Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time
Abstract
:1. Introduction
- The development of a robust framework for estimating RUL from real main bearing temperature series from a SCADA system;
- The presentation of a cross-validation strategy to mitigate the issue of scarce data and increase models’ generalization capacities.
2. Methodology for Wind Turbine Useful Life Estimation
2.1. SCADA System Data Reading and Preprocessing
2.2. Classification of Temperature Variation Data
- The Identification of Failure Times: A graphical time series analysis determines the first prediction time (FPT) and failure threshold time (FTT). FPT marks the component degradation process initiation, while the FTT signifies complete degradation.
- Minimum Classification Value Definition: A minimum classification value is based on the temperature variation.
- Linear Interpolation: Utilize linear interpolation to classify data between FPT and FTT instances.
- Interval 1 (Beginning of Time Series to Before Observable Increase in Main Bearing Temperature): Data are consistently classified with a value of one (1).
- Interval 2 (Start of Rise in Main Bearing Temperature to First Occurrence of Maximum Temperature): Values gradually decrease through linear interpolation between 1 and the minimum classification value (Classmin). This considers the interval from the initial rise in main bearing temperature to the point of the first occurrence of the maximum temperature.
- Interval 3 (First Occurrence of Maximum Temperature to Turbine Shutdown): Data classification is assigned a zero value (0) during this interval, extending from the first occurrence of the maximum temperature until the turbine ceases operation.
- Post-Turbine Shutdown and Restart: Upon the resumption of wind turbine operation, the data classification reverts to a value of one (1).
2.3. Creation of Data Subsets
2.4. Model Development
3. Analysis and Discussion of Results
3.1. Metrics for Regression Models
- For the MAE, the averages ranged from 0.27 in training to 0.25 in validation, Table 3;
- For the MSE, the averages ranged from 0.005 in training to 0.004 in validation, Table 4;
- For the RMSE, the averages ranged from 0.066 in training to 0.063 in validation, Table 5;
- For the R2 Score, the averages ranged from 0.839 in training to 0.86 in validation, Table 6.
3.2. Estimation of the Remaining Useful Life of the Sample Set of Failed Turbines
3.3. Remarks on RUL Estimation Results
3.4. Final Discussion of the Results
4. Conclusions
- The models were tested on real data from three wind turbines in northeastern Brazil, showing satisfactory results in each step of the validation and test. The MAE, MSE, RMSE, and R2 Score metric values in the validation step were 0.25, 0.004, 0.004, and 0.86, respectively;
- Regarding the simulation, the results demonstrated that the models (SVR, ETR, GBR, and RFR) outperformed since they showed an average of 20 days in estimating the remaining useful life of the main bearings of the wind turbines;
- The methodology showed that conservative estimates, such as those from the SVR, and assertive ones, such as those from the GBR, can support proper maintenance planning, thereby avoiding catastrophic failures that could reduce the wind farm’s availability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8420. [Google Scholar] [CrossRef]
- de Novaes Pires Leite, G.; Araújo, A.M.; Rosas, P.A.C. Prognostic Techniques Applied to Maintenance of Wind Turbines: A Concise and Specific Review. Renew. Sustain. Energy Rev. 2018, 81, 1917–1925. [Google Scholar] [CrossRef]
- Guo, Y.; Sheng, S.; Phillips, C.; Keller, J.; Veers, P.; Williams, L. A Methodology for Reliability Assessment and Prognosis of Bearing Axial Cracking in Wind Turbine Gearboxes. Renew. Sustain. Energy Rev. 2020, 127, 109888. [Google Scholar] [CrossRef]
- BS EN 13306:2010; Maintenance—Maintenance Terminology. NSAI. 2010. Available online: https://www.en-standard.eu/bs-en-13306-2017-maintenance-maintenance-terminology/?gad_source=1&gclid=Cj0KCQjwwMqvBhCtARIsAIXsZpZS1xtdpaIhepDSfK9Ukr8llB0tSP-j860QQhjm2l81JU8jXHbnnDIaAu1TEALw_wcB (accessed on 17 January 2024).
- Randall, R.B. Vibration-Based Condition Monitoring, 1st ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2011; ISBN 9780470747858. [Google Scholar]
- Koukoura, S. Failure and Remaining Useful Life Prediction of Wind Turbine Gearboxes. Annu. Conf. PHM Soc. 2018, 10. [Google Scholar] [CrossRef]
- Carroll, J.; Koukoura, S.; McDonald, A.; Charalambous, A.; Weiss, S.; McArthur, S. Wind Turbine Gearbox Failure and Remaining Useful Life Prediction Using Machine Learning Techniques. Wind Energy 2019, 22, 360–375. [Google Scholar] [CrossRef]
- Dameshghi, A.; Refan, M.H. Combination of Condition Monitoring and Prognosis Systems Based on Current Measurement and PSO-LS-SVM Method for Wind Turbine DFIGs with Rotor Electrical Asymmetry. Energy Syst. 2021, 12, 203–232. [Google Scholar] [CrossRef]
- Herp, J.; Pedersen, N.L.; Nadimi, E.S. Assessment of Early Stopping through Statistical Health Prognostic Models for Empirical Rul Estimation in Wind Turbine Main Bearing Failure Monitoring. Energies 2019, 13, 83. [Google Scholar] [CrossRef]
- Elasha, F.; Shanbr, S.; Li, X.; Mba, D. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning. Sensors 2019, 19, 3092. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.; Clarke, B.; Nicholas, G.; Kazemi Amiri, A.; Stirling, J.; Carroll, J.; Dwyer-Joyce, R.; McDonald, A.; Long, H. A Review of Wind Turbine Main Bearings: Design, Operation, Modelling, Damage Mechanisms and Fault Detection. Wind Energy Sci. 2020, 5, 105–124. [Google Scholar] [CrossRef]
- Yucesan, Y.A.; Viana, F.A.C. A Hybrid Model for Main Bearing Fatigue Prognosis Based on Physics and Machine Learning. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; American Institute of Aeronautics and Astronautics Inc., AIAA: Orlando, FL, USA, 2020; Volume 1. Part F. [Google Scholar]
- Yucesan, Y.A.; Viana, F.A.C. Wind Turbine Main Bearing Fatigue Life Estimation with Physics-Informed Neural Networks; PHM Society: Orlando, FL, USA, 2019. [Google Scholar]
- Yang, L.; Zhang, Z. Wind Turbine Gearbox Failure Detection Based on SCADA Data: A Deep Learning Based Approach. IEEE IEEE Trans. Instrum. Meas. 2020, 70, 3507911. [Google Scholar] [CrossRef]
- Hu, C.; Byeng, D.Y.; Youn, D.; Wang, P. Springer Series in Reliability Engineering Design under Uncertainty and Health Prognostics; Springer Publisher: New York, NY, USA, 2019. [Google Scholar]
- Wiese, B.; Pedersen, N.L.; Nadimi, E.S.; Herp, J. Estimating the Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing Failures. Energies 2020, 13, 3406. [Google Scholar] [CrossRef]
- McKinney, W. Pandas: A Python Data Analysis Library. Available online: http://pandas.sourceforge.net (accessed on 17 January 2024).
- Perktold, J.; Seabold, S.; Taylor, J. Statsmodels Documentation. Available online: https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html#statsmodels.tsa.seasonal.seasonal_decompose (accessed on 17 January 2024).
- Rezamand, M.; Carriveau, R.; Ting, D.S.K.; Davison, M.; Davis, J.J. Aggregate Reliability Analysis of Wind Turbine Generators. IET Renew. Power Gener. 2019, 13, 1902–1910. [Google Scholar] [CrossRef]
- Abid, K.; Sayed-Mouchaweh, M.; Laurence, C. Adaptive Machine Learning Approach for Fault Prognostics Based on Normal Conditions—Application to Shaft Bearings of Wind Turbine. Annu. Conf. PHM Soc. 2019, 11, 46–50. [Google Scholar] [CrossRef]
- Tutiv’en, C.; Benalcazar–Parra, C.; Escuela, A.E.; Vidal, Y.; Puruncaias, B.; Fajardo, M. Wind Turbine Main Bearing Condition Monitoring via Convolutional Autoencoder Neural Networks. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7–8 October 2021; pp. 1–6. [Google Scholar]
- Leahy, K.; Gallagher, C.; O’Donovan, P.; Bruton, K.; O’Sullivan, D.T.J. A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study. Energies 2018, 11, 1738. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies 2017, 10, 1210. [Google Scholar] [CrossRef]
- Correa-jullian, C.; Cofre-martel, S.; Martin, G.S.; Droguett, E.L.; de Novaes Pires Leite, G.; Costa, A. Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection. Energies 2022, 15, 2792. [Google Scholar] [CrossRef]
- Sahu, A.; Jambhale, R.; Adiga, D.T.; Powar, N.; Mckinley, T. Formulation of Model Stability Metrics for Remaining Useful Life Models of Engine Components. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; Volume 2023, pp. 1–11. [Google Scholar]
- Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic Modelling Options for Remaining Useful Life Estimation by Industry. Mech. Syst. Signal Process. 2011, 25, 1803–1836. [Google Scholar] [CrossRef]
ID | Training Subset | Validation Subset | Testing Subset |
---|---|---|---|
SC01 | WT9 | WT14 | WT29 |
SC02 | WT9 | WT29 | WT14 |
SC03 | WT14 | WT9 | WT29 |
SC04 | WT14 | WT29 | WT9 |
SC05 | WT29 | WT9 | WT14 |
SC06 | WT29 | WT14 | WT9 |
Parameters | Support Vector Regression (SVR) | Decision Tree Regression (DTR) | Isotonic Regression (ISOR) | Gradient Boosting Regression (GBR) | Random Forest (RFR) | Extra Trees (ETR) |
---|---|---|---|---|---|---|
Parameter 1 | Regularization parameter—C | Criterion: function to measure the quality of a split | Lower bound on the lowest predicted value (y_min) | Loss | Criterion: function to measure the quality of a split. | Criterion: function to measure the quality of a split. |
Range | 0.1, 1.0, 10.0 | Squared error, absolute error, and Friedman MSE | 0, 0.1, 0.25, 0.5 | Squared error, absolute error, Huber, and quantile | Squared error, absolute error, and Friedman MSE | Squared error, absolute error, and Friedman MSE |
Parameter 2 | Polynomial degree | The maximum depth of the tree | Upper bound on the highest predicted value (y_max) | Learning rate | The maximum depth of the tree | The maximum depth of the tree |
Range | 5, 6, 7, 8, 9 | None, 5, 10 | 0.5, 0.75, 1 | 0.01, 0.05, 0.1 | None, 5, 10 | None, 5, 10 |
Parameter 3 | - | Minimum number of samples required to split an internal node | Whether computing data are increasing or decreasing (increasing) | Number of estimators | Random_state | Random_state |
Range | - | 2, 5, 10 | True, False, ‘auto’ | 100, 250, 500 | None, 10, 100 | None, 10, 100 |
Parameter 4 | - | - | Handles how X values outside of the training domain are handled during prediction (out_of_bounds) | Criterion | - | - |
Range | - | - | clip | Friedman MSE and squared error | - | - |
Models | Mean of Training Values [days] | Mean of Validation Values [days] | Mean of Testing Values [days] |
---|---|---|---|
DTR | 0.014 | 0.014 | 0.040 |
ETR | 0.023 | 0.023 | 0.040 |
GBR | 0.026 | 0.026 | 0.049 |
ISOR | 0.025 | 0.025 | 0.043 |
RFR | 0.018 | 0.014 | 0.034 |
SVR | 0.057 | 0.051 | 0.075 |
Overall mean MAE | 0.027 | 0.025 | 0.047 |
Models | Mean of Training Values [days2] | Mean of Validation Values [days2] | Mean of Testing Values [days2] |
---|---|---|---|
DTR | 0.004 | 0.004 | 0.013 |
ETR | 0.004 | 0.004 | 0.010 |
GBR | 0.004 | 0.004 | 0.012 |
ISOR | 0.005 | 0.005 | 0.013 |
RFR | 0.005 | 0.003 | 0.011 |
SVR | 0.007 | 0.006 | 0.015 |
Overall mean MSE | 0.005 | 0.004 | 0.012 |
Models | Mean of Training Values [days] | Mean of Validation Values [days] | Mean of Testing Values [days] |
---|---|---|---|
DTR | 0.059 | 0.058 | 0.111 |
ETR | 0.062 | 0.062 | 0.096 |
GBR | 0.060 | 0.059 | 0.109 |
ISOR | 0.071 | 0.071 | 0.111 |
RFR | 0.063 | 0.054 | 0.100 |
SVR | 0.082 | 0.077 | 0.122 |
Overall mean RMSE | 0.066 | 0.063 | 0.108 |
Models | Mean of Training Values [Dimensionless] | Mean of Validation Values [Dimensionless] | Mean of Testing Values [Dimensionless] |
---|---|---|---|
DTR | 0.877 | 0.880 | 0.623 |
ETR | 0.864 | 0.865 | 0.677 |
GBR | 0.861 | 0.885 | 0.639 |
ISOR | 0.836 | 0.836 | 0.633 |
RFR | 0.807 | 0.901 | 0.630 |
SVR | 0.790 | 0.798 | 0.545 |
Overall mean R2 Score | 0.839 | 0.861 | 0.625 |
Simulation Case | Model | RUL Estimation [days] | Calculation Error of RUL Estimation [Days] |
---|---|---|---|
SC02 | SVR | 1638.0 | −111 |
SC05 | SVR | 1685.0 | −64 |
SC04 | GBR | 393.0 | 0 |
SC04 | RFR | 461.0 | 68 |
SC02 | ETR | 1856.0 | 107 |
SC06 | ETR | 1855.0 | 118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, J.L.d.M.; Farias, F.C.; Ochoa, A.A.V.; de Menezes, F.D.; Costa, A.C.A.d.; da Costa, J.Â.P.; de Novaes Pires Leite, G.; Vilela, O.d.C.; de Souza, M.G.G.; Michima, P.S.A. Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time. Energies 2024, 17, 1430. https://doi.org/10.3390/en17061430
Vieira JLdM, Farias FC, Ochoa AAV, de Menezes FD, Costa ACAd, da Costa JÂP, de Novaes Pires Leite G, Vilela OdC, de Souza MGG, Michima PSA. Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time. Energies. 2024; 17(6):1430. https://doi.org/10.3390/en17061430
Chicago/Turabian StyleVieira, Januário Leal de Moraes, Felipe Costa Farias, Alvaro Antonio Villa Ochoa, Frederico Duarte de Menezes, Alexandre Carlos Araújo da Costa, José Ângelo Peixoto da Costa, Gustavo de Novaes Pires Leite, Olga de Castro Vilela, Marrison Gabriel Guedes de Souza, and Paula Suemy Arruda Michima. 2024. "Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time" Energies 17, no. 6: 1430. https://doi.org/10.3390/en17061430
APA StyleVieira, J. L. d. M., Farias, F. C., Ochoa, A. A. V., de Menezes, F. D., Costa, A. C. A. d., da Costa, J. Â. P., de Novaes Pires Leite, G., Vilela, O. d. C., de Souza, M. G. G., & Michima, P. S. A. (2024). Remaining Useful Life Estimation Framework for the Main Bearing of Wind Turbines Operating in Real Time. Energies, 17(6), 1430. https://doi.org/10.3390/en17061430