Improvement of Biogas Production Utilizing a Complex Anaerobic Digestion Model and Gradient-Based Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biogas Plant Data
2.2. Numerical Simulation of the AD Process
2.3. Optimization of the AD Process
- Biological additives:
- √
- The initial concentrations of bacteria groups are {Asu, Aaa, Agly, Aoa, Apro, Abu, Ava, Mac, Mhyd, Ss, Spro, Sac, Shyd}; these bacteria groups are acidogenic degraders of sugar (Asu), amino acids (Aaa), glycerol (Agly), and oleic acid (Aoa), acetogenic degraders of propionic acid (Apro), butyric acid (Abu), and valeric acid (Ava), methanogenic degraders bacteria of acetate (Mac), hydrogen (Mhyd), and sulfate-reducing bacteria involved in the reduction in sulfate (Ss), propionate (Spro), acetate (Sac), and hydrogen (Shyd),
- √
- The dosage of the SensoPower Flex additive , which contains enzymes;
- Inorganic additives;
- √
- The dosage of the Kemira BDP-840 additive which contains ;
- √
- The dosage of the SensoPower Liquid additive , which contains trace elements (, , , , and );
- Temperature .
3. Results and Discussion
3.1. Numerical Simulation of the AD Process
3.2. Optimization of the AD Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kegl, T. Consideration of biological and inorganic additives in upgraded anaerobic digestion BioModel. Bioresour. Technol. 2022, 355, 127252. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Peng, X.; Li, L.; Yang, P.; Peng, Y.; Liu, H.; Wang, X. Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel 2021, 303, 121282. [Google Scholar] [CrossRef]
- Siddique, M.N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Tho, B.L.; Toan, P.P.S.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configuration, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Kegl, T.; Kovač Kralj, A. An enhanced anaerobic digestion BioModel calibrated by parameters optimization based on measured biogas plant data. Fuel 2022, 312, 122984. [Google Scholar] [CrossRef]
- Obileke, K.H.; Nwokolo, N.; Makak, G.; Mukumba, P.; Onyeaka, H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ. 2021, 32, 191–225. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Campos, E.; Flotats, X. Dynamic simulation of pH in anaerobic processes. Appl. Biochem. Biotechnol. 2003, 109, 63–76. [Google Scholar] [CrossRef]
- Paulo, L.L.; Stams, A.J.M.; Sousa, D.Z. Methanogens, sulphate and heavy metals: A complex system. Rev. Environ. Sci. Bio/Technol. 2015, 14, 537–553. [Google Scholar] [CrossRef]
- Abarghaz, Y.; el Ghali, K.M.; Mahi, M.; Werner, C.; Bendaou, N.; Fekhaoui, M.; Abdelaziz, B.H. Modelling of anaerobic digester biogas production: Case study of a pilot project in Morocco. J. Water Desalination 2013, 3, 381–391. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef]
- Guo, Q.; Majeed, S.; Xu, R.; Zhang, K.; Kakade, A.; Khan, A.; Hafeez, F.Y.; Mao, C.; Liu, P.; Li, X. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manag. 2019, 240, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, J.; Li, P.; Shen, P.; Wei, Y. Enhancement of methane production and antibiotic resistance genes reduction by ferrous chloride during anaerobic digestion of swine manure. Bioresour. Technol. 2020, 298, 122519. [Google Scholar] [CrossRef] [PubMed]
- Paritosh, K.; Yadav, M.; Chawade, A.; Sahoo, D.; Kesharwani, N.; Pareek, N.; Vivekanand, V. Additives as a support structure for specific biochemical activity boosts in anaerobic digestion: A review. Front. Energy Res. 2020, 8, 88. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol. Bioeng. 1993, 42, 159–166. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol. Bioeng. 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Flores-Alsina, X.; Solon, K.; Mbamba, C.K.; Tait, S.; Gernaey, K.V.; Jeppsson, U.; Batstone, D.J. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res. 2016, 95, 370–382. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Z.; Zhao, Q.; Kurbonova, M.; Zhang, R.; Liu, G.; Wang, W. Modification and extension of anaerobic digestion model No. 1 (ADM1) for syngas biomethanation simulation: From lab-scale to pilot-scale. Chem. Eng. J. 2021, 403, 126177. [Google Scholar] [CrossRef]
- Maharaj, B.C.; Mattei, M.R.; Frunzo, L.; van Hullebusch, E.D.; Esposito, G. ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes. Bioresour. Technol. 2018, 267, 666–676. [Google Scholar] [CrossRef]
- Frunzo, L.; Fermoso, F.G.; Luongo, V.; Mattei, M.R.; Esposito, G. ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes. J. Environ. Manag. 2019, 241, 587–602. [Google Scholar] [CrossRef]
- Kovalovszki, A.; Alvarado-Morales, M.; Fotidis, I.A.; Angelidaki, I. A systematic methodology to extend the applicability of a bioconversion model for the simulation of various co-digestion scenarios. Bioresour. Technol. 2017, 235, 157–166. [Google Scholar] [CrossRef]
- Casallas-Ojeda, M.; Soto-Paz, J.; Alfonso-Morales, W.; Oviedo-Ocaña, E.R.; Komilis, D. Optimization of operational parameters during anaerobic co-digestion of food and garden waste. Environ. Process. 2021, 8, 769–791. [Google Scholar] [CrossRef]
- Huang, M.; Han, W.; Wan, J.; Ma, Y.; Chen, X. Multi-objective optimization for design and operation of anaerobic digestion using GA-ANN and NSGA-II. J. Chem. Technol. Biotechnol. 2016, 91, 226–233. [Google Scholar] [CrossRef]
- Beltramo, T.; Hitzmann, B. Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes. Eng. Agric. Environ. Food 2019, 12, 397–403. [Google Scholar] [CrossRef]
- Elagroudy, S.; Radwan, A.G.; Banadda, N.; Mostafa, N.G.; Owusu, P.A.; Janajreh, I. Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge. Renew. Energy 2020, 155, 1009–1020. [Google Scholar] [CrossRef]
- Kegl, T.; Kovač Kralj, A. Multi-objective optimization of anaerobic digestion process using gradient-based algorithm. Energy Convers. Manag. 2020, 226, 113560. [Google Scholar] [CrossRef]
- SIST EN 15934:2012; Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2012.
- SIST EN 15935:2012; Sludge, Treated Biowaste, Soil and Waste—Determination of Loss on Ignition. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2021.
- ASTM E1758-01R20; Standard Test Method for Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography. ASTM International: West Conshohocken, PA, USA, 2020.
- SIST ISO 937-1978; Meat and Meat Products—Determination of Nitrogen Content (Reference Method). Slovenian Institute for Standardization: Ljubljana, Slovenia, 1978.
- SIST ISO 1443-1973; Meat and Meat Products—Determination of Total Fat Content. Slovenian Institute for Standardization: Ljubljana, Slovenia, 1973.
- ASTM D4373-02; Standard Test Method for Rapid Determination of Carbonate Content of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- SIST ISO 5664:1996; Water Quality, Determination of Ammonium. Slovenian Institute for Standardization: Ljubljana, Slovenia, 1996.
- SIST ISO 9280:1990; Water Quality, Determination of Sulfate. Slovenian Institute for Standardization: Ljubljana, Slovenia, 1990.
- SIST EN 16170:2016; Sludge, Treated Biowaste and Soil—Determination of Elements Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Slovenian Institute for Standardization: Ljubljana, Slovenia, 2016.
- SIST EN 26777:1996; Water Quality—Determination of Nitrite. Slovenian Institute for Standardization: Ljubljana, Slovenia, 1996.
- Kegl, M.; Butinar, B.J.; Kegl, B. An efficient gradient-based optimization algorithm for mechanical systems. Commun. Numer. Methods Eng. 2002, 18, 363–371. [Google Scholar] [CrossRef]
- Singh, A.; Moestedt, J.; Berg, A.; Schnürer, A. Microbiological surveillance of biogas plants: Targeting acetogenic community. Front. Microbiol. 2021, 12, 700256. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Wang, L.; Mi, X.; Chai, Y. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw. Biodegradation 2016, 27, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Keener, H.; Huang, Z.; Liu, Y.; Ruan, R.; Xu, F. Effect of temperature and inoculation ratio on methane production and nutrient solubility of swine manure anaerobic digestion. Bioresour. Technol. 2020, 299, 122552. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xi, B.; Li, M.; Jia, X.; Wang, X.; Xu, P.; Zhao, Y. Hydrogen production performance from food waste using piggery anaerobic digested residues inoculum in long-term systems. Int. J. Hydrogen Energy 2020, 45, 33208–33217. [Google Scholar] [CrossRef]
- al Mamun, M.R.; Torii, S. Enhancement of methane concentration by removing contaminants from biogas mixture using combined method absorption and adsorption. Int. J. Chem. Eng. 2017, 2017, 7906859. [Google Scholar] [CrossRef]
F-CS | PM | CS | CM | FM | FW | Standard SIST |
---|---|---|---|---|---|---|
Total solids, TS (%) | 75.73 | 47.68 | 65.85 | 34.12 | 91.99 | EN 15934:2012 [30] |
Organic matter, OM (% TS) | 84.76 | 96.58 | 98.35 | 98.00 | 98.08 | EN 15935:2021 [31] |
Carbohydrates (g/L) | 10.735 | 6.488 | 6.438 | 4.309 | 31.707 | ASTM E1758-01 [32] |
Proteins (g/L) | 45.936 | 33.022 | 56.970 | 74.723 | 66.220 | ISO 937-1978 [33] |
Lipids (g/L) | 3.555 | 3.226 | 19.750 | 236.31 | 26.970 | ISO 1443-1973 [34] |
Inorganic carbon (g/L) | 3.5750 | 2.1419 | 0.7153 | 0.1371 | 42.802 | ASTM D4373-02 [35] |
Inorganic nitrogen (g/L) | 1.5532 | 0.6279 | 1.0818 | 1.3042 | 1.1523 | ISO 5664:1996 [36] |
Inorganic sulfur (g/L) | 3.5760 | 0.0615 | 0.3745 | 0.0010 | 0.9849 | ISO 9280:1990 [37] |
Inorganic potassium (g/L) | 3.2381 | 1.1058 | 1.1351 | 0.0471 | 2.5101 | EN 16170:2016 [38] |
Inorganic phosphorus (g/L) | 2.6116 | 1.0116 | 3.5496 | 0.9006 | 6.6302 | EN 16170:2016 [38] |
Ca (g/L) | 3.6139 | 0.1849 | 0.0290 | 1.5667 | 18.091 | EN 16170:2016 [38] |
Cr (g/L) | 0.0035 | 0.0003 | 0.0008 | 0.0025 | 0.0011 | EN 16170:2016 [38] |
Cu (g/L) | 0.0099 | 0.0004 | 0.0008 | 0.0024 | 0.0126 | EN 16170:2016 [38] |
Fe (g/L) | 0.1103 | 0.0054 | 0.0138 | 0.2054 | 0.2752 | EN 16170:2016 [38] |
Mg (g/L) | 0.8148 | 0.1084 | 0.3096 | 0.0659 | 0.8803 | EN 16170:2016 [38] |
Na (g/L) | 0.3882 | 0.0006 | 0.0075 | 0.0618 | 0.5055 | EN 16170:2016 [38] |
NO2 (g/L) | 0.0087 | 0.0003 | 0.0018 | 0.0001 | 0.0005 | EN 26777:1996 [39] |
Ni (g/L) | 0.0005 | 0.0003 | 0.0008 | 0.0011 | 0.0011 | EN 16170:2016 [38] |
Pb (g/L) | 0.0003 | 0.0003 | 0.0008 | 0.0007 | 0.0011 | EN 16170:2016 [38] |
Zn (g/L) | 0.0523 | 0.0003 | 0.0054 | 0.0219 | 0.1330 | EN 16170:2016 [38] |
No | Initial State | Optimal State | |||||
---|---|---|---|---|---|---|---|
Case A | Case B | Case C | |||||
1 | 0.1 | 0.5 | 0.2806 | 0.3077 | 0.2510 | 0.2876 | |
2 | 0.1 | 0.5 | 0.2802 | 0.3057 | 0.2493 | 0.2864 | |
3 | 0.1 | 0.5 | 0.2804 | 0.3073 | 0.2508 | 0.2874 | |
4 | 0.1 | 0.5 | 0.2808 | 0.3108 | 0.2536 | 0.2890 | |
5 | 0.1 | 0.5 | 0.2891 | 0.3410 | 0.2966 | 0.3249 | |
6 | 0.1 | 0.5 | 0.2916 | 0.3552 | 0.3158 | 0.3382 | |
7 | 0.1 | 0.5 | 0.2881 | 0.3716 | 0.3355 | 0.3498 | |
8 | 0.1 | 0.5 | 0.2652 | 0.4948 | 0.4680 | 0.3385 | |
9 | 0.1 | 0.5 | 0.1012 | 0.1264 | 0.1000 | 0.1096 | |
10 | 0.1 | 0.5 | 0.2438 | 0.2546 | 0.1915 | 0.2468 | |
11 | 0.1 | 0.5 | 0.2801 | 0.3021 | 0.2482 | 0.2863 | |
12 | 0.1 | 0.5 | 0.2805 | 0.3036 | 0.2493 | 0.2867 | |
13 | 0.1 | 0.5 | 0.2671 | 0.4712 | 0.2347 | 0.2730 | |
14 | 0.001 | 0.1 | 0.0060 | 0.0678 | 0.0517 | 0.0453 | |
15 | 0.1 | 5.0 | 0.4500 | 4.9999 | 4.9863 | 4.9307 | |
16 | 0.001 | 0.1 | 0.0050 | 0.0140 | 0.0010 | 0.0076 | |
17 | 25.0 | 65.0 | 42.100 | 59.024 | 45.288 | 25.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kegl, T.; Kegl, B.; Kegl, M. Improvement of Biogas Production Utilizing a Complex Anaerobic Digestion Model and Gradient-Based Optimization. Energies 2024, 17, 1279. https://doi.org/10.3390/en17061279
Kegl T, Kegl B, Kegl M. Improvement of Biogas Production Utilizing a Complex Anaerobic Digestion Model and Gradient-Based Optimization. Energies. 2024; 17(6):1279. https://doi.org/10.3390/en17061279
Chicago/Turabian StyleKegl, Tina, Breda Kegl, and Marko Kegl. 2024. "Improvement of Biogas Production Utilizing a Complex Anaerobic Digestion Model and Gradient-Based Optimization" Energies 17, no. 6: 1279. https://doi.org/10.3390/en17061279
APA StyleKegl, T., Kegl, B., & Kegl, M. (2024). Improvement of Biogas Production Utilizing a Complex Anaerobic Digestion Model and Gradient-Based Optimization. Energies, 17(6), 1279. https://doi.org/10.3390/en17061279