Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation
Abstract
:1. Introduction
2. Methods
2.1. Estimation of the Storage Efficiency Factor
2.2. Monte Carlo Uncertainty Analysis
3. Data
4. Uncertain Inputs
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benson, S.M.; Cook, P.J. Underground geological storage of carbon dioxide. In Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage; Metz, B., Davidson, O., Coninck, H., Loos, M., Meyer, L., Eds.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- DOE-NETL. Carbon Sequestration Atlas of the United States and Canada; The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL): Morgantown, WV, USA, 2008.
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.F.; Rutqvist, J. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas Control 2008, 2, 626–639. [Google Scholar] [CrossRef]
- Bachu, S. Comparison between methodologies recommended for estimation of CO2 storage capacity in geological media. In Proceedings of the Carbon Sequestration Leadership Forum, Phase III Report, Cape Town, South Africa, 13 April 2008. [Google Scholar]
- Basava-Reddi, M.; Gorecki, C.; Wildgust, N. Development of Storage Coefficients for Carbon Dioxide Storage in Deep Saline Formations. In Proceedings of the 2nd EAGE CO2 Geological Storage Workshop: From Laboratory to Deployment, Berlin, Germany, 11–12 March 2010. [Google Scholar] [CrossRef]
- Goodman, A.; Sanguinito, S.; Levine, J.S. Prospective CO2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability. Int. J. Greenh. Gas Control 2016, 54, 242–249. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Sarkarfarshi, M.; Malekzadeh, F.A.; Gracie, R.; Dusseault, M.B. Parametric sensitivity analysis for CO2 geosequestration. Int. J. Greenh. Gas Control 2014, 23, 61–71. [Google Scholar] [CrossRef]
- Afanasyev, A.; Penigin, A.; Dymochkina, M.; Vedeneeva, E.; Grechko, S.; Tsvetkova, Y.; Mikheev, I.; Pavlov, V.; Boronin, S.; Belovus, P.; et al. Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia. Gas Sci. Eng. 2023, 114, 204980. [Google Scholar] [CrossRef]
- Calvo, R.; Taragan, R.; Rosenzweig, R. How large is our CO2 storage capacity assessment error? Analyzing the magnitude of error in the effective capacity calculation propagated from uncertainties in the thermophysical conditions in the aquifer, the case of the Israeli Jurassic saline aquifer. Int. J. Greenh. Gas Control 2019, 82, 19–37. [Google Scholar] [CrossRef]
- Nordbotten, J.A.N.M.; Celia, M.A.; Bachu, S. Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection. Transp. Porous Media 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Okwen, R.T.; Stewart, M.T.; Cunningham, J.A. Analytical solution for estimating storage efficiency of geologic sequestration of CO2. Int. J. Greenh. Gas Control 2010, 4, 102–107. [Google Scholar] [CrossRef]
- CO2 DataShare. Smeaheia Dataset. Available online: https://co2datashare.org/dataset (accessed on 5 January 2022).
- Burnside, N.M.; Naylor, M. Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2. Int. J. Greenh. Gas Control 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 2004, 40, W04204. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- CoolProp. Available online: https://www.coolprop.org (accessed on 5 September 2022).
- National Institute of Standards and Technology. Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, SRD 69, from National Institute of Standards and Technology (NIST). Available online: https://webbook.nist.gov/chemistry/fluid/ (accessed on 10 September 2022).
- Batzle, M.; Wang, Z. Seismic properties of pore fluids. Geophysics 1992, 57, 1396–1408. [Google Scholar] [CrossRef]
- Mao, S.; Duan, Z. The P, V, T, x properties of binary aqueous chloride solutions up to T = 573 K and 100 MPa. J. Chem. Thermodyn. 2008, 40, 1046–1063. [Google Scholar] [CrossRef]
- Mao, S.; Duan, Z. The Viscosity of Aqueous Alkali-Chloride Solutions up to 623 K, 1,000 bar, and High Ionic Strength. Int. J. Thermophys. 2009, 30, 1510–1523. [Google Scholar] [CrossRef]
- Fawad, M.; Rahman MD, J.; Mondol, N.H. Seismic reservoir characterization of potential CO2 storage reservoir sandstones in Smeaheia area, Northern North Sea. J. Pet. Sci. Eng. 2021, 205, 108812. [Google Scholar] [CrossRef]
- Bjørlykke, K.; Gran, K. Salinity variations in North Sea formation waters: Implications for large-scale fluid movements. Mar. Pet. Geol. 1994, 11, 5–9. [Google Scholar] [CrossRef]
- Crandall, D.; Moore, J.; Brown, S.; King, S. NETL-CO2BRA Relative Permeability Database. 2019. Available online: https://edx.netl.doe.gov/hosting/co2bra (accessed on 17 October 2022).
- Bachu, S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ. Geol. 2003, 44, 277–289. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A. Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 2006, 561, 307–327. [Google Scholar] [CrossRef]
- Schrag, D.P. Storage of Carbon Dioxide in Offshore Sediments. Science 2009, 325, 1658–1659. [Google Scholar] [CrossRef] [PubMed]
Uncertain Parameter | Distribution Type | Mean a (Sognefjord/Fensfjord) | Standard Deviation a (Sognefjord/ Fensfjord) | Range (Sognefjord/Fensfjord) | Unit | Data/ References |
---|---|---|---|---|---|---|
Net-to-gross ratio | Truncated normal | 0.748/0.742 | 0.222/0.178 | 0.36 to 0.97/0.52 to 0.97 | - | [13,22] |
Effective-to-total Porosity | Truncated normal | 0.746/0.712 | 0.230/0.277 | 0.125 to 1.0/0.019 to 1.0 | - | [13] |
Depth | Truncated normal | 1090/1195 | 105/102.5 | 880 to 1300/990 to 1400 | m | [13,22] |
Thickness | Truncated normal | 119.0/166.5 | 25.5/31.75 | 68 to 170/103 to 230 | m | [13,22] |
Geothermal gradient | Truncated normal | 0.0346 | 0.01 | 0.02 to 0.06 | °C/m | [13,25] |
Pressure gradient | Truncated normal | 10,500 | 500 | 10,000 to 12,000 | Pa/m | [7,13] |
Salinity of brine | Truncated normal | 0.06 | 0.02 | 0.02 to 0.1 | weight fraction | [23] |
Irreducible water saturation | Truncated normal | 0.496 | 0.120 | 0.2 to 0.7 | - | [14,24] |
Maximum relative permeability to CO2 | Truncated normal | 0.270 | 0.238 | 0.018 to 0.96 | - | [14,24] |
Porosity | Truncated normal | 0.259/0.229 | 0.036/0.030 | 0.21 to 0.31/0.19 to 0.28 | - | [13,22] |
Permeability | Truncated Lognormal | 1671.3/755.5 | 6768.6/4520.5 | 34.27 to 2989/10.58 to 1729 | mD | [13,22] |
Maximum allowable pressure buildup | Truncated normal | 33 | 14.325 | 17.7 to 75 | bar | [13] |
Rock compressibility | Truncated Log10 normal | −4.796 b | 0.5 b | −5.796 to −3.796 | /bar | [13] |
Fixed Parameter | Value | Unit | Data/Reference | |||
Injection rate | 3.2 | million tonnes/year | [13] | |||
Injection duration | 50 | year | [13] | |||
Estimated storage efficiency factor for the Sognefjord formation | Mean: 0.0643 Standard deviation: 0.0359 Median (50th percentile): 0.0574 15th percentile: 0.030 85th percentile: 0.100 | Estimated storage efficiency factor for the Fensfjord formation | Mean: 0.0817 Standard deviation: 0.0431 Median (50th percentile): 0.0754 15th percentile: 0.039 85th percentile: 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Qi, S.; Zheng, B. Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation. Energies 2024, 17, 1297. https://doi.org/10.3390/en17061297
Wang Z, Qi S, Zheng B. Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation. Energies. 2024; 17(6):1297. https://doi.org/10.3390/en17061297
Chicago/Turabian StyleWang, Zan, Shengwen Qi, and Bowen Zheng. 2024. "Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation" Energies 17, no. 6: 1297. https://doi.org/10.3390/en17061297
APA StyleWang, Z., Qi, S., & Zheng, B. (2024). Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation. Energies, 17(6), 1297. https://doi.org/10.3390/en17061297