Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models
Abstract
:1. Introduction
2. Literature Research
3. Theoretical Formulation
3.1. One-Dimensional Model of MEA
3.2. Two-Dimensional Model of Gas Channels
3.3. Coupling between MEA and Channel Model
3.4. Boundaries and Start Conditions
4. Results and Discussion
4.1. Validation against Measurements
4.2. Species Concentrations in Gas Channels during Operation
4.3. Influence of Operating Temperature and Current Density
5. Conclusions
- The presented coupling between a one-dimensional model of the MEA and a two-dimensional model of the gas channels is a well-suited method to simulate the behavior of a PEM fuel cell.
- The simulations show that the interaction between the electro-osmotic drag and the back diffusion of water through the membrane strongly influences the concentrations of the gas species and the formation of liquid water.
- The water vapor contents and the amounts of liquid water in the gas channels are influenced by the current density, but at low operating temperatures and during cold starts, the formation of liquid water cannot be avoided by the choice of current density alone.
- We conclude that during a cold start, an attempt must be made to heat up the cells as quickly as possible so that only a small amount of liquid water can condense out.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cell voltage | V | |
Nernst voltage | V | |
Mixed voltage losses | V | |
Activation overvoltage | V | |
Ohmic losses | V | |
Cell temperature | K | |
Partial pressure species i | Pa | |
i″ | Current density | A cm−2 |
Molar mass species i | kg mol−1 | |
Mass flow production | kg m−2 s−1 | |
Mass flow consumption | kg m−2 s−1 | |
Mass flow through the membrane | kg m−2 s−1 | |
Volume catalyst layer | m3 | |
Membrane water content | - | |
Density gas | kg m−3 | |
Flow velocity | m s−1 | |
Source term species i | kg m−3 s−1 | |
Viscosity gas | Pa s | |
Molar fraction species i | - | |
Mass fraction species i | - | |
Saturation vapor pressure | Pa | |
Stoichiometries | - |
Appendix A
Symbol | Parameter | Value | Unit | Source |
---|---|---|---|---|
Standard reaction enthalpy | −237,130 | J mol−1 | [27] | |
Standard reaction entropy | −44.405 | J mol−1 K−1 | [27] | |
Faraday’s constant | 96,485.34 | A s mol−1 | - | |
Electrochemical valence | 2 | - | [26] | |
Charge transfer coefficient | 1 | - | [26] | |
Standard pressure | 1 | bar | - | |
Exchange current density | 1.24 × 10−4 | A cm−2 | [15] | |
Activation energy | 7900 | J mol−1 | [32] | |
Electrical contact resistance | 4.2 | assum. | ||
Porosity | 0.5 | - | [22] | |
Tortuosity | 3.725 | - | [22] | |
Condensation constant | 6 × 10−3 | s m−2 | assum. | |
Thickness membrane | 1.5 × 10−5 | m | meas. | |
Thickness ACL | 1.0 × 10−5 | m | meas. | |
Thickness CCL | 1.2 × 10−5 | m | meas. | |
Thickness AGDL | 2.5 × 10−4 | m | meas. | |
Thickness CGDL | 2.5 × 10−4 | m | meas. | |
Reference temperature | 353 | K | [22] |
References
- Balliet, R.J. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell; University of California: Berkeley, CA, USA, 2010. [Google Scholar]
- Al-Baghdadi, M.A.S. Mechanical behaviour of membrane electrode assembly (MEA) during cold start of PEM fuel cell from subzero environment temperature. Int. J. Energy Environ. 2015, 6, 107. [Google Scholar]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell Model. J. Electrochem. Soc. 1991, 138, 2334–2342. [Google Scholar] [CrossRef]
- Zawodzinski, T.A.; Derouin, C.; Radzinski, S.; Sherman, R.J.; Smith, V.T.; Springer, T.E.; Gottesfeld, S. Water Uptake by and Transport Through Nafion® 117 Membranes. J. Electrochem. Soc. 1993, 140, 1041–1047. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Verbrugge, M.W. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE J. 1991, 37, 1151–1163. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Verbrugge, M.W. A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell. J. Electrochem. Soc. 1992, 139, 2477. [Google Scholar] [CrossRef]
- Fuller, T.F.; Newman, J. Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 1993, 140, 1218. [Google Scholar] [CrossRef]
- Nguyen, T.V.; White, R.E. A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells. J. Electrochem. Soc. 1993, 140, 2178–2186. [Google Scholar] [CrossRef]
- Yuan, W.-W.; Ou, K.; Kim, Y.-B. Alleviating the performance degradation of fuel cells caused by the uneven distribution of internal physical fields. Energy Convers. Manag. 2020, 225, 113449. [Google Scholar] [CrossRef]
- Gurau, V.; Liu, H.; Kakaç, S. Two-dimensional model for proton exchange membrane fuel cells. AIChE J. 1998, 44, 2410–2422. [Google Scholar] [CrossRef]
- Dutta, S.; Shimpalee, S.; Van Zee, J. Three-dimensional numerical simulation of straight channel PEM fuel cells. J. Appl. Electrochem. 2000, 30, 135–146. [Google Scholar] [CrossRef]
- Berg, P.; Promislow, K.; Pierre, J.S.; Stumper, J.; Wetton, B. Water Management in PEM Fuel Cells. Electrochim. Acta 2004, 151, A341. [Google Scholar] [CrossRef]
- Natarajan, D.; van Nguyen, T. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources 2003, 115, 66–80. [Google Scholar] [CrossRef]
- Natarajan, D.; van Nguyen, T. A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors. J. Appl. Electrochem. 2001, 148, A1324. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.; Gray, E. PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters. Energy 2016, 116, 1131–1144. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Peng, H. A segmented model for studying water transport in a PEMFC. J. Power Sources 2008, 185, 1179–1192. [Google Scholar] [CrossRef]
- Mueller, F.; Brouwer, J.; Kang, S.; Kim, H.-S.; Min, K. Quasi-three dimensional dynamic model of a proton exchange membrane fuel cell for system and controls development. J. Power Sources 2007, 163, 814–829. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Peng, H. Predicting current density distribution of proton exchange membrane fuel cells with different flow field designs. J. Power Sources 2011, 196, 1992–2004. [Google Scholar] [CrossRef]
- Schumacher, J.O.; Eller, J.; Sartoris, G.; Colinart, T.; Seyfang, B.C. 2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures. Math. Comput. Model. Dyn. Syst. 2012, 18, 355–377. [Google Scholar] [CrossRef]
- Pant, L.M.; Gerhardt, M.R.; Macauley, N.; Mukundan, R.; Borup, R.L.; Weber, A.Z. Along-the-channel modeling and analysis of PEFCs at low stoichiometry: Development of a 1+2D model. Electrochimica Acta 2019, 326, 134963. [Google Scholar] [CrossRef]
- Shan, Y.; Choe, S.-Y. A high dynamic PEM fuel cell model with temperature effects. J. Power Sources 2005, 145, 30–39. [Google Scholar] [CrossRef]
- Baschuk, J.; Li, X. A general formulation for a mathematical PEM fuel cell model. J. Power Sources 2005, 142, 134–153. [Google Scholar] [CrossRef]
- Pasricha, S.; Shaw, S.R. A Dynamic PEM Fuel Cell Model. IEEE Trans. Energy Convers. 2006, 21, 484–490. [Google Scholar] [CrossRef]
- Pathapati, P.R.; Xue, X.; Tang, J. A new dynamic model for predicting transient phenomena in a PEM fuel cell system. Renew. Energy 2005, 30, 1–22. [Google Scholar] [CrossRef]
- Meng, H. A PEM fuel cell model for cold-start simulations. J. Power Sources 2007, 178, 141–150. [Google Scholar] [CrossRef]
- Scholz, H. Modellierung und Untersuchung von Flutungsphänomenen in Niedertemperatur-PEM-Brennstoffzellen; AutoUni-Schriftenreihe v.82; Logos Verlag: Berlin, Germany, 2015. [Google Scholar]
- Sun, C.; Negro, E.; Vezzu, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Siemens PLM Software. Simcenter STAR-CCM+ Documentation, Version 13.06; Siemens PLM Software: Plano, TX, USA, 2018.
- Basu, S.; Wang, C.-Y.; Chen, K.S. Phase Change in a Polymer Electrolyte Fuel Cell. J. Electrochem. Soc. 2009, 156, B748–B756. [Google Scholar] [CrossRef]
- Jiao, K.; Li, X. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 8171–8184. [Google Scholar] [CrossRef]
- Yao, L.; Peng, J.; Zhang, J.-B.; Zhang, Y.-J. Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water. Int. J. Hydrogen Energy 2018, 43, 15505–15520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, M.; Matthiesen, F.; Dirkes, S.; Pischinger, S. Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models. Energies 2024, 17, 1259. https://doi.org/10.3390/en17051259
Schmitz M, Matthiesen F, Dirkes S, Pischinger S. Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models. Energies. 2024; 17(5):1259. https://doi.org/10.3390/en17051259
Chicago/Turabian StyleSchmitz, Maximilian, Fynn Matthiesen, Steffen Dirkes, and Stefan Pischinger. 2024. "Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models" Energies 17, no. 5: 1259. https://doi.org/10.3390/en17051259
APA StyleSchmitz, M., Matthiesen, F., Dirkes, S., & Pischinger, S. (2024). Predicting Liquid Water Condensation in PEM Fuel Cells by Coupling CFD with 1D Models. Energies, 17(5), 1259. https://doi.org/10.3390/en17051259