Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023
Abstract
:1. Introduction
- This paper systematically summarizes and organizes AI-based wind prediction research conducted from 2021 to 2023 to promote the effective application of AI technology in the field of wind prediction and address key challenges;
- This paper, focusing on critical steps, including data preprocessing, feature extraction, relationship learning, and parameter optimization, delves into in-depth analysis and discussion of the key technologies and models involved in these crucial processes;
- This paper highlights the challenges faced by AI technology in wind prediction, such as data uncertainty, model complexity, and hyperparameter selection. Specific recommendations for future research directions are provided to address these challenges.
2. Literature Selection and Screening
3. Methods and Technologies
3.1. Data Preprocessing
3.1.1. Outlier Detection Methods
3.1.2. Decomposition-Based Methods
3.2. Feature Extraction
3.2.1. Classical Feature Extraction Methods
3.2.2. Neural Network-Based Methods
3.3. Relationship Learning
3.3.1. Single Prediction Models
3.3.2. Hybrid Prediction Models
3.4. Parameter Optimization
Model Type | Models | Parameters | Optimization Methods |
---|---|---|---|
Kernel dependent models | SVM, LSSVM, KELM | Kernel function, etc. | GWO [93], CABC [23], DE-GWO [116], FO-BSO [117], ICS [118], WOA [96], ISOA [119], IHDEHHO [120], SCWCA [121] |
NN-based models | ELM, BPNN, RNN, DBN, etc. | Weights, bias, learning rate, etc. | ISCA [122], MOCSO [123], PSO [105], IChOA [124], SSO [125], HBO [130], MOECO [126], JADE [127], MOSMA [128], CSSOA [129] |
4. Performance Evolution Metrics
5. Challenges and Future Trends
5.1. Challenges over the Past Three Years
- ✓
- Uncertainty in wind data
- ✓
- Comprehensive and efficient feature extraction
- ✓
- Accurate learning of mapping relationship
5.2. Future Trends
- ❄
- Optimize data processing methods to adapt to specific geographical or meteorological conditions. Customized data processing methods may be more effective in particular environments and conditions. Furthermore, by developing new methods with flexibility and applicability and validating their performance in practical applications, we aim to gradually overcome the limitations of existing methods in handling wind data uncertainty.
- ❄
- During feature extraction, it is essential to consider a comprehensive range of factors to ensure the thorough capture of various potential elements influencing wind speed and wind power. Simultaneously, attention must be paid to avoiding the introduction of redundant information to mitigate the risk of overfitting. In the context of long-term predictions, regularly updating the feature set is crucial to reflect potential time-varying influencing factors, contributing to maintaining the robustness of the model when facing dynamic environmental conditions.
- ❄
- In enhancing the nonlinear fitting capability of the prediction model, designing appropriate hybrid strategies allows leveraging the strengths of single models to better adapt to complex relationships. However, when selecting and optimizing hybrid strategies, consideration must be given to the specific requirements of the application and constraints of computational resources, striking a balance between model performance and complexity.
- ❄
- Due to the involvement of a large number of parameters in DL models and hybrid models, a combined approach of manual tuning and intelligent algorithms can be adopted. Manual tuning leverages professional knowledge and experience to adjust parameters, enhancing model performance. Simultaneously, intelligent algorithms can explore optimal solutions within the parameter space, improving optimization efficiency. The comprehensive application of these two methods allows for a more thorough exploration of parameter combinations, ensuring reliable model performance in various scenarios.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, Z.; Chen, Z.; Yin, K.; Wang, L.; Wang, K. Sensing as the key to the safety and sustainability of new energy storage devices. Prot. Control Mod. Power Syst. 2023, 8, 27. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, S.; Zhang, H.; Yang, G. Wind Power Prediction Based on Multi-class Autoregressive Moving Average Model with Logistic Function. J. Mod. Power Syst. Clean Energy 2022, 10, 1184–1193. [Google Scholar] [CrossRef]
- Liao, W.; Wang, S.; Bak-Jensen, B.; Pillai, J.R.; Yang, Z.; Liu, K. Ultra-Short-Term Interval Prediction of Wind Power Based on Graph Neural Network and Improved Bootstrap Technique. J. Mod. Power Syst. Clean Energy 2023, 11, 1100–1114. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Z.; Hu, J.; Zhao, L.; Li, C.; Zhang, X. Grouping-Based Optimal Design of Collector System Topology for a Large-Scale Offshore Wind Farm by Improved Simulated Annealing. Prot. Control Mod. Power Syst. 2024, 9, 94–111. [Google Scholar] [CrossRef]
- Song, D.; Shen, G.; Huang, C.; Huang, Q.; Yang, J.; Dong, M.; Joo, Y.H.; Duić, N. Review on the Application of Artificial Intelligence Methods in the Control and Design of Offshore Wind Power Systems. J. Mar. Sci. Eng. 2024, 12, 424. [Google Scholar] [CrossRef]
- Global Wind Energy Council. GWEC Global Wind Report 2023; Global Wind Energy Council: Bonn, Germany, 2023. [Google Scholar]
- Song, D.; Tu, Y.; Wang, L.; Jin, F.; Li, Z.; Huang, C.; Xia, E.; Rizk-Allah, R.M.; Yang, J.; Su, M. Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator. Appl. Energy 2022, 312, 118821. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Wei, Z. Hierarchical cluster coordination control strategy for large-scale wind power based on model predictive control and improved multi-time-scale active power dispatching. J. Mod. Power Syst. Clean Energy 2022, 11, 827–839. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Hong, C.-M.; Tu, C.-S.; Lin, W.-M.; Chen, C.-H. A review of modern wind power generation forecasting technologies. Sustainability 2023, 15, 10757. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, H.; Li, Y.; Nikitas, N. Time-variant post-processing method for long-term numerical wind speed forecasts based on multi-region recurrent graph network. Energy 2022, 259, 125021. [Google Scholar] [CrossRef]
- Guan, S.; Wang, Y.; Liu, L.; Gao, J.; Xu, Z.; Kan, S. Ultra-short-term wind power prediction method based on FTI-VACA-XGB model. Expert Syst. Appl. 2024, 235, 121185. [Google Scholar] [CrossRef]
- Ji, L.; Fu, C.; Ju, Z.; Shi, Y.; Wu, S.; Tao, L. Short-Term canyon wind speed prediction based on CNN—GRU transfer learning. Atmosphere 2022, 13, 813. [Google Scholar] [CrossRef]
- Ali, N.; Calaf, M.; Cal, R.B. Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes. J. Renew. Sustain. Energy 2021, 13, 023307. [Google Scholar] [CrossRef]
- Geibel, M.; Bangga, G. Data reduction and reconstruction of wind turbine wake employing data driven approaches. Energies 2022, 15, 3773. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Pang, H.; Wang, B.; Lee, K.Y.; Xie, J.; Jin, Y. Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion. Renew. Energy 2022, 192, 526–536. [Google Scholar] [CrossRef]
- Liu, R.; Song, Y.; Yuan, C.; Wang, D.; Xu, P.; Li, Y. GAN-Based Abrupt Weather Data Augmentation for Wind Turbine Power Day-Ahead Predictions. Energies 2023, 16, 7250. [Google Scholar] [CrossRef]
- Wang, B.; Wang, T.; Yang, M.; Han, C.; Huang, D.; Gu, D. Ultra-Short-Term Prediction Method of Wind Power for Massive Wind Power Clusters Based on Feature Mining of Spatiotemporal Correlation. Energies 2023, 16, 2727. [Google Scholar] [CrossRef]
- Wu, F.; Yang, M.; Shi, C. Short-Term Prediction of Wind Power Considering the Fusion of Multiple Spatial and Temporal Correlation Features. Front. Energy Res. 2022, 10, 878160. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, Z.; Zhang, Z. An improved mixture density network via wasserstein distance based adversarial learning for probabilistic wind speed predictions. IEEE Trans. Sustain. Energy 2021, 13, 755–766. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Luo, X.; Luo, K.; Wei, J.; Li, J.; Xiong, Y. Enhanced probabilistic spatiotemporal wind speed forecasting based on deep learning, quantile regression, and error correction. J. Energy Eng. 2022, 148, 04022004. [Google Scholar] [CrossRef]
- Jiang, Z.; Che, J.; Li, N.; Tan, Q. Deterministic and probabilistic multi-time-scale forecasting of wind speed based on secondary decomposition, DFIGR and a hybrid deep learning method. Expert Syst. Appl. 2023, 234, 121051. [Google Scholar] [CrossRef]
- Shan, J.-N.; Wang, H.-Z.; Pei, G.; Zhang, S.; Zhou, W.-H. Research on short-term power prediction of wind power generation based on WT-CABC-KELM. Energy Rep. 2022, 8, 800–809. [Google Scholar] [CrossRef]
- Liu, G.; Wang, C.; Qin, H.; Fu, J.; Shen, Q. A novel hybrid machine learning model for wind speed probabilistic forecasting. Energies 2022, 15, 6942. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Zhao, Y.; Qiu, J.; Bu, S.; Zhu, Y.; Li, G. Deterministic and Probabilistic Prediction of Wind Power Based on a Hybrid Intelligent Model. Energies 2023, 16, 4237. [Google Scholar] [CrossRef]
- Alkabbani, H.; Ahmadian, A.; Zhu, Q.; Elkamel, A. Machine learning and metaheuristic methods for renewable power forecasting: A recent review. Front. Chem. Eng. 2021, 3, 665415. [Google Scholar] [CrossRef]
- Yang, M.; Guo, Y.; Huang, Y. Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process. Energy 2023, 282, 128947. [Google Scholar] [CrossRef]
- Tan, E.; Mentes, S.S.; Unal, E.; Unal, Y.; Efe, B.; Barutcu, B.; Onol, B.; Topcu, H.S.; Incecik, S. Short term wind energy resource prediction using WRF model for a location in western part of Turkey. J. Renew. Sustain. Energy 2021, 13, 013303. [Google Scholar] [CrossRef]
- Zhou, Z.; Dai, Y.; Xiao, J.; Liu, M.; Zhang, J.; Zhang, M. Research on Short-Time Wind Speed Prediction in Mountainous Areas Based on Improved ARIMA Model. Sustainability 2022, 14, 15301. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, Q.; Zhang, K.; Qiang, W.; Wen, Q.H. Recent advances in data-driven prediction for wind power. Front. Energy Res. 2023, 11, 1204343. [Google Scholar] [CrossRef]
- Ahsan, F.; Dana, N.H.; Sarker, S.K.; Li, L.; Muyeen, S.; Ali, M.F.; Tasneem, Z.; Hasan, M.M.; Abhi, S.H.; Islam, M.R. Data-driven next-generation smart grid towards sustainable energy evolution: Techniques and technology review. Prot. Control Mod. Power Syst. 2023, 8, 43. [Google Scholar] [CrossRef]
- Hasan, M.N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.; Kim, J.-M. Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef]
- Zidi, S.; Mihoub, A.; Qaisar, S.M.; Krichen, M.; Al-Haija, Q.A. Theft detection dataset for benchmarking and machine learning based classification in a smart grid environment. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 13–25. [Google Scholar] [CrossRef]
- Niksa-Rynkiewicz, T.; Stomma, P.; Witkowska, A.; Rutkowska, D.; Słowik, A.; Cpałka, K.; Jaworek-Korjakowska, J.; Kolendo, P. An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks. J. Artif. Intell. Soft Comput. Res. 2023, 13, 197–210. [Google Scholar] [CrossRef]
- Valdivia-Bautista, S.M.; Domínguez-Navarro, J.A.; Pérez-Cisneros, M.; Vega-Gómez, C.J.; Castillo-Téllez, B. Artificial Intelligence in Wind Speed Forecasting: A Review. Energies 2023, 16, 2457. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, G.; Yang, Z.; Guo, Y.; Li, K.; Xue, Y. A comprehensive review on deep learning approaches in wind forecasting applications. CAAI Trans. Intell. Technol. 2022, 7, 129–143. [Google Scholar] [CrossRef]
- Feng, H.; Jin, Y.; Laima, S.; Han, F.; Xu, W.; Liu, Z. A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data. Appl. Sci. 2022, 12, 9610. [Google Scholar] [CrossRef]
- Li, L.-L.; Liu, Z.-F.; Tseng, M.-L.; Jantarakolica, K.; Lim, M.K. Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power. Expert Syst. Appl. 2021, 184, 115579. [Google Scholar] [CrossRef]
- Hanifi, S.; Lotfian, S.; Zare-Behtash, H.; Cammarano, A. Offshore wind power forecasting—A new hyperparameter optimisation algorithm for deep learning models. Energies 2022, 15, 6919. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Qu, Z.; Li, J.; Hou, X.; Gui, J. A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction. Energy 2023, 281, 128289. [Google Scholar] [CrossRef]
- Huang, C.-M.; Chen, S.-J.; Yang, S.-P.; Chen, H.-J. One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods. Energies 2023, 16, 2688. [Google Scholar] [CrossRef]
- Khazaei, S.; Ehsan, M.; Soleymani, S.; Mohammadnezhad-Shourkaei, H. A high-accuracy hybrid method for short-term wind power forecasting. Energy 2022, 238, 122020. [Google Scholar] [CrossRef]
- Fahim, P.; Vaezi, N.; Shahraki, A.; Khoshnevisan, M. An Integration of Genetic Feature Selector, Histogram-Based Outlier Score, and Deep Learning for Wind Turbine Power Prediction. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 9342–9365. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Wang, S.; Yao, X. Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression. Neurocomputing 2021, 430, 121–137. [Google Scholar] [CrossRef]
- Fu, W.; Fu, Y.; Li, B.; Zhang, H.; Zhang, X.; Liu, J. A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting. Appl. Energy 2023, 348, 121587. [Google Scholar] [CrossRef]
- Ammar, E.; Xydis, G. Wind speed forecasting using deep learning and preprocessing techniques. Int. J. Green Energy 2024, 21, 988–1016. [Google Scholar] [CrossRef]
- Özen, C.; Deniz, A. Short-term wind speed forecast for Urla wind power plant: A hybrid approach that couples weather research and forecasting model, weather patterns and SCADA data with comprehensive data preprocessing. Wind. Eng. 2022, 46, 1526–1549. [Google Scholar] [CrossRef]
- Li, J.; Song, Z.; Wang, X.; Wang, Y.; Jia, Y. A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD. Energy 2022, 251, 123848. [Google Scholar] [CrossRef]
- Ai, C.; He, S.; Fan, X.; Wang, W. Chaotic time series wind power prediction method based on OVMD-PE and improved multi-objective state transition algorithm. Energy 2023, 278, 127695. [Google Scholar] [CrossRef]
- Shi, S.; Liu, Z.; Deng, X.; Chen, S.; Song, D. From Lidar Measurement to Rotor Effective Wind Speed Prediction: Empirical Mode Decomposition and Gated Recurrent Unit Solution. Sensors 2023, 23, 9379. [Google Scholar] [CrossRef]
- Sun, H.; Song, T.; Li, Y.; Yang, K.; Xu, D.; Meng, F. EEMD-ConvLSTM: A model for short-term prediction of two-dimensional wind speed in the South China Sea. Appl. Intell. 2023, 53, 30186–30202. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, T.; Tao, Z.; Zhang, C.; Song, S.; Nazir, M.S. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy 2023, 266, 126419. [Google Scholar] [CrossRef]
- Wang, X.X.; Shen, X.P.; Ai, X.Y.; Li, S.J. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. PLoS ONE 2023, 18, e0289161. [Google Scholar]
- Yang, Q.; Deng, C.; Chang, X. Ultra-short-term/short-term wind speed prediction based on improved singular spectrum analysis. Renew. Energy 2022, 184, 36–44. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Liu, X. Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renew. Energy 2022, 185, 611–628. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Yu, L.; Pan, Z.; Feng, C.; Sun, Y.; Wang, F. A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique. Energy 2022, 254, 124378. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Guo, Z.; Zhang, S. An effective wind speed prediction model combining secondary decomposition and regularised extreme learning machine optimised by cuckoo search algorithm. Wind Energy 2022, 25, 1406–1433. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, W.; Wang, G.; Guo, Z.; Zhao, J.; Ma, K. Combined wind speed forecasting model based on secondary decomposition and quantile regression closed-form continuous-time neural network. Int. J. Green Energy 2023, 1–22. [Google Scholar] [CrossRef]
- Hou, G.; Wang, J.; Fan, Y. Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction. Energy 2024, 286, 129640. [Google Scholar] [CrossRef]
- Emeksiz, C.; Tan, M. Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach. Energy 2022, 238, 121764. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, W.; Guo, Z.; Zhao, J.; Qiu, W. A hybrid forecasting model for very short-term wind speed prediction based on secondary decomposition and deep learning algorithms. Earth Sci. Inform. 2023, 16, 2421–2438. [Google Scholar] [CrossRef]
- Zouaidia, K.; Rais, M.S.; Ghanemi, S. Weather forecasting based on hybrid decomposition methods and adaptive deep learning strategy. Neural Comput. Appl. 2023, 35, 11109–11124. [Google Scholar] [CrossRef]
- Pei, M.; Ye, L.; Li, Y.; Luo, Y.; Song, X.; Yu, Y.; Zhao, Y. Short-term regional wind power forecasting based on spatial–temporal correlation and dynamic clustering model. Energy Rep. 2022, 8, 10786–10802. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, Y.; Fu, R. A novel wind speed forecasting combined model using variational mode decomposition, sparse auto-encoder and optimized fuzzy cognitive mapping network. Energy 2023, 278, 127926. [Google Scholar] [CrossRef]
- Zhu, Y. Research on adaptive combined wind speed prediction for each season based on improved gray relational analysis. Environ. Sci. Pollut. Res. 2023, 30, 12317–12347. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Huang, C.-L.; Wu, S.-H.; Hong, J.-S.; Chang, H.-L. Deterministic and probabilistic wind power forecasts by considering various atmospheric models and feature engineering approaches. IEEE Trans. Ind. Appl. 2022, 59, 192–206. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Yan, J.; Cheng, P. Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar. Sensors 2023, 23, 4369. [Google Scholar] [CrossRef]
- Gong, M.; Yan, C.; Xu, W.; Zhao, Z.; Li, W.; Liu, Y.; Li, S. Short-term wind power forecasting model based on temporal convolutional network and Informer. Energy 2023, 283, 129171. [Google Scholar] [CrossRef]
- Yu, C.; Yan, G.; Yu, C.; Mi, X. Attention mechanism is useful in spatio-temporal wind speed prediction: Evidence from China. Appl. Soft Comput. 2023, 148, 110864. [Google Scholar] [CrossRef]
- Sarangi, S.; Dash, P.K.; Bisoi, R. Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm. Eng. Appl. Artif. Intell. 2023, 126, 107034. [Google Scholar] [CrossRef]
- Kosana, V.; Teeparthi, K.; Madasthu, S. Hybrid convolutional BI-LSTM autoencoder framework for short-term wind speed prediction. Neural Comput. Appl. 2022, 34, 12653–12662. [Google Scholar] [CrossRef]
- Ko, M.-S.; Lee, K.; Kim, J.-K.; Hong, C.W.; Dong, Z.Y.; Hur, K. Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting. IEEE Trans. Sustain. Energy 2020, 12, 1321–1335. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Yang, X.; Im, S.-K. Research on Wind Power Prediction Based on a Gated Transformer. Appl. Sci. 2023, 13, 8350. [Google Scholar] [CrossRef]
- Pan, X.; Wang, L.; Wang, Z.; Huang, C. Short-term wind speed forecasting based on spatial-temporal graph transformer networks. Energy 2022, 253, 124095. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Liang, Y.; Gao, H.; Lin, P.; Zhang, D.; Hu, G. Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables. Appl. Energy 2024, 353, 122155. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Wu, J.; Liu, Y.; Guo, J.; Zang, H. Wind power probabilistic forecasting based on combined decomposition and deep learning quantile regression. Front. Energy Res. 2022, 10, 937240. [Google Scholar] [CrossRef]
- Song, Y.; Tang, D.; Yu, J.; Yu, Z.; Li, X. Short-Term Forecasting Based on Graph Convolution Networks and Multiresolution Convolution Neural Networks for Wind Power. IEEE Trans. Ind. Inform. 2022, 19, 1691–1702. [Google Scholar] [CrossRef]
- Gao, J.; Ye, X.; Lei, X.; Huang, B.; Wang, X.; Wang, L. A Multichannel-Based CNN and GRU Method for Short-Term Wind Power Prediction. Electronics 2023, 12, 4479. [Google Scholar] [CrossRef]
- Li, Z.; Luo, X.; Liu, M.; Cao, X.; Du, S.; Sun, H. Wind power prediction based on EEMD-Tent-SSA-LS-SVM. Energy Rep. 2022, 8, 3234–3243. [Google Scholar] [CrossRef]
- Fu, X.; Feng, Z.; Yao, X.; Liu, W. A Novel Twin Support Vector Regression Model for Wind Speed Time-Series Interval Prediction. Energies 2023, 16, 5656. [Google Scholar] [CrossRef]
- Yuan, D.-D.; Li, M.; Li, H.-Y.; Lin, C.-J.; Ji, B.-X. Wind power prediction method: Support vector regression optimized by improved jellyfish search algorithm. Energies 2022, 15, 6404. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X. Improved chimpanzee algorithm based on CEEMDAN combination to optimize ELM short-term wind speed prediction. Environ. Sci. Pollut. Res. 2023, 30, 35115–35126. [Google Scholar] [CrossRef]
- Jnr, E.O.-N.; Ziggah, Y.Y.; Rodrigues, M.J.; Relvas, S. A hybrid chaotic-based discrete wavelet transform and Aquila optimisation tuned-artificial neural network approach for wind speed prediction. Results Eng. 2022, 14, 100399. [Google Scholar]
- Ding, L.; Bai, Y.; Liu, M.-D.; Fan, M.-H.; Yang, J. Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network. Energy 2022, 244, 122630. [Google Scholar] [CrossRef]
- Ponkumar, G.; Jayaprakash, S.; Kanagarathinam, K. Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis. Energies 2023, 16, 5459. [Google Scholar] [CrossRef]
- Guan, S.; Wang, Y.; Liu, L.; Gao, J.; Xu, Z.; Kan, S. Ultra-short-term wind power prediction method combining financial technology feature engineering and XGBoost algorithm. Heliyon 2023, 9, e16938. [Google Scholar] [CrossRef]
- Liao, S.; Tian, X.; Liu, B.; Liu, T.; Su, H.; Zhou, B. Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis. Energies 2022, 15, 6287. [Google Scholar] [CrossRef]
- Shirzadi, N.; Nasiri, F.; Menon, R.P.; Monsalvete, P.; Kaifel, A.; Eicker, U. Smart Urban Wind Power Forecasting: Integrating Weibull Distribution, Recurrent Neural Networks, and Numerical Weather Prediction. Energies 2023, 16, 6208. [Google Scholar] [CrossRef]
- Wei, J.; Wu, X.; Yang, T.; Jiao, R. Ultra-short-term forecasting of wind power based on multi-task learning and LSTM. Int. J. Electr. Power Energy Syst. 2023, 149, 109073. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H. A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction. Measurement 2023, 222, 113643. [Google Scholar] [CrossRef]
- Zhao, Z.; Yun, S.; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X.; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 121, 105982. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Zhang, X.; Fang, M. A novel hybrid model for short-term prediction of wind speed. Pattern Recognit. 2022, 127, 108623. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, C.; Peng, T.; Ji, C.; Nazir, M.S. Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction. Energy Convers. Manag. 2022, 252, 115102. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Application of hybrid model based on CEEMDAN, SVD, PSO to wind energy prediction. Environ. Sci. Pollut. Res. 2022, 29, 22661–22674. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, Z.; Zhang, H.; Wang, X.; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. Renew. Energy 2022, 189, 188–198. [Google Scholar] [CrossRef]
- Shang, Y.; Miao, L.; Shan, Y.; Gnyawali, K.R.; Zhang, J.; Kattel, G. A Hybrid Ultra-short-term and Short-term Wind Speed Forecasting Method based on CEEMDAN and GA-BPNN. Weather. Forecast. 2022, 37, 415–428. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J. Short-term wind speed prediction based on feature extraction with Multi-task Lasso and Multilayer Perceptron. Energy Rep. 2022, 8, 191–199. [Google Scholar] [CrossRef]
- Xiong, X.; Guo, X.; Zeng, P.; Zou, R.; Wang, X. A short-term wind power forecast method via xgboost hyper-parameters optimization. Front. Energy Res. 2022, 10, 905155. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, W.; Zhang, W.; Li, Z.; Zhou, T. An Interval Prediction Approach of Wind Power Based on Skip-GRU and Block-Bootstrap Techniques. IEEE Trans. Ind. Appl. 2023, 59, 4710–4719. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, Y. A short-term wind power prediction approach based on ensemble empirical mode decomposition and improved long short-term memory. Comput. Electr. Eng. 2023, 110, 108830. [Google Scholar] [CrossRef]
- Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep short-term wind speed forecasting using transformer. Energy 2022, 261, 125231. [Google Scholar] [CrossRef]
- Sun, F.; Jin, T. A hybrid approach to multi-step, short-term wind speed forecasting using correlated features. Renew. Energy 2022, 186, 742–754. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Chen, C.; Duan, Z. Wind speed forecasting using multi-scale feature adaptive extraction ensemble model with error regression correction. Expert Syst. Appl. 2022, 207, 117358. [Google Scholar] [CrossRef]
- Xiao, Z.; Tang, F.; Wang, M. Wind Power Short-Term Forecasting Method Based on LSTM and Multiple Error Correction. Sustainability 2023, 15, 3798. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wang, J.; Wang, S.; Zhao, Z.; Wang, F. A comprehensive wind speed prediction system based on intelligent optimized deep neural network and error analysis. Eng. Appl. Artif. Intell. 2024, 128, 107479. [Google Scholar] [CrossRef]
- Xing, F.; Song, X.; Wang, Y.; Qin, C. A New Combined Prediction Model for Ultra-Short-Term Wind Power Based on Variational Mode Decomposition and Gradient Boosting Regression Tree. Sustainability 2023, 15, 11026. [Google Scholar] [CrossRef]
- Wang, J.; Gao, D.; Zhuang, Z.; Wu, J. An optimized complementary prediction method based on data feature extraction for wind speed forecasting. Sustain. Energy Technol. Assess. 2022, 52, 102068. [Google Scholar] [CrossRef]
- Ai, X.; Li, S.; Xu, H. Wind speed prediction model using ensemble empirical mode decomposition, least squares support vector machine and long short-term memory. Front. Energy Res. 2023, 10, 1043867. [Google Scholar] [CrossRef]
- Zhou, G.; Hu, G.; Zhang, D.; Zhang, Y. A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model. Energy 2023, 283, 128986. [Google Scholar] [CrossRef]
- Liu, H.; Yang, R.; Wang, T.; Zhang, L. A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections. Renew. Energy 2021, 165, 573–594. [Google Scholar] [CrossRef]
- Yin, S.; Liu, H. Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction. Energy 2022, 250, 123857. [Google Scholar] [CrossRef]
- Yang, R.; Liu, H.; Nikitas, N.; Duan, Z.; Li, Y.; Li, Y. Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach. Energy 2022, 239, 122128. [Google Scholar] [CrossRef]
- Sarp, A.O.; Mengüç, E.C.; Peker, M.; Güvenç, B.Ç. Data-adaptive censoring for short-term wind speed predictors based on MLP, RNN, and SVM. IEEE Syst. J. 2022, 16, 3625–3634. [Google Scholar] [CrossRef]
- Duan, J.; Zuo, H.; Bai, Y.; Duan, J.; Chang, M.; Chen, B. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 2021, 217, 119397. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, G.; Li, T.; Xu, Y.; Pan, J. A novel short-term wind speed prediction method based on hybrid statistical-artificial intelligence model with empirical wavelet transform and hyperparameter optimization. J. Wind. Eng. Ind. Aerodyn. 2023, 240, 105499. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Chen, F.; Zhang, W.; Zhou, D.; Wu, F.; Chen, D. Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization. Energy Rep. 2023, 9, 6114–6134. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Tang, Y.; Zhao, Y.; Zhong, W.; Qu, Y.; Zhai, B. Ultra-short-term combined prediction approach based on kernel function switch mechanism. Renew. Energy 2021, 164, 842–866. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhang, Y.; Ye, X.; Xiong, X.; Zhang, F. A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting. Processes 2021, 9, 387. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, K.; Wang, K.; Wen, B.; Fang, P.; Zou, F. A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM. Renew. Energy 2021, 164, 211–229. [Google Scholar] [CrossRef]
- Rayi, V.K.; Mishra, S.; Naik, J.; Dash, P. Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting. Energy 2022, 244, 122585. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, H.; Hua, L.; Sun, W.; Nazir, M.S.; Peng, T. An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction. Energy 2022, 254, 124250. [Google Scholar] [CrossRef]
- Meng, A.; Zhu, Z.; Deng, W.; Ou, Z.; Lin, S.; Wang, C.; Xu, X.; Wang, X.; Yin, H.; Luo, J. A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine. Energy 2022, 260, 124957. [Google Scholar] [CrossRef]
- Suo, L.; Peng, T.; Song, S.; Zhang, C.; Wang, Y.; Fu, Y.; Nazir, M.S. Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm. Energy 2023, 276, 127526. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, H.; Dai, J.; Zhu, R.; Qiu, L.; Dong, Y.; Fang, S. Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting. Processes 2023, 11, 1001. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, F.; Li, C. Time-varying interval prediction and decision-making for short-term wind power using convolutional gated recurrent unit and multi-objective elephant clan optimization. Energy 2023, 271, 127006. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L. Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting. Energy 2024, 288, 129728. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Cheng, L.; Xia, M. Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention. Energy 2023, 278, 127942. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Zhang, Y.; Cheng, F.; Zhou, C. A novel prediction model for wind power based on improved long short-term memory neural network. Energy 2023, 265, 126283. [Google Scholar] [CrossRef]
- Ewees, A.A.; Al-qaness, M.A.; Abualigah, L.; Abd Elaziz, M. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting. Energy Convers. Manag. 2022, 268, 116022. [Google Scholar] [CrossRef]
- Han, Y.; Mi, L.; Shen, L.; Cai, C.; Liu, Y.; Li, K. A short-term wind speed interval prediction method based on WRF simulation and multivariate line regression for deep learning algorithms. Energy Convers. Manag. 2022, 258, 115540. [Google Scholar] [CrossRef]
- Song, D.; Tan, X.; Deng, X.; Yang, J.; Dong, M.; Elkholy, M.; Talaat, M.; Joo, Y.H. Rotor equivalent wind speed prediction based on mechanism analysis and residual correction using Lidar measurements. Energy Convers. Manag. 2023, 292, 117385. [Google Scholar] [CrossRef]
Article | Year | Type | Methods |
---|---|---|---|
[58] | 2022 | WSP | EEMD + WPT |
[59] | 2023 | WSP | VMD + SSA |
[60] | 2023 | WPP | CEEMDAN + VMD |
[61] | 2022 | WSP | CEEMDAN + LMD |
[62] | 2023 | WSP | WT + VMD |
[63] | 2023 | WSP | OVMD + DWT |
Article | Year | Type | Methods |
---|---|---|---|
[74] | 2023 | WPP | GRU + Transformer + Attention |
[75] | 2022 | WSP | Attention + GTN |
[76] | 2023 | WSP | VMD + GNN |
[77] | 2022 | WPP | CNN + BiGRU |
[78] | 2023 | WPP | GCN + CNN |
[79] | 2023 | WPP | CNN + GRU |
Year | Type | Methods | Results | Drawbacks (Future Work) |
---|---|---|---|---|
2022 | WSP | Neo4j + k-means clustering + gray wolf algorithm + SVM [93] | High accuracy, well-predictive stability, and acceptable time complexity | Further optimization |
2022 | WSP | VMD + partial least squares +improved atom search optimization + ELM [94] | Superior predictive performance to the other nine benchmark models | Not considering the impact of relevant environmental factors |
2022 | WSP | CEEMDAN + particle swarm optimization algorithm (PSO) + ENN [95] | Significantly improving wind speed prediction effectiveness and reducing errors | Exploring alternative decomposition and optimization algorithms |
2022 | WPP | CEEMD + whale optimization algorithm (WOA) + KELM [96] | The minimum values of MAE, RMSE, and MAPE: 0.2911%, 0.4305%, and 6.6% | |
2022 | WSP | CEEMDAN + genetic algorithm (GA) + BPNN [97] | Improvement in accuracy for the short-term and ultra-short-term prediction | Potential performance decline in ultra-short-term prediction using decomposition methods |
2022 | WSP | Multi-Task Lasso + MLP [98] | Significant effectiveness in feature selection and an increase in prediction accuracy of over 17% | |
2022 | WPP | Bayesian optimization + XGBoost [99] | Minimal prediction errors under conditions of extreme weather | Integration of additional meteorological elements for further improvement and testing |
2023 | WPP | skip-GRU [100] | Generating prediction intervals of higher quality than the baseline model | Involving multi-step interval forecasting considering numerical weather forecast information |
2023 | WPP | EEMD + PSO + LSTM [101] | Higher prediction accuracy and stability compared to other baseline models | |
2022 | WSP | EEMD + Attention + Transformer [102] | Achieving a new level of multi-step WSP on the NWTC-M2 dataset | Incomplete hyperparameter optimization, simple model structure, and a lack of in-depth error analysis |
Article | Year | Type | Methods | Datasets and Results |
---|---|---|---|---|
[106] | 2023 | WSP | GRU + Broad Learning System (BLS) | Wind farm data from both countries had smaller prediction errors. |
[107] | 2023 | WPP | SVM + LSTM + GRU + GBRT | Using a publicly available dataset from a 16 MW wind farm as a data source, MSE, MAE, and R2 were 0.0244, 0.1185, and 0.9821, respectively. |
[108] | 2022 | WSP | SVR + BiLSTM | The method of selecting the historical data sets of Lanzhou and Gaolan wind farms in Hexi Corridor has higher accuracy and stronger generalization ability. |
[109] | 2023 | WSP | LSSVM + LSTM | With the open source data, the method has higher prediction accuracy. |
[110] | 2023 | WPP | Seq2Seq + Attention + BiGRU | The dataset employed consists of measured data from a wind power station located in mainland China, and compared with other models, MAE decreased by 19.7%, 43.4%, 41.0%, and 46.2%, respectively. |
[111] | 2021 | WSP | ELM + Outlier-Robust Extreme Learning Machine (ORELM) + DBN | Hourly wind speed data from the National Renewable Energy Laboratory, RMSE, MAE, MAPE, and symmetric MAPE reached 0.2047%, 0.1435%, 3.77%, and 3.74%, respectively. |
[112] | 2022 | WPP | Group Method of Data Handling (GMDH) + Echo State Network (ESN) + ELM | Four group wind power datasets; the accuracy is superior to other five AI-based models. |
[113] | 2022 | WSP | GRU + BiLSTM + DBN | MAE of the four original wind speed series collected from Xinjiang, China, at stations #1, #2, #3, and #4 are 0.0829 m/s, 0.0661 m/s, 0.0906 m/s, and 0.0803 m/s, respectively. |
[114] | 2022 | WSP | MLP + RNN + SVM | Simulation results on actual large-scale short-term wind speed data validate the above attractive features of the proposed predictor. |
[115] | 2021 | WSP | RNN + BPNN | Four wind speed series collected from a wind farm in Ningxia Hui Autonomous Region, China, outperformed other single models and traditional models. |
Type | Index | Definition | Equations | Evaluation Criteria |
---|---|---|---|---|
Deterministic prediction evaluation metrics | MSE | Mean squared error | ❄ | |
RMSE | Root mean square error | ❄ | ||
MAE | Mean absolute error | ❄ | ||
MAPE | Mean absolute percentage error | ❄ | ||
r | Correlation coefficient | 🕛 | ||
R2 | Coefficient of determination | 🕛 | ||
Interval prediction evaluation metrics | PICP | Prediction interval coverage probability | 🕛 | |
PINAW | Prediction intervals normalized average width | ❄ | ||
CWC | Composite indacator | ❄ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Tan, X.; Huang, Q.; Wang, L.; Dong, M.; Yang, J.; Evgeny, S. Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023. Energies 2024, 17, 1270. https://doi.org/10.3390/en17061270
Song D, Tan X, Huang Q, Wang L, Dong M, Yang J, Evgeny S. Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023. Energies. 2024; 17(6):1270. https://doi.org/10.3390/en17061270
Chicago/Turabian StyleSong, Dongran, Xiao Tan, Qian Huang, Li Wang, Mi Dong, Jian Yang, and Solomin Evgeny. 2024. "Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023" Energies 17, no. 6: 1270. https://doi.org/10.3390/en17061270
APA StyleSong, D., Tan, X., Huang, Q., Wang, L., Dong, M., Yang, J., & Evgeny, S. (2024). Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023. Energies, 17(6), 1270. https://doi.org/10.3390/en17061270