Shape Optimization of Heat Exchanger Fin Structures Using the Adjoint Method and Their Experimental Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Settings
2.2. Adjoint Optimization
Freeform Scale Factor or Step Size
2.3. Boundary Conditions for the Numerical Calculations and Optimization Region
2.4. Meshes for the 2D and 3D Optimization
2.4.1. Mesh Morphing
2.4.2. Mesh Improvement
2.5. Determination of the Heat Transfer Coefficients
2.6. Test Rig
2.6.1. Test Heat Exchangers
2.6.2. Evaluation Methodology of the Experimental Results
3. Results
3.1. Optimization in 2D and Transfer to 3D
3.2. 3D Optimization
3.3. Experimental Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
fin cross-section, mm2 | Parameter for Equations (14) and (15) | ||
total heat transfer area, m2 | pressure, Pa | ||
fin heat transfer area, m2 | Fin perimeter, mm | ||
flow cross-section, m2 | Prandtl-Number | ||
Parameter for Equations (14) and (15) | heat flow, W | ||
specific isobaric heat capacity, J/kg K | Design variable | ||
hydraulic diameter, mm | Lagrange duality | ||
Fanning friction factor | Reynolds Number | ||
equations of conservation | error function | ||
fin height, m | flow variables | ||
Colburn j-factor | Temperature, K | ||
overall heat transfer coefficient, W/K | velocity in flow direction, m/s | ||
Lagrange duality | weight for cost function | ||
Length (domain or heat exchanger), m | Volume of domain (fluid, wall), m3 | ||
mass flow rate, kg/s | coordinate, m | ||
number of measuring points | cost function | ||
Greek Letters | |||
heat transfer coefficient, W/m2K | fin/surface efficiency | ||
pressure loss, Pa | thermal conductivity, W/mK | ||
logarithmic temperature difference, K | Lagrangian multiplier | ||
loss coefficient for Equation (19) | dyn. Viscosity, Pa s | ||
density, kg/m3 | |||
Subscripts and Superscripts | |||
heat transfer | inlet | ||
cold | logarithmic | ||
contraction | mean | ||
Distributor | maximum | ||
expansion | outlet | ||
experimental | reference structure | ||
fin, fluid | theoretical | ||
friction | wall | ||
hot |
References
- Niknam, S.A.; Mortazavi, M.; Li, D. Additively manufactured heat exchangers: A review on opportunities and challenges. Int. J. Adv. Manuf. Technol. 2021, 112, 601–618. [Google Scholar] [CrossRef]
- Liang, D.; He, G.; Chen, W.; Chen, Y.; Chyu, M.K. Fluid flow and heat transfer performance for micro-lattice structures fabricated by Selective Laser Melting. Int. J. Therm. Sci. 2022, 172, 107312. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, H.; Zeng, Y.; Yan, M.; Jiang, C.; Yang, P.; Li, Q.; Li, Z.; Fu, J.; Huang, Y.; et al. Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. Int. J. Heat. Mass. Transf. 2023, 201, 123642. [Google Scholar] [CrossRef]
- Bacellar, D.; Aute, V.; Huang, Z.; Radermacher, R. Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing. Sci. Technol. Built Environ. 2017, 23, 896–911. [Google Scholar] [CrossRef]
- Wenterodt, T. Die Bewertung und Numerische Optimierung von Wärmeübertragern Anhand Einer Energieentwertungszahl; Technische Universität Hamburg-Harburg: Hamburg, Germany, 2013. [Google Scholar]
- Vidya, M.C. Modeling and Adjoint Optimization of Heat Exchanger Geometries. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Wang, C.-Z.; Nagisetty, K.R.; Montanari, F.; Hill, D.C. Application of Adjoint Solver to Optimization of Fin Heat Exchanger. In Volume 5C: Heat Transfer; American Society of Mechanical Engineers: Montreal, QC, Canada, 2015; p. V05CT15A020. [Google Scholar] [CrossRef]
- Czerwiński, G.; Wołoszyn, J. Optimization of Air Cooling System Using Adjoint Solver Technique. Energies 2021, 14, 3753. [Google Scholar] [CrossRef]
- Kametani, Y.; Fukuda, Y.; Osawa, T.; Hasegawa, Y. A new framework for design and validation of complex heat transfer surfaces based on adjoint optimization and rapid prototyping technologies. JTST 2020, 15, JTST0016. [Google Scholar] [CrossRef]
- Kametani, Y.; Watanabe, S.; Hasegawa, Y. Multi-Objective Adjoint-Based Shape Optimization of Heat Transfer Surfaces in Turbulent Flows with Dns-Rans Hybrid Approach. In Proceeding of International Heat Transfer Conference 17; Begellhouse: Cape Town, South Africa, 2023; p. 9. [Google Scholar] [CrossRef]
- Kühl, N.; Müller, P.M.; Rung, T. Adjoint Complement to the Universal Momentum Law of the Wall. Flow. Turbul. Combust. 2022, 108, 329–351. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Chen, Z.; Qian, X.; Sun, C.; Gan, D.; Xiong, K.; Rao, M.; Chen, C.; Li, X. A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies. Energies 2024, 17, 1005. [Google Scholar] [CrossRef]
- Roetzel, W.; Luo, X.; Chen, D. Design and Operation of Heat Exchangers and Their Networks; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Fuchs, M.; Lubos, N.; Kabelac, S. Numerical Calculation of the Irreversible Entropy Production of Additively Manufacturable Off-Set Strip Fin Heat-Transferring Structures. Entropy 2023, 25, 162. [Google Scholar] [CrossRef]
- Fuchs, M.; Kabelac, S. Numerical Calculation of the Irreversible Entropy Production in Heat Transferring Structures. Chem. Ing. Tech. 2023, 95, 692–700. [Google Scholar] [CrossRef]
- Fuchs, M.; Bodemer, J.; Kabelac, S. Experimental investigation of additively manufactured high-temperature heat exchangers. Int. J. Heat Mass Transf. 2024, 218, 124774. [Google Scholar] [CrossRef]
- Ansys Corp. Ansys Fluent. 2021. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 27 February 2024).
- Dassault Systemes Deutschland GmbH. SolidWorks. 2020. Available online: https://www.solidworks.com/de (accessed on 27 February 2024).
- Ansys Corp. Ansys DesignModeler. 2021. Available online: https://www.ansys.com/products/ansys-workbench#tab1-2 (accessed on 27 February 2024).
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Giles, M.B.; Pierce, N.A. An Introduction to the Adjoint Approach to Design. Flow Turbul. Combust. 2000, 65, 393–415. [Google Scholar] [CrossRef]
- Gauger, N.R. Adjoint Approaches In Aerodynamic Shape Optimization And Mdo Context. In Proceedings of the ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 5–8 September 2006. [Google Scholar]
- Ahmad, T.; Plee, S.L.; Myers, J.P. ANSYS Fluent Theory Guide. Release 2013, 15, 814. [Google Scholar]
- Jameson, A. Aerodynamic Shape Optimization Using the Adjoint Method; Lectures at the Von Karman Institute: Brussels, Belgium, 2003. [Google Scholar]
- Lyu, Z.; Kenway, G.K.; Paige, C.; Martins, J.R.R.A. Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013; American Institute of Aeronautics and Astronautics: San Diego, CA, USA, 2013. [Google Scholar] [CrossRef]
- Kavvadias, I.S.; Papoutsis-Kiachagias, E.M.; Dimitrakopoulos, G.; Giannakoglou, K.C. The continuous adjoint approach to the k–ω SST turbulence model with applications in shape optimization. Eng. Optim. 2015, 47, 1523–1542. [Google Scholar] [CrossRef]
- Stephan, P.; Kabelac, S.; Kind, M.; Mewes, D.; Schaber, K.; Wetzel, T. (Eds.) VDI-Wärmeatlas: Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen; Springer Reference Technik; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Baker, T.J. Fluent User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2023. [Google Scholar]
- Bernhard, F. (Ed.) Handbuch der Technischen Temperaturmessung; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. 2008. Available online: https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461 (accessed on 27 February 2024).
- Fuchs, M.; Luo, X.; Kabelac, S. Influence of axial heat conduction in solid walls and fins on the overall thermal performance of an additively manufactured high-temperature heat exchanger. Appl. Therm. Eng. 2022, 212, 118566. [Google Scholar] [CrossRef]
- Kays, W.M. Loss Coefficients for Abrupt Changes in Flow Cross Section with Low Reynolds Number Flow in Single and Multiple-Tube Systems. J. Fluids Eng. 1950, 72, 1067–1074. [Google Scholar] [CrossRef]
- Lange, F.; Hein, C.; Li, G.; Emmelmann, C. Numerical optimization of active heat sinks considering restrictions of selective laser melting. In Proceedings of the 2018 COMSOL Conference, Lausanne, Switzerland, 22–24 October 2018; p. 7. [Google Scholar]
Re [-] | 89 | 306 | 498 |
---|---|---|---|
0.0038 | −0.0159 | 0.2033 | |
0.018 | 0.042 | −0.058 |
Variable | Mesh 1 | Mesh 2 | Mesh 3 |
---|---|---|---|
No. of Elements in thou. | |||
Temperature difference in K | |||
Pressure loss in Pa |
Variable | Mesh 1 | Mesh 2 | Mesh 3 |
---|---|---|---|
No. of Elements in Mio. | |||
Temperature difference in K | |||
Pressure loss in Pa |
Fin Type | hfin [mm] | A* [mm2] | P [mm] |
---|---|---|---|
Reference fin |
Geometric Characteristics | Total Heat Transfer Area Aht,tot [m2] | Fin Heat Transfer Area Aht,fin [m2] | Flow Cross-Section Area Ac,f [m2] | Hydraulic Diameter dh [m] |
---|---|---|---|---|
Value |
Structure | wTinner | wdp |
---|---|---|
0dp1ht | 0.845 | 0.155 |
04dp06ht | 0.819 | 0.181 |
06dp04ht | 0.765 | 0.235 |
1dp0ht | 0.723 | 0.277 |
Structure | Cj | nj | Cf | nf |
---|---|---|---|---|
0dp1ht | 0.786 | −0.619 | 12.819 | −0.844 |
04dp06ht | 0.784 | −0.619 | 12.411 | −0.842 |
06dp04ht | 0.782 | −0.622 | 11.631 | −0.838 |
1dp0ht | 0.774 | −0.623 | 11.08 | −0.834 |
Structure | Δj [%] | Δf [%] | ΔRe [%] |
---|---|---|---|
0dp1ht | ±7.04–13.27 | ±4.43–10.07 | ±5.11–6.12 |
1dp0ht | ±6.88–13.44 | ±4.43–9.27 | ±5.11–6.12 |
Structure | Colburn j-Factor | Fanning f-Factor |
---|---|---|
0dp1ht | ||
04dp06ht | ||
06dp04ht | ||
1dp0ht |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, M.; Dagli, C.N.; Kabelac, S. Shape Optimization of Heat Exchanger Fin Structures Using the Adjoint Method and Their Experimental Validation. Energies 2024, 17, 1246. https://doi.org/10.3390/en17051246
Fuchs M, Dagli CN, Kabelac S. Shape Optimization of Heat Exchanger Fin Structures Using the Adjoint Method and Their Experimental Validation. Energies. 2024; 17(5):1246. https://doi.org/10.3390/en17051246
Chicago/Turabian StyleFuchs, Marco, Cagatay Necati Dagli, and Stephan Kabelac. 2024. "Shape Optimization of Heat Exchanger Fin Structures Using the Adjoint Method and Their Experimental Validation" Energies 17, no. 5: 1246. https://doi.org/10.3390/en17051246
APA StyleFuchs, M., Dagli, C. N., & Kabelac, S. (2024). Shape Optimization of Heat Exchanger Fin Structures Using the Adjoint Method and Their Experimental Validation. Energies, 17(5), 1246. https://doi.org/10.3390/en17051246