Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications
Abstract
:1. Introduction
2. Mathematical Model and Operation of SRG
2.1. Theoretical Background of the SRG
- ωr is the angular speed of a prime mover;
- Te is the electromagnetic torque of the SRG;
- TM is the mechanical torque;
- f is the coefficient of friction;
- J is the moment of inertia;
- θ is the rotor position;
- ik is the current of the kth phase of the SRG;
- Vk is the voltage of the kth phase of the SRG;
- λk(θ,i) is the flux linkage of the kth phase of the SRG;
- rk is the resistance of the kth phase of the SRG.
2.2. Conversion of Wind Energy
3. IITC Based on Torque Sharing Function
4. Control Scheme
4.1. PI Controller
4.2. Integral Sliding Mode Speed Controller
4.3. Super-Twisting Rotor Speed Controller
4.4. Fuzzy Super-Twisting Sliding Mode Command (FSTSMC)
5. Simulation Results
6. Experimental Validation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ayop, R.; Tan, C.W. Design of boost converter based on maximum power point resistance for photovoltaic applications. Solar Energy 2018, 160, 322–335. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers. Manag. 2014, 88, 332–347. [Google Scholar] [CrossRef]
- Rahmanian, E.; Akbari, H.; Sheisi, G. Maximum Power Point Tracking in Grid Connected Wind Plant by Using Intelligent Controller and Switched Reluctance Generator. IEEE Trans. Sustain. Energy 2017, 8, 1313–1320. [Google Scholar] [CrossRef]
- Namazi, M.M.; Koofigar, H.R.; Ahn, J.W. Active Stabilization of Self-Excited Switched Reluctance Generator Supplying Constant Power Load in DC-microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 2735–2744. [Google Scholar] [CrossRef]
- Yi, F.; Wen, C. Control and Seamless Transition of Bi-Directional Battery-Driven Switched Reluctance Motor/Generator Drive Based on Integrated Multiport Power Converter for Electric Vehicle Applications. IEEE Trans. Power. Electron. 2015, 31, 7099–7111. [Google Scholar] [CrossRef]
- Krishna, B.; Sandeep, V. An Analytical Study on Electric Generators and Load Control Schemes for Small Hydro Isolated Systems; Springer: Cham, Switzerland, 2021; pp. 103–119. [Google Scholar]
- de Paula, M.V.; Barros, T.A.d.S. A sliding mode ditc cruise control for srm with steepest descent minimum torque ripple point tracking. IEEE Trans. Ind. Electron. 2022, 69, 151–159. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, H.; Nie, R.; Liu, J. Multi-objective optimal design of double-sided switched reluctance linear generator for wave power generation. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 1948–1963. [Google Scholar] [CrossRef]
- Roshandel, E.; Namazi, M.M.; Rashidi, A.; Saghaian-Nejad, S.M.; Ahn, J.W. SSC Strategy for SRG to Achieve Maximum Power with Minimum Current Ripple in Battery Charging. IET Electr. Power Appl. 2017, 11, 1205–1213. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, H.; Hua, M.; Liu, J.; He, H.; Wheeler, P.; Fernao Pires, V. Multi-objective optimization design of novel tubular switched reluctance motor. COMPEL Int. J. Comput. Math. Electr. 2023, 42, 1434–1455. [Google Scholar] [CrossRef]
- Touati, Z.; Araújo, R.E.; Mahmoud, I.; Khedher, A. Analysis of skewing effects on radial force for different topologies of switched reluctance machines: 6/4 SRM, 8/6 SRM, and 12/8 SRM. Univ. Porto J. Eng. 2023, 9, 55–71. [Google Scholar] [CrossRef]
- Touati, Z.; Pereira, M.; Araújo, R.E.; Khedher, A. Integration of Switched Reluctance Generator in a Wind Energy Conversion System: An Overview of the State of the Art and Challenges. Energies 2022, 15, 4743. [Google Scholar] [CrossRef]
- Scalcon, F.P.; Fang, G.; Volpato Filho, C.J.; Gründling, H.A.; Vieira, R.P.; Nahid-Mobarakeh, B. A review on switched reluctance generators in wind power applications: Fundamentals, control and future trends. IEEE Access 2022, 10, 69412–69427. [Google Scholar] [CrossRef]
- Dos Santos Neto, P.J.; dos Santos Barros, T.A.; de Paula, M.V.; de Souza, R.R.; Silveira, J.P.C.; Ruppert Filho, E. DC-microgrid with Wind Energy Conversion System Based on Switched Reluctance Generator Operating in Grid Connected Mode. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), São Paolo, Brazil, 11–14 November 2018. [Google Scholar]
- Dos Santos Neto, P.J.; dos Santos Barros, T.A.; Catata, E.H.; Ruppert Filho, E. Grid-Connected SRG Interfaced with Bidirectional DC-DC Converter in WECS. IEEE Trans. Energy Convers. 2021, 36, 3261–3270. [Google Scholar] [CrossRef]
- Touati, Z.; Pereira, M.; Araújo, R.E.; and Khedher, A. Comparative Study of Discrete PI and PR Controller Implemented in SRG for Wind Energy Application: Theory and Experimentation. Electronics 2022, 11, 1285. [Google Scholar] [CrossRef]
- Osorio, C.R.; Vieira, R.P.; Grundling, H.A. Sliding Mode Technique Applied to Output Voltage Control of the Switched Reluctance Generator. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016. [Google Scholar]
- Liu, Y.Z.; Zhou, Z.; Song, J.L.; Fan, B.J.; Wang, C. Based on Sliding Mode Variable Structure of Studying Control for Status Switching of Switched Reluctance Starter/Generator. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015; IEEE: New York, NY, USA, 2015; pp. 934–939. [Google Scholar]
- Genc, U.; Tekgun, B. Instantaneous torque error compensation based online torque sharing function for Switched reluctance Machines. Alex. Eng. J. 2023, 75, 261–270. [Google Scholar] [CrossRef]
- Gan, C.; Chen, Y.; Sun, Q.; Si, J.; Wu, J.; Hu, Y. position sensorless torque control strategy for switched reluctance machines with fewer current sensors. IEEE/ASME Trans. Mechatron. 2020, 26, 1118–1128. [Google Scholar] [CrossRef]
- Valencia, D.F.; Tarvirdilu-Asl, R.; Garcia, C.; Rodriguez, J.; Emadi, A. A review of predictive control techniques for switched reluctance machine drives. Part II: Torque control, assessment and challenges. IEEE Trans. Energy Convers. 2020, 36, 1323–1335. [Google Scholar] [CrossRef]
- Yan, N.; Cao, X.; Deng, Z. Direct torque control for switched reluctance motor to obtain high torque–ampere ratio. IEEE Trans. Ind. Electron. 2018, 66, 5144–5152. [Google Scholar] [CrossRef]
- Zine, M.; Chemsa, A.; Labiod, C.; Ikhlef, M.; Srairi, K.; Benbouzid, M. Coupled Indirect Torque Control and Maximum Power Point Tracking Technique for Optimal Performance of 12/8 Switched Reluctance Generator-Based Wind Turbines. Machines 2022, 10, 1046. [Google Scholar] [CrossRef]
- Zine, M.; Chemsa, A.; Labiod, C.; Ikhlef, M.; Srairi, K.; Benbouzid, M. Improving Efficiency and Power Output of Switched Reluctance Generators through Optimum Operating Parameters. Machines 2023, 11, 816. [Google Scholar] [CrossRef]
- Hancco Catata, E.O.; de Paula, M.V.; dos Santos Neto, P.J.; Ruppert Filho, E.; Luque Carcasi, D.B.; dos Santos Barros, T.A. Direct Average Torque Control of Switched Reluctance Generator. IET Power Electron. 2023, 12, 2011–2021. [Google Scholar] [CrossRef]
- Shin, H.U.; Park, K.; Lee, K.B. A Non-Unity Torque Sharing Function for Torque Ripple Minimization of Switched Reluctance Generators in Wind Power Systems. Energies 2015, 8, 11685–11701. [Google Scholar] [CrossRef]
- Liu, Y.C.; Laghrouche, S.; Depernet, D.; N’Diaye, A.; Djerdir, A.; Cirrincione, M. Disturbance-observer-based speed control for SPMSM drives using modified super-twisting algorithm and extended state observer. Asian J. Control 2023. [Google Scholar] [CrossRef]
- Civelek, Z. Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm. Eng. Sci. Technol. Int. J. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Rodríguez Pérez, Á.M.; Rodríguez, C.A.; Olmo Rodríguez, L.; Caparros Mancera, J.J. Revitalizing the Canal de Castilla: A Community Approach to Sustainable Hydropower Assessed through Fuzzy Logic. Appl. Sci. 2024, 14, 1828. [Google Scholar] [CrossRef]
- Prasad, K.A.; Unnikrishnan, A.; Nair, U. Fuzzy sliding mode control of a switched reluctance motor. Procedia Technol. 2016, 25, 735–742. [Google Scholar] [CrossRef]
- Divandari, M.; Rezaie, B.; Noei, A.R. Speed control of switched reluctance motor via fuzzy fast terminal sliding-mode control. Comput. Electr. Eng. 2019, 80, 106472. [Google Scholar] [CrossRef]
- Sehab, R.; Akrad, A.; Saadi, Y. Super-Twisting Sliding Mode Control to Improve Performances and Robustness of a Switched Reluctance Machine for an Electric Vehicle Drivetrain Application. Energies 2023, 16, 3212. [Google Scholar] [CrossRef]
- Rafiq, M.; Rehman, S.U.; Rehman, F.U.; Butt, Q.R.; Awan, I. A second order sliding mode control design of a switched reluctance motor using super twisting algorithm. Simul. Model. Pract. Theory 2012, 25, 106–117. [Google Scholar] [CrossRef]
- Bilgin, B.; Jiang, J.W.; Emadi, A. (Eds.) Switched Reluctance Motor Drives: Fundamentals to Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Costa, J.V.; Branco, P.J. Sensorless Switched Reluctance Machine and Speed Control: A Study to Remove the Position Encoder at High Speed of Operation. Energies 2022, 15, 1716. [Google Scholar] [CrossRef]
- Singh, B.; Bhuvaneswari, G. Position Sensor-Less Synchronous Reluctance Generator Based Grid-Tied Wind Energy Conversion System with Adaptive Observer Control. IEEE Trans. Sustain. Energy 2019, 11, 693–702. [Google Scholar]
- Xia, Y.; Ahmed, K.H.; Williams, B.W. Wind Turbine Power Coefficient Analysis of a New Maximum Power Point Tracking Technique. IEEE Trans. Ind. Electron. 2012, 60, 1122–1132. [Google Scholar] [CrossRef]
- Bouchoucha, K.; Yahia, H.; Mansouri, M.N. Particle Swarm Optimization of Switched Reluctance Generator Based Distributed Wind Generation. J. Multidiscip. Eng. Sci. Technol. 2014, 1, 107–113. [Google Scholar]
- Al Quraan, L.; Szamel, L. Torque ripple reduction of switched reluctance motor using direct instantaneous torque control and adaptive turn-on technique for electric vehicle applications. IET Electr. Power Appl. 2023, 17, 1502–1514. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Panda, S.K.; Xu, J.X. Indirect Torque Control of Switched Reluctance Motors Using Iterative Learning Control. IEEE Trans. Power Electron. 2005, 20, 200–208. [Google Scholar] [CrossRef]
- Feng, L.; Sun, X.; Yang, Z.; Diao, K. Optimal Torque Sharing Function Control for Switched Reluctance Motors Based on Active Disturbance Rejection Controlle. IEEE/ASME Trans. Mechatron. 2023, 28, 2600–2608. [Google Scholar] [CrossRef]
- Hu, H.; Cao, X.; Yan, N.; Deng, Z. A New Predictive Torque Control Based Torque Sharing Function for Switched Reluctance Motors. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Al-Amyal, F.; Al Quraan, L.; Szamel, L. Torque Sharing Function Optimization for Extended Speed Range Control in Switched Reluctance Motor Drive. In Proceedings of the IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, 18–20 November 2020. [Google Scholar]
- Ye, W.; Ma, Q.; Zhang, P.; Guo, Y. Torque Ripple Reduction in Switched Reluctance Motor Using a Novel Torque Sharing Function. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016; pp. 177–182. [Google Scholar]
- Pop, A.C.; Petrus, V.; Martis, C.S.; Iancu, V.; Gyselinck, J. Comparative Study of Different Torque Sharing Functions for Losses Minimization in Switched Reluctance Motors Used in Electric Vehicles Propulsion. In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; pp. 356–365. [Google Scholar]
- Krim, S.; Gdaim, S.; Mimouni, M.F. Robust Direct Torque Control with Super-Twisting Sliding Mode Control for an Induction Motor Drive. Complexity 2019, 2019, 7274353. [Google Scholar] [CrossRef]
- Sami, I.; Ullah, S.; Basit, A.; Ullah, N.; Ro, J.S. Integral Super Twisting Sliding Mode Based Sensorless Predictive Torque Control of Induction Motor. IEEE Access 2020, 8, 186740–186755. [Google Scholar] [CrossRef]
- Dursun, E.H.; Durdu, A. Speed Control of a DC Motor with Variable Load Using Sliding Mode Control. Int. J. Comput. Electr. Eng. 2016, 8, 219. [Google Scholar] [CrossRef]
- Benkhoris, M.F.; Gayed, A. Discrete Sliding Control Technique of DC Motor Drives. In Proceedings of the Sixth IEEE International Conference on Power Electronics and Variable Speed Drives, Nottingham, UK, 23–25 September 1996. [Google Scholar]
- Levant, A. Robust Exact Differentiation via Sliding Mode Technique. Automatica 1998, 34, 379–384. [Google Scholar] [CrossRef]
- Picó, J.; Picó-Marco, E.; Vignoni, A.; De Battista, H. Stability Preserving Maps for Finite-Time Convergence: Super-Twisting Sliding-Mode Algorithm. Automatica 2013, 49, 534–539. [Google Scholar] [CrossRef]
- Horch, M.; Boumédiène, A.; Baghli, L. Backstepping Approach for Nonlinear Super Twisting Sliding Mode Control of an Induction Motor. In Proceedings of the 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), Tlemcen, Algeria, 25–27 May 2015; pp. 1–6. [Google Scholar]
- Ouchen, S.; Benbouzid, M.; Blaabjerg, F.; Betka, A.; Steinhart, H. Direct Power Control of Shunt Active Power Filter Using Space Vector Modulation Based on Supertwisting Sliding Mode Control. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 3243–3253. [Google Scholar] [CrossRef]
- Lascu, C.; Blaabjerg, F. Super-Twisting Sliding Mode Direct Torque Control of Induction Machine Drives. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 5116–5122. [Google Scholar]
- Levant, A. Higher-Order Sliding Modes, Differentiation and Output Feedback Control. Int. J. Control 1998, 76, 924–941. [Google Scholar] [CrossRef]
- Benbouhenni, H. Fuzzy Second Order Sliding Mode Controller Based on Three-Level Fuzzy Space Vector Modulation of a DFIG for Wind Energy Conversion Systems. Majlesi J. Mechatron. Syst. 2018, 7, 17–26. [Google Scholar]
- Palm, R. Sliding Mode Fuzzy Control. In Proceedings of the [1992 Proceedings] IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992; pp. 519–526. [Google Scholar]
Operating Mode | Switches Active | Phase Voltage (Vk) | State |
---|---|---|---|
Magnetization | S1, S2 | Vdc | Excitation |
S1, D1 or S2, D2 | 0 | Freewheeling | |
Demagnetization | D1, D2 | −Vdc | Generation |
S | NB | NM | NS | Z | PS | PM | PB | |
---|---|---|---|---|---|---|---|---|
dS/dt | ||||||||
NB | P | P | P | P | P | P | P | |
NM | N | P | P | P | P | P | P | |
NS | N | N | P | P | P | P | P | |
Z | N | N | N | Z | P | P | P | |
PS | N | N | N | N | N | P | P | |
PM | N | N | N | N | N | N | P | |
PB | N | N | N | N | N | N | N |
Control Scheme | Parameters |
---|---|
PI | kp = 6.85, ki = 0.02 |
ISMC | K = 10, = −0.001 |
STSMC | and |
Controller | Tracking Error | Peak Current | Torque Ripple | Average Torque Deviation |
---|---|---|---|---|
PI | Low | High | High | High |
ISMC | Moderate | High | Moderate | Moderate |
STSMC | High | High | Moderate | Moderate |
FSTSMC (Proposed) | High | Low | Low | Low |
Characteristics | Values |
---|---|
Output power | 250 W |
Maximum current | 3 A |
Inductance (aligned position) | 0.14 H |
Inductance (unaligned position) | 0.021 H |
Moment of inertia | 0.006 kg m2 |
Resistance of phase winding | 5 Ω |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, Z.; Mahmoud, I.; Araújo, R.E.; Khedher, A. Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications. Energies 2024, 17, 1416. https://doi.org/10.3390/en17061416
Touati Z, Mahmoud I, Araújo RE, Khedher A. Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications. Energies. 2024; 17(6):1416. https://doi.org/10.3390/en17061416
Chicago/Turabian StyleTouati, Zeineb, Imed Mahmoud, Rui Esteves Araújo, and Adel Khedher. 2024. "Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications" Energies 17, no. 6: 1416. https://doi.org/10.3390/en17061416
APA StyleTouati, Z., Mahmoud, I., Araújo, R. E., & Khedher, A. (2024). Fuzzy Super-Twisting Sliding Mode Controller for Switched Reluctance Wind Power Generator in Low-Voltage DC Microgrid Applications. Energies, 17(6), 1416. https://doi.org/10.3390/en17061416