using LabVIEW. Procedia Comput. Sci. 2019, 152, 252–260. [Google Scholar] [CrossRef]
- Precup, R.-E.; Preitl, S.; Tar, J.K.; Tomescu, M.L.; Takacs, M.; Korondi, P.; Baranyi, P. Fuzzy Control System Performance Enhancement by Iterative Learning Control. IEEE Trans. Ind. Electron. 2008, 55, 3461–3475. [Google Scholar] [CrossRef]
- Precup, R.-E.; Preitl, S.; Korondi, P. Fuzzy Controllers with Maximum Sensitivity for Servosystems. IEEE Ind. Electron. Mag. 2007, 54, 1298–1310. [Google Scholar] [CrossRef]
- Calvachi, D.; Tipán, L.; Jaramillo, M. Localization and Sizing of Distributed Generation through a Genetic Algorithm to Improve Voltage Profile Using Ecuadorian Standards. Energies 2023, 16, 4139. [Google Scholar] [CrossRef]
- Ross-Tech. Ross-Tech. VAG-COM. Available online: https://www.ross-tech.com/vag-com/product.html (accessed on 10 October 2023).
- Anton, B.; Florescu, A. Design and Development of Series-Hybrid Automotive Powertrains. IEEE Access 2020, 8, 226026–226041. [Google Scholar] [CrossRef]
- Ross Tech. Current Version of VCDS® for customers with High- Tech HEX, KEY, KII or Micro-CAN Series Interfaces. Ross-Tech LLC. Available online: https://www.ross-tech.com/vcds/download/current.php (accessed on 12 October 2023).
- Github.com. Available online: https://github.com/maybachy1121/Simscape-Powertrain-SI-Model/find/master (accessed on 10 December 2023).
- Auger, D.J. Drive Cycle Simulink Block Model. Available online: https://www.mathworks.com/matlabcentral/fileexchange/46777-driving-cycle-simulink-block (accessed on 1 January 2024).
- Jaworski, A.; Kuszewski, H.; Lew, K.; Wojewoda, P.; Balawender, K.; Woś, P.; Longwic, R.; Boichenko, S. Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests. Energies 2023, 16, 5723. [Google Scholar] [CrossRef]
- Volkswagen Jetta MK5. 2005. Available online: https://www.auto-abc.eu/Volkswagen-Jetta/g1285-2005 (accessed on 10 January 2024).
- Balcı, Ö.; Karagöz, Y.; Gezer, O.; Kale, S.; Köten, H.; Pusat, S.; Yüksek, L. Numerical and experimental investigation of fuel consumption and CO2 emission performance for a parallel hybrid vehicle. Alex. Eng. J. 2021, 60, 3649–3667. [Google Scholar] [CrossRef]
Parameters | Specifications |
---|---|
Length | 4.554–4.556 m |
Width | 1.781 m |
Height | 1.459–1.504 m |
Tract, front | 1.534–1.541 m |
Tract, rear | 1.512–1.514 m |
Wheelbase | 2.578 m |
Curb weight | 1268–1650 kg |
Gross weight | 1870–2030 kg |
Chassis construction | Unibody |
Engine displacement | 1968 cc (120.1 cu in) |
Number of strokes | 4 |
Number of cylinders | 4 |
Fuel system | Common rail |
Bore x stroke | 0.081 × 0.0955 m |
Number of valves | 16 |
Compression ratio | 16.2:1 |
After treatment systems | Diesel Particulate Filter (DPF) |
Tire radius | 225/45 R17 (0.4318 m) |
Parameters | Specifications |
---|---|
Curb weight of the vehicle | 1268 kg |
Gross weight of the vehicle | 1870 kg |
Center of gravity height | 0.486 m |
Tract, front | 1.534 m |
Tract, rear | 1.512 m |
Rolling resistance coefficient | 0.012 |
Coefficient of aerodynamic resistance | 0.3 |
Atmospheric density | 1.225 |
Gravitational force | 9.81 |
Front area | 2.209 |
Parameters | Specifications |
---|---|
Motor power | 103 kW |
Motor torque | 400 Nm |
Torque control time constant | 0.02 s |
External series resistance | 0 |
Inertia of the rotor | 3.9 10−4 kg m2 |
Damping of rotor | 10−5 Nm/[rad/s] |
Parameters | Specifications |
---|---|
Engine power | 81 kW |
Engine torque | 250 Nm |
Engine time constant | 0.01 s |
External series resistance | 0 |
Engine shaft inertia | 0.25 kgm2 |
Engine displacement | 1968 cc |
Number of cylinders | 4, Inline |
Transmission | 5-speed, manual |
Gearshift | Gear Ratio | A | B | C | D | E |
---|---|---|---|---|---|---|
First gear | 3.778 | 1 | 0 | 0 | 0 | 0 |
Second gear | 2.063 | 0 | 1 | 0 | 0 | 0 |
Third gear | 1.360 | 0 | 0 | 1 | 0 | 0 |
Fourth gear | 0.967 | 0 | 0 | 0 | 1 | 0 |
Fifth gear | 0.769 | 0 | 0 | 0 | 0 | 1 |
Final drive | 3.769 | 1 | 1 | 1 | 1 | 1 |
Execution of the Performance (FT) | Integral Error |
---|---|
Selection strategy | Random (cost function) |
Generations | 10 |
Population size | 20 |
Fitness performance | proportional |
Lower limit | [0 0 0] |
Upper limit | [500 500 500] |
PID Parameters | Value |
---|---|
Kp | 154 |
Ki | 502 |
Kd | 12 |
PID Parameters | Value |
---|---|
Kp | 117.6 |
Ki | 41.887 |
Kd | 1.6762 |
Parameters | ICE Usage | HEV Usage |
---|---|---|
Liter/100 kilometer [L/100 km] | 8.061 | 0.8499 |
Kilometer/liter [km/L] | 12.41 | 117.7 |
Miles per gallon [MPG] | 29.18 | 276.8 |
Total fuel used [L] | 0.08049 | 0.008447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neamah, H.A.; Dulaimi, M.; Silavinia, A.; Babangida, A.; Szemes, P.T. Development of a Volkswagen Jetta MK5 Hybrid Vehicle for Optimized System Efficiency Based on a Genetic Algorithm. Energies 2024, 17, 1116. https://doi.org/10.3390/en17051116
Neamah HA, Dulaimi M, Silavinia A, Babangida A, Szemes PT. Development of a Volkswagen Jetta MK5 Hybrid Vehicle for Optimized System Efficiency Based on a Genetic Algorithm. Energies. 2024; 17(5):1116. https://doi.org/10.3390/en17051116
Chicago/Turabian StyleNeamah, Husam A., Mohammed Dulaimi, Alaa Silavinia, Aminu Babangida, and Péter Tamás Szemes. 2024. "Development of a Volkswagen Jetta MK5 Hybrid Vehicle for Optimized System Efficiency Based on a Genetic Algorithm" Energies 17, no. 5: 1116. https://doi.org/10.3390/en17051116
APA StyleNeamah, H. A., Dulaimi, M., Silavinia, A., Babangida, A., & Szemes, P. T. (2024). Development of a Volkswagen Jetta MK5 Hybrid Vehicle for Optimized System Efficiency Based on a Genetic Algorithm. Energies, 17(5), 1116. https://doi.org/10.3390/en17051116