The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review
Abstract
:1. Introduction
2. Brewery and Dairy Wastewater
2.1. Brewery Wastewater: Origin and Characterization
- ○
- As a main ingredient of the beer;
- ○
- For brewing processes that include steam rinsing, cooling, cleaning a brewing house and floor before and after the operation, and beer packaging.
2.2. Dairy Wastewater: Origin and Characterization
- Processing water is generated during milk cooling, and it is mainly a clean condensate that can, however, contain volatile substances, as well as milk and whey droplets. It can be directed to discharge along with stormwater after minimal treatment in most cases.
- Cleaning wastewater (clean-in-place effluent) is generated from cleaning procedures such as equipment cleaning, milk and whey spillage cleaning, and clean-in-place practices. This wastewater category is highly polluted and requires further treatment.
- Sanitary wastewater is generated in showers and toilets, and it is similar to municipal wastewater as far as its composition is concerned. This wastewater category is a good nitrogen source that can be used for nutrient stabilisation during secondary treatment.
3. The UASB Treatment Technology
3.1. UASB Reactor and Operational Conditions
3.2. Advantages and Limitations of the Technology
3.3. Co-Digestion in UASB
4. Brewery and Dairy Wastewater Co-Digestion Potential in UASB Reactor
- Application of chemicals such as sodium bicarbonate (NaHCO3), potassium bicarbonate (KHCO3), sodium hydroxide (NaOH), sodium carbonate (Na2CO3), or calcium carbonate (CaCO3).
- Dilution of a substrate.
- Addition of an additional substrate that can improve the organic characteristics.
5. Possible Effluent Post-Treatment Approaches
5.1. UASB–Activated Sludge (UASB-AS)
5.2. UASB–Sequencing Batch Reactor (UASB-SBR)
5.3. UASB–Biofilter (UASB-BF)
5.4. Two-Staged UASB System (UASB-UASB)
Feedstock | Influent COD, (g-COD/L) | Influent TN, (g/L) | COD Reduction (UASB-UASB), (%) | Methane Yield | OLR, (g-COD/L·d) | Operational Temperature of UASB, (°C) | Reference |
---|---|---|---|---|---|---|---|
Baker’s yeast wastewater | 20 ± 0.5 | Nd | 35.98 | 1.2 (1) | 2.2–13.7 | 35 | [125] |
Cassava wastewater | 14.5 | Nd | 86.4 | 0.921 (1) | 30, 60, 90, 120 and 150 | 55 | [126] |
Ethanol wastewater | 65.8 (2) ± 0.662 51.4 (3) ± 4 | 0.8 ± 0.035 | 92 | 0.492 (4) | 28 | 37 | [123] |
Cassava wastewater | 19–22 | Nd | 93 | 0.115 (4) | 10, 20, 25 and 30 | 37 | [127] |
5.5. UASB–Membrane Bioreactor (UASB-MBR)
5.6. UASB–Double Filtration (UASB-DF)
5.7. Summary of the Pre-Treatment Approaches
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DTE Staff 78% of Sewage Generated in India Remains Untreated. Available online: https://www.downtoearth.org.in/news/waste/-78-of-sewage-generated-in-india-remains-untreated--53444 (accessed on 5 January 2024).
- OECD Generation and Discharge of Wastewater. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=WATER_DISCHARGE (accessed on 5 January 2024).
- Jones, E.R.; Van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-Level and Gridded Estimates of Wastewater Production, Collection, Treatment and Reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Tariq, A.; Mushtaq, A. Untreated Wastewater Reasons and Causes: A Review of Most Affected Areas and Cities. Int. J. Chem. Biochem. Sci. 2023, 23, 121–143. [Google Scholar]
- GUS, Ochrona Środowiska. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 5 January 2024).
- Janczukowicz, W.; Mielcarek, A.; Rodziewicz, J.; Kordas, M. Charakterystyka Jakościowa Ścieków Powstających w Browarach i Słodowniach. Annu. Set Environ. Prot. 2013, 15, 729–748. [Google Scholar]
- Brito, A.G.; Peixoto, J.; Oliveira, J.M.; Oliveira, J.A.; Costa, C.; Nogueira, R.; Rodrigues, A. Brewery and Winery Wastewater Treatment: Some Focal Points of Design and Operation. In Utilization of By-Products and Treatment of Waste in the Food Industry; Springer: New York, NY, USA, 2007; pp. 109–131. [Google Scholar]
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The Treatment of Brewery Wastewater for Reuse: State of the Art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Arantes, M.K.; Alves, H.J.; Sequinel, R.; da Silva, E.A. Treatment of Brewery Wastewater and Its Use for Biological Production of Methane and Hydrogen. Int. J. Hydrog. Energy 2017, 42, 26243–26256. [Google Scholar] [CrossRef]
- Amenorfenyo, D.K.; Huang, X.; Zhang, Y.; Zeng, Q.; Zhang, N.; Ren, J.; Huang, Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. Int. J. Environ. Res. Public Health 2019, 16, 1910. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Pereira, M.; Borges, A.C.; Heleno, F.F.; Faroni, L.R.D.; da Silva, J.C.G.E. Experimental Design Optimization of Dairy Wastewater Ozonation Treatment. Water Air Soil Pollut. 2018, 229, 74. [Google Scholar] [CrossRef]
- Kolev Slavov, A. General Characteristics and Treatment Possibilities of Dairy Wastewater—A Review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Karadag, D.; Koroglu, O.E.; Ozkaya, B.; Cakmakci, M.; Heaven, S.; Banks, C.; Serna-Maza, A. Anaerobic Granular Reactors for the Treatment of Dairy Wastewater: A Review. Int. J. Dairy Technol. 2015, 68, 459–470. [Google Scholar] [CrossRef]
- Stanisławek, E.; Kowalik-Klimczak, A.; Yonar, T.; Sivrioğlu, Ö.; Özengin, N. Integration of Advanced Oxidation Process with Nanofiltration for Dairy Effluent Treatment. Chall. Mod. Technol. 2018, 8, 3–6. [Google Scholar] [CrossRef]
- Yonar, T.; Sivrioğlu, Ö.; Özengin, N. Physico-Chemical Treatment of Dairy Industry Wastewaters: A Review. In Technological Approaches for Novel Applications in Dairy Processing; IntechOpen: London, UK, 2018; Volume 179. [Google Scholar]
- Brazzale, P.; Bourbon, B.; Barrucand, P.; Fenelon, M.; Guercini, S.; Tiarca, R.; Federation, I.D. Wastewater Treatment in Dairy Processing: Innovative Solutions for Sustainable Wastewater Management. In Bulletin of the International Dairy Federation; International Dairy Federation: Brussels, Belgium, 2019. [Google Scholar]
- Shao, X.; Peng, D.; Teng, Z.; Ju, X. Treatment of Brewery Wastewater Using Anaerobic Sequencing Batch Reactor (ASBR). Bioresour. Technol. 2008, 99, 3182–3186. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The Performance Enhancements of Upflow Anaerobic Sludge Blanket (UASB) Reactors for Domestic Sludge Treatment—A State-of-the-Art Review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef] [PubMed]
- Seghezzo, L.; Zeeman, G.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A Review: The Anaerobic Treatment of Sewage in UASB and EGSB Reactors. Bioresour. Technol. 1998, 65, 175–190. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Caccamo, F.M.; Calatroni, S.; Torretta, V.; Katsoyiannis, I.A.; Carnevale Miino, M.; Rada, E.C. Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. Int. J. Environ. Res. Public Health 2021, 18, 10326. [Google Scholar] [CrossRef] [PubMed]
- Verhuelsdonk, M.; Glas, K.; Parlar, H. Economic Evaluation of the Reuse of Brewery Wastewater. J. Environ. Manag. 2021, 281, 111804. [Google Scholar] [CrossRef] [PubMed]
- Enitan, A.M.; Adeyemo, J.; Kumari, S.K.; Swalaha, F.M.; Bux, F. Characterization of Brewery Wastewater Composition. Int. J. Environ. Ecol. Eng. 2015, 9, 1073–1076. [Google Scholar] [CrossRef]
- Aroh, K. Review: Beer Production. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, Wastewater and Waste Management in Brewing Industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
- Zupančič, G.D.; Škrjanec, I.; Marinšek Logar, R. Anaerobic Co-Digestion of Excess Brewery Yeast in a Granular Biomass Reactor to Enhance the Production of Biomethane. Bioresour. Technol. 2012, 124, 328–337. [Google Scholar] [CrossRef]
- Jaiyeola, A.T.; Bwapwa, J.K. Treatment Technology for Brewery Wastewater in a Water-Scarce Country: A Review. S. Afr. J. Sci. 2016, 112, 8. [Google Scholar] [CrossRef] [PubMed]
- Parawira, W.; Kudita, I.; Nyandoroh, M.G.; Zvauya, R. A Study of Industrial Anaerobic Treatment of Opaque Beer Brewery Wastewater in a Tropical Climate Using a Full-Scale UASB Reactor Seeded with Activated Sludge. Process Biochem. 2005, 40, 593–599. [Google Scholar] [CrossRef]
- Sinbuathong, N.; Somjit, C.; Leungprasert, S. Feasibility Study for Biohydrogen Production from Raw Brewery Wastewater. Int. J. Energy Res. 2015, 39, 1769–1777. [Google Scholar] [CrossRef]
- Chen, H.; Chang, S.; Guo, Q.; Hong, Y.; Wu, P. Brewery Wastewater Treatment Using an Anaerobic Membrane Bioreactor. Biochem. Eng. J. 2016, 105, 321–331. [Google Scholar] [CrossRef]
- Babel, S.; Sae-Tang, J.; Pecharaply, A. Anaerobic Co-Digestion of Sewage and Brewery Sludge for Biogas Production and Land Application. Int. J. Environ. Sci. Technol. 2009, 6, 131–140. [Google Scholar] [CrossRef]
- Baloch, M.I.; Akunna, J.C.; Collier, P.J. The Performance of a Phase Separated Granular Bed Bioreactor Treating Brewery Wastewater. Bioresour. Technol. 2007, 98, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Ince, B.K.; Ince, O.; Sallis, P.J.; Anderson, G.K. Inert COD Production in a Membrane Anaerobic Reactor Treating Brewery Wastewater. Water Res. 2000, 34, 3943–3948. [Google Scholar] [CrossRef]
- Borja, R.; Martin, A.; Durán, M.M.; Luque, M.; Alonso, V. Kinetic Study of Anaerobic Digestion of Brewery Wastewater. Process Biochem. 1994, 29, 645–650. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Y.; Li, D.; Ambuchi, J.J.; He, W.; Zhou, X.; Liu, J.; Feng, Y. Cascade Degradation of Organic Matters in Brewery Wastewater Using a Continuous Stirred Microbial Electrochemical Reactor and Analysis of Microbial Communities. Sci. Rep. 2016, 6, 27023. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, X.; Logan, B.E.; Lee, H. Brewery Wastewater Treatment Using Air-Cathode Microbial Fuel Cells. Appl. Microbiol. Biotechnol. 2008, 78, 873–880. [Google Scholar] [CrossRef]
- Wang, S.-G.; Liu, X.-W.; Gong, W.-X.; Gao, B.-Y.; Zhang, D.-H.; Yu, H.-Q. Aerobic Granulation with Brewery Wastewater in a Sequencing Batch Reactor. Bioresour. Technol. 2007, 98, 2142–2147. [Google Scholar] [CrossRef]
- Alvarado-Lassman, A.; Rustrián, E.; García-Alvarado, M.A.; Rodríguez-Jiménez, G.C.; Houbron, E. Brewery Wastewater Treatment Using Anaerobic Inverse Fluidized Bed Reactors. Bioresour. Technol. 2008, 99, 3009–3015. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Anandan, S.; Kaliappan, S.; Yeom, I.T. Treatment of Dairy Wastewater Using Anaerobic and Solar Photocatalytic Methods. Sol. Energy 2008, 82, 812–819. [Google Scholar] [CrossRef]
- Rico, C.; Muñoz, N.; Fernández, J.; Rico, J.L. High-Load Anaerobic Co-Digestion of Cheese Whey and Liquid Fraction of Dairy Manure in a One-Stage UASB Process: Limits in Co-Substrates Ratio and Organic Loading Rate. Chem. Eng. J. 2015, 262, 794–802. [Google Scholar] [CrossRef]
- Bosworth, M.E.D.; Hummelmose, B.; Christiansen, K. Overview of Dairy Processing. In Cleaner Production Assessment of Dairy Processing; Danish Environmental Protection Agency: Odense, Denmark, 2001; pp. 7–16. [Google Scholar]
- Vidal, G.; Carvalho, A.; Méndez, R.; Lema, J.M. Influence of the Content in Fats and Proteins on the Anaerobic Biodegradability of Dairy Wastewaters. Bioresour. Technol. 2000, 74, 231–239. [Google Scholar] [CrossRef]
- Kurup, G.G.; Adhikari, B.; Zisu, B. Recovery of proteins and lipids from dairy wastewater using food grade sodium lignosulphonate. Water Resour. Ind. 2019, 22, 100114. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic Digestion of Dairy Wastewater: Effect of Different Parameters and Co-Digestion Options—A Review. Biomass Convers. Biorefinery 2021, 13, 2527–2552. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Venkatesh, K.R.; Arutchelvan, V. A Correlation Study on Physico-Chemical Characteristics of Dairy Wastewater. Int. J. Eng. Sci. Technol. 2015, 7, 89. [Google Scholar]
- Zkeri, E.; Iliopoulou, A.; Katsara, A.; Korda, A.; Aloupi, M.; Gatidou, G.; Fountoulakis, M.S.; Stasinakis, A.S. Comparing the Use of a Two-Stage MBBR System with a Methanogenic MBBR Coupled with a Microalgae Reactor for Medium-Strength Dairy Wastewater Treatment. Bioresour. Technol. 2021, 323, 124629. [Google Scholar] [CrossRef]
- Tawfik, A.; Sobhey, M.; Badawy, M. Treatment of a Combined Dairy and Domestic Wastewater in an Up-Flow Anaerobic Sludge Blanket (UASB) Reactor Followed by Activated Sludge (AS System). Desalination 2008, 227, 167–177. [Google Scholar] [CrossRef]
- Verheijen, L.; Wiersema, D.; Pol, L.W.H.; De Wit, J. Management of Waste from Animal Product Processing; International Agricultural Center: Wageningen, The Netherlands, 1996. [Google Scholar]
- Sar, T.; Harirchi, S.; Ramezani, M.; Bulkan, G.; Akbas, M.Y.; Pandey, A.; Taherzadeh, M.J. Potential Utilization of Dairy Industries By-Products and Wastes through Microbial Processes: A Critical Review. Sci. Total Environ. 2021, 810, 152253. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Kumar Awasthi, M.; Paul, A.; Kumar, V.; Sar, T.; Kumar, D.; Sarsaiya, S.; Liu, H.; Zhang, Z.; Binod, P.; Sindhu, R.; et al. Recent Trends and Developments on Integrated Biochemical Conversion Process for Valorization of Dairy Waste to Value Added Bioproducts: A Review. Bioresour. Technol. 2022, 344, 126193. [Google Scholar] [CrossRef] [PubMed]
- Adesra, A.; Srivastava, V.K.; Varjani, S. Valorization of Dairy Wastes: Integrative Approaches for Value Added Products. Indian J. Microbiol. 2021, 61, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy Processing Sludge and Co-Products: A Review of Present and Future Re-Use Pathways in Agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Mainardis, M.; Buttazzoni, M.; Goi, D. Up-Flow Anaerobic Sludge Blanket (Uasb) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering 2020, 7, 43. [Google Scholar] [CrossRef]
- Pererva, Y.; Miller, C.D.; Sims, R.C. Approaches in Design of Laboratory-Scale UASB Reactors. Processes 2020, 8, 734. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Formation and Impact of Granules in Fostering Clean Energy Production and Wastewater Treatment in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Renew. Sustain. Energy Rev. 2012, 16, 1696–1708. [Google Scholar] [CrossRef]
- Latif, M.A.; Ghufran, R.; Wahid, Z.A.; Ahmad, A. Integrated Application of Upflow Anaerobic Sludge Blanket Reactor for the Treatment of Wastewaters. Water Res. 2011, 45, 4683–4699. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Liu, K.; Hu, L.; Yang, J.; Wang, X.; Song, Z.-L.; Yang, Y.; Tang, M.; Wang, R. Bacterial Community Composition of Internal Circulation Reactor at Different Heights for Large-Scale Brewery Wastewater Treatment. Bioresour. Technol. 2021, 331, 125027. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Hou, Y.; Wang, Y.; Chen, Y.; Wang, H. The Treatment of High-Concentration Garlic Processing Wastewater by UASB-SBR. Environ. Technol. 2021, 44, 921–935. [Google Scholar] [CrossRef]
- Xu, R.-Z.; Fang, S.; Zhang, L.; Huang, W.; Shao, Q.; Fang, F.; Feng, Q.; Cao, J.; Luo, J. Distribution Patterns of Functional Microbial Community in Anaerobic Digesters under Different Operational Circumstances: A Review. Bioresour. Technol. 2021, 341, 125823. [Google Scholar] [CrossRef]
- Callejas, C.; Fernández, A.; Passeggi, M.; Wenzel, J.; Bovio, P.; Borzacconi, L.; Etchebehere, C. Microbiota Adaptation after an Alkaline PH Perturbation in a Full-Scale UASB Anaerobic Reactor Treating Dairy Wastewater. Bioprocess Biosyst. Eng. 2019, 42, 2035–2046. [Google Scholar] [CrossRef]
- de Siqueira, J.C.; Assemany, P.; Siniscalchi, L.A.B. Microbial Dynamics and Methanogenic Potential of Co-Digestion of Sugarcane Vinasse and Dairy Secondary Effluent in an Upflow Anaerobic Sludge Blanket Reactor. Bioresour. Technol. 2022, 361, 127654. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, H.; Wyckoff, K.N.; He, Q. Linkages of Firmicutes and Bacteroidetes Populations to Methanogenic Process Performance. J. Ind. Microbiol. Biotechnol. 2016, 43, 771–781. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Y.; Xie, C.; Wang, H.; Chang, S.; Xiong, Y.; Du, C.; Xiao, B.; Yu, G. Anaerobic Treatment of Glutamate-Rich Wastewater in a Continuous UASB Reactor: Effect of Hydraulic Retention Time and Methanogenic Degradation Pathway. Chemosphere 2020, 245, 125672. [Google Scholar] [CrossRef] [PubMed]
- Bakraoui, M.; Karouach, F.; Ouhammou, B.; Aggour, M.; Essamri, A.; El Bari, H. Biogas Production from Recycled Paper Mill Wastewater by UASB Digester: Optimal and Mesophilic Conditions. Biotechnol. Rep. 2020, 25, e00402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, B.; Zhang, L.; Zhang, H.; Liu, Y. Microbial Community Dynamics in Granular Activated Carbon Enhanced UASB Treating Municipal Sewage under Sulfate Reducing and Psychrophilic Conditions. Chem. Eng. J. 2021, 405, 126957. [Google Scholar] [CrossRef]
- Zhang, L.; Mou, A.; Sun, H.; Zhang, Y.; Zhou, Y.; Liu, Y. Calcium Phosphate Granules Formation: Key to High Rate of Mesophilic UASB Treatment of Toilet Wastewater. Sci. Total Environ. 2021, 773, 144972. [Google Scholar] [CrossRef] [PubMed]
- Mbemba, K.M.; Bounkosso, H.M.; Kayath, A.C.; Ouamba, J.M. Performance Evaluation of Industrial Brewery Wastewater Biologic Treatment in an UASB Reactor Using Activated Sludge in Republic of Congo. Int. J. Environ. Clim. Chang. 2019, 9, 425–434. [Google Scholar] [CrossRef]
- Doosti, M.R.; Aliloo, M.Y.M.; Rahmani, S.; Zoqi, M.J. Comparison of Normal and Modified UASB Reactors for Dairy Wastewater Treatment. Available online: https://www.researchgate.net/publication/336924315_Comparison_of_normal_and_modified_UASB_reactors_for_dairy_wastewater_treatment (accessed on 5 January 2024).
- Wu, J.; Jiang, B.; Kong, Z.; Yang, C.; Li, L.; Feng, B.; Luo, Z.; Xu, K.-Q.; Kobayashi, T.; Li, Y.-Y. Improved Stability of Up-Flow Anaerobic Sludge Blanket Reactor Treating Starch Wastewater by Pre-Acidification: Impact on Microbial Community and Metabolic Dynamics. Bioresour. Technol. 2021, 326, 124781. [Google Scholar] [CrossRef]
- Esparza-Soto, M.; Jacobo-López, A.; Lucero-Chávez, M.; Fall, C. Anaerobic Treatment of Chocolate-Processing Industry Wastewater at Different Organic Loading Rates and Temperatures. Water Sci. Technol. 2019, 79, 2251–2259. [Google Scholar] [CrossRef]
- Enitan, A.M.; Kumari, S.; Odiyo, J.O.; Bux, F.; Swalaha, F.M. Principal Component Analysis and Characterization of Methane Community in a Full-Scale Bioenergy Producing UASB Reactor Treating Brewery Wastewater. Phys. Chem. Earth Parts A/B/C 2018, 108, 1–8. [Google Scholar] [CrossRef]
- Dohdoh, A.M.; Hendy, I.; Zelenakova, M.; Abdo, A. Domestic Wastewater Treatment: A Comparison between an Integrated Hybrid Uasb-Ifas System and a Conventional Uasb-as System. Sustainability 2021, 13, 1853. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.C.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Kumar Khanal, S. Anaerobic Co-Digestion: Current Status and Perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Vassalle, L.; Díez-Montero, R.; Machado, A.T.R.; Moreira, C.; Ferrer, I.; Mota, C.R.; Passos, F. Upflow Anaerobic Sludge Blanket in Microalgae-Based Sewage Treatment: Co-Digestion for Improving Biogas Production. Bioresour. Technol. 2020, 300, 122677. [Google Scholar] [CrossRef]
- Kumari, K.; Suresh, S.; Arisutha, S.; Sudhakar, K. Anaerobic Co-Digestion of Different Wastes in a UASB Reactor. Waste Manag. 2018, 77, 545–554. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different Aspects of Dry Anaerobic Digestion for Bio-Energy: An Overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Ma, J.; Van Wambeke, M.; Carballa, M.; Verstraete, W. Improvement of the Anaerobic Treatment of Potato Processing Wastewater in a UASB Reactor by Co-Digestion with Glycerol. Biotechnol. Lett. 2008, 30, 861–867. [Google Scholar] [CrossRef]
- Zhang, L.; Hendrickx, T.L.G.; Kampman, C.; Temmink, H.; Zeeman, G. Co-Digestion to Support Low Temperature Anaerobic Pretreatment of Municipal Sewage in a UASB–Digester. Bioresour. Technol. 2013, 148, 560–566. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Peng, S.; Chen, T.; Yue, Z. Anaerobic Co-Digestion of Landfill Leachate and Acid Mine Drainage Using up-Flow Anaerobic Sludge Blanket Reactor. Environ. Sci. Pollut. Res. 2021, 28, 8498–8506. [Google Scholar] [CrossRef] [PubMed]
- Vassalle, L.; Passos, F.; Rosa-Machado, A.T.; Moreira, C.; Reis, M.; Pascoal de Freitas, M.; Ferrer, I.; Mota, C.R. The Use of Solar Pre-Treatment as a Strategy to Improve the Anaerobic Biodegradability of Microalgal Biomass in Co-Digestion with Sewage. Chemosphere 2022, 286, 131929. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Jemaat, Z.; Hamid Nour, A. Microbiota of a UASB Reactor Treating Palm Oil Mill Effluent Using HiSeq Sequencing. In Proceedings of the Materials Science Forum. Mater. Sci. Forum 2021, 1025, 169–176. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Murto, M. Biogas Production from Wheat Straw in Batch and UASB Reactors: The Roles of Pretreatment and Seaweed Hydrolysate as a Co-Substrate. Bioresour. Technol. 2013, 128, 164–172. [Google Scholar] [CrossRef]
- Montes, J.A.; Leivas, R.; Martínez-Prieto, D.; Rico, C. Biogas Production from the Liquid Waste of Distilled Gin Production: Optimization of UASB Reactor Performance with Increasing Organic Loading Rate for Co-Digestion with Swine Wastewater. Bioresour. Technol. 2019, 274, 43–47. [Google Scholar] [CrossRef]
- Gao, M.; Guo, B.; Li, L.; Liu, Y. Role of Syntrophic Acetate Oxidation and Hydrogenotrophic Methanogenesis in Co-Digestion of Blackwater with Food Waste. J. Clean. Prod. 2021, 283, 125393. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Liu, L.; Tabassum, S.; Sun, J.; Hong, Y. Enhanced Phenols Removal and Methane Production with the Assistance of Graphene under Anaerobic Co-Digestion Conditions. Sci. Total Environ. 2021, 759, 143523. [Google Scholar] [CrossRef]
- Reyna-Gómez, L.M.; Cruz-López, A.; Alfaro, J.M.; Suárez-Vázquez, S.I. Evaluation of the Production of Biohydrogen during the Co-Digestion of Organic Wastes in an Upflow Hybrid Anaerobic Reactor. Chem. Eng. J. 2021, 425, 129235. [Google Scholar] [CrossRef]
- Alves, I.R.F.S.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Assessing the Use of Crude Glycerol from Biodiesel Production as an Alternative to Boost Methane Generation by Anaerobic Co-Digestion of Sewage Sludge. Biomass Bioenergy 2020, 143, 105831. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y.; Gönüllü, M.T. Modeling of Biogas Production from Cattle Manure with Co-Digestion of Different Organic Wastes Using an Artificial Neural Network. Clean Technol. Environ. Policy 2017, 19, 2255–2264. [Google Scholar] [CrossRef]
- Chan, P.C.; de Toledo, R.A.; Shim, H. Anaerobic Co-Digestion of Food Waste and Domestic Wastewater—Effect of Intermittent Feeding on Short and Long Chain Fatty Acids Accumulation. Renew. Energy 2018, 124, 129–135. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, J.; Meng, Z.; Li, W.; Ren, S.; Wang, T. Hydrogen and Methane Production by Co-Digesting Liquid Swine Manure and Brewery Wastewater in a Two-Phase System. Bioresour. Technol. 2019, 293, 122041. [Google Scholar] [CrossRef]
- Paranhos, A.G.d.O.; Adarme, O.F.H.; Barreto, G.F.; Silva, S.d.Q.; de Aquino, S.F. Methane Production by Co-Digestion of Poultry Manure and Lignocellulosic Biomass: Kinetic and Energy Assessment. Bioresour. Technol. 2020, 300, 122588. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, L.; Fang, H.; Shi, Y.; Li, Y.-Y.; Liu, R.; Niu, Q. Effect of Temperature on the Anaerobic Digestion of Cardboard with Waste Yeast Added: Dose-Response Kinetic Assays, Temperature Coefficient and Microbial Co-Metabolism. J. Clean. Prod. 2020, 275, 122949. [Google Scholar] [CrossRef]
- Akunna, J.C. Anaerobic Treatment of Brewery Wastes; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782423492. [Google Scholar]
- Forster-Carneiro, T.; Riau, V.; Pérez, M. Mesophilic Anaerobic Digestion of Sewage Sludge to Obtain Class B Biosolids: Microbiological Methods Development. Biomass Bioenergy 2010, 34, 1805–1812. [Google Scholar] [CrossRef]
- Han, M.J.; Behera, S.K.; Park, H. Anaerobic Co-digestion of Food Waste Leachate and Piggery Wastewater for Methane Production: Statistical Optimization of Key Process Parameters. J. Chem. Technol. Biotechnol. 2012, 87, 1541–1550. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Li, X.; Saifullah Lar, J.; He, Y.; Zhu, B. Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy Fuels 2009, 23, 2225–2228. [Google Scholar] [CrossRef]
- Smetana, G.; Neczaj, E.; Grosser, A. Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes. Energies 2021, 14, 4217. [Google Scholar] [CrossRef]
- Bux, F.; Chisti, Y. Algae Biotechnology: Products and Processes; Green Energy and Technology; Springer: Cham, Switzerland, 2016; ISBN 9783319123332. [Google Scholar]
- Khan, A.A.; Gaur, R.Z.; Tyagi, V.K.; Khursheed, A.; Lew, B.; Mehrotra, I.; Kazmi, A.A. Sustainable Options of Post Treatment of UASB Effluent Treating Sewage: A Review. Resour. Conserv. Recycl. 2011, 55, 1232–1251. [Google Scholar] [CrossRef]
- Costa, Â.D.G.L.C.; Da Silva, C.P.; Matos, D.G.d.S.; Pedroso, C.R.; Vidal, C.M.S.; De Souza, J.B.; De Campos, S.X. Post-Treatment of Anaerobic Reactor Effluent by Double Filtration with Gravel and Clinoptilolite and Ozone Disinfection. Orbital Electron. J. Chem. 2021, 13, 328–334. [Google Scholar] [CrossRef]
- Shohid, S.B.; Mamtaz, R.; Miah, M.S. Review Paper on: UASB Bioreactor for Sewage Treatment. IUBAT Rev. 2018, 1, 6–24. [Google Scholar]
- von Sperling, M.; Freire, V.H.; de Lemos Chernicharo, C.A. Performance Evaluation of a UASB—Activated Sludge System Treating Municipal Wastewater. Water Sci. Technol. 2001, 43, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.S.; Ang, C.M. Coupled UASB-Activated Sludge Process for COD and Nitrogen Removals in Municipal Sewage Treatment in Warm Climate. Water Sci. Technol. 2009, 60, 2829–2839. [Google Scholar] [CrossRef]
- Banihani, Q.H.; Field, J.A. Treatment of High-Strength Synthetic Sewage in a Laboratory-Scale Upflow Anaerobic Sludge Bed (UASB) with Aerobic Activated Sludge (AS) Post-Treatment. J. Environ. Sci. Health Part A 2013, 48, 338–347. [Google Scholar] [CrossRef]
- Engida, T.M.; Wu, J.M.; Xu, D.; Wu, Z.B. Review Paper on Treatment of Industrial and Domestic Wastewaters Using Uasb Reactors Integrated into Constructed Wetlands for Sustainable Reuse. Appl. Ecol. Environ. Res. 2020, 18, 3101–3129. [Google Scholar] [CrossRef]
- Liu, W.-H.; Zhang, C.-G.; Gao, P.-F.; Liu, H.; Song, Y.-Q.; Yang, J.-F. Advanced Treatment of Tannery Wastewater Using the Combination of UASB, SBR, Electrochemical Oxidation and BAF. J. Chem. Technol. Biotechnol. 2017, 92, 588–597. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Yan, L.; Wang, X.; Zhao, D. Study of Pilotscale Experiment for Treatment of Piggery Wastewater by UASB-SBR. Adv. Mater. Res. 2012, 356–360, 2047–2050. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Q.; Peng, Y.; Shi, X.; Wang, S.; Zhang, S. Advanced Landfill Leachate Treatment Using a Two-Stage UASB-SBR System at Low Temperature. J. Environ. Sci. 2010, 22, 481–485. [Google Scholar] [CrossRef]
- Milferstedt, K.; Hamelin, J.; Park, C.; Jung, J.; Hwang, Y.; Cho, S.K.; Jung, K.W.; Kim, D.H. Biogranules Applied in Environmental Engineering. Int. J. Hydrog. Energy 2017, 42, 27801–27811. [Google Scholar] [CrossRef]
- Hann, M. Factors Impacting the Cultivation, Structure, and Oxygen Profiles of Oxygenic Photogranules for Aeration-Free Wastewater Treatment. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2018. [Google Scholar]
- Abouhend, A.S.; Milferstedt, K.; Hamelin, J.; Ansari, A.A.; Butler, C.; Carbajal-González, B.I.; Park, C. Growth Progression of Oxygenic Photogranules and Its Impact on Bioactivity for Aeration-Free Wastewater Treatment. Environ. Sci. Technol. 2019, 54, 486–496. [Google Scholar] [CrossRef]
- Muhammed, A.; Poduval, A.N.; Oonnikrishnan, P.; Narayanan, P.K.; Yaduraj, K. The Oxygenic Photogranule for Wastewater Treatment Process. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1114, 012090. [Google Scholar] [CrossRef]
- Abouhend, A.S.; McNair, A.; Kuo-Dahab, W.C.; Watt, C.; Butler, C.S.; Milferstedt, K.; Hamelin, J.; Seo, J.; Gikonyo, G.J.; El-Moselhy, K.M.; et al. The Oxygenic Photogranule Process for Aeration-Free Wastewater Treatment. Environ. Sci. Technol. 2018, 52, 3503–3511. [Google Scholar] [CrossRef]
- Franci Gonçalves, R.; Veronez, F.A.; Kissling, C.M.S.; Cassini, S.T.A. Using a UASB Reactor for Thickening and Digestion of Discharged Sludge from Submerged Aerated Biofilters. Water Sci. Technol. 2002, 45, 299–304. [Google Scholar] [CrossRef]
- Loh, Z.Z.; Zaidi, N.S.; Syafiuddin, A.; Yong, E.L.; Boopathy, R.; Hong Kueh, A.B.; Prastyo, D.D. Shifting from Conventional to Organic Filter Media in Wastewater Biofiltration Treatment: A Review. Appl. Sci. 2021, 11, 8650. [Google Scholar] [CrossRef]
- Li, X.; Yang, F.; Zhang, X. Feasibility Study of Removing Organic and Nitrogen from Sewage Water in the UASB/BF System. Environ. Pollut. Control 2006, 5, 345–348. [Google Scholar]
- Almeida, P.G.S.; Marcus, A.K.; Rittmann, B.E.; Chernicharo, C.A.L. Performance of Plastic- and Sponge-Based Trickling Filters Treating Effluents from an UASB Reactor. Water Sci. Technol. 2013, 67, 1034–1042. [Google Scholar] [CrossRef]
- da Silva, C.P.; de Campos, S.X. The Effects of Anaerobic Reactor Post-Treatments by Rapid Filtration Systems and Conventional Techniques. Environ. Sci. Pollut. Res. 2021, 29, 61870–61880. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Khan, N.A.; Khan, A.H.; Ahmed, S.; Siddiqui, A.A.; Husain, A.; Rahisuddin; Tirth, V.; Islam, S.; Shukla, N.K.; et al. Upgrading Combined Anaerobic-Aerobic UASB-FPU to UASB-DHS System: Cost Comparison and Performance Perspective for Developing Countries. J. Clean. Prod. 2021, 284, 124723. [Google Scholar] [CrossRef]
- Tian, D.-J.; Lim, H.-S.; Chung, J.; Jun, H.-B. Nitrogen and Phosphorus Removal in an Anaerobic (UASB)-Aerobic (ABF) Sewage Treatment System. Desalin. Water Treat. 2015, 53, 2856–2865. [Google Scholar] [CrossRef]
- Phoolphundh, S.; Hathaisamit, K.; Wongwises, S. Performance of Two-Stage Upflow Anaerobic Sludge Blanket Reactor Treating Wastewater from Latex-Processing Factory. J. Environ. Eng. 2013, 139, 141–146. [Google Scholar] [CrossRef]
- Jiraprasertwong, A.; Karnchanapaisal, P.; Seneesrisakul, K.; Rangsunvigit, P.; Chavadej, S. High Process Activity of a Two-Phase UASB (Upflow Anaerobic Sludge Blanket) Receiving Ethanol Wastewater: Operational Conditions in Relation to Granulation Development. Biomass Bioenergy 2021, 148, 106012. [Google Scholar] [CrossRef]
- Pornmai, K.; Itsadanont, S.; Lertpattanapong, M.; Senneesrisaku, K.; Jiraprasertwong, A.; Sekiguchi, H.; Chavadej, S. Process Improvement of a Two-Stage Upflow Anaerobic Sludge Blanket System by Micronutrient Supplement in Relation to Sulfur Transport. Soc. Sci. Res. Netw. 2021. [Google Scholar] [CrossRef]
- Kamyab, B.; Zilouei, H. Investigating the Efficiency of Biogas Production Using Modelling Anaerobic Digestion of Baker’s Yeast Wastewater on Two-Stage Mixed-UASB Reactor. Fuel 2021, 285, 119198. [Google Scholar] [CrossRef]
- Intanoo, P.; Rangsanvigit, P.; Malakul, P.; Chavadej, S. Optimization of Separate Hydrogen and Methane Production from Cassava Wastewater Using Two-Stage Upflow Anaerobic Sludge Blanket Reactor (UASB) System under Thermophilic Operation. Bioresour. Technol. 2014, 173, 256–265. [Google Scholar] [CrossRef]
- Intanoo, P.; Chaimongkol, P.; Chavadej, S. Hydrogen and Methane Production from Cassava Wastewater Using Two-Stage Upflow Anaerobic Sludge Blanket Reactors (UASB) with an Emphasis on Maximum Hydrogen Production. Int. J. Hydrogen Energy 2016, 41, 6107–6114. [Google Scholar] [CrossRef]
- Zhao, K.; Wu, Y.W.; Young, S.; Chen, X.J. Biological Treatment of Dairy Wastewater: A Mini Review. J. Environ. Inform. Lett. 2020, 4, 22–31. [Google Scholar] [CrossRef]
- Goswami, L.; Vinoth Kumar, R.; Borah, S.N.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Membrane Bioreactor and Integrated Membrane Bioreactor Systems for Micropollutant Removal from Wastewater: A Review. J. Water Process Eng. 2018, 26, 314–328. [Google Scholar] [CrossRef]
- Silva-Teiraa, A.; Vázquez-Padínb, J.R.; Reifb, R.; Ariasa, A.; Rogallab, F.; Garridoa, J.M. Assessment of a Combined UASB and MBR Process for Treating Wastewater from a Seafood Factory at Different Temperatures. Desalin. Water Treat. 2020, 180, 43–54. [Google Scholar] [CrossRef]
- Buntner, D.; Sánchez, A.; Garrido, J.M. Feasibility of Combined UASB and MBR System in Dairy Wastewater Treatment at Ambient Temperatures. Chem. Eng. J. 2013, 230, 475–481. [Google Scholar] [CrossRef]
- Qiu, G.; Song, Y.; Zeng, P.; Duan, L.; Xiao, S. Characterization of Bacterial Communities in Hybrid Upflow Anaerobic Sludge Blanket (UASB)–Membrane Bioreactor (MBR) Process for Berberine Antibiotic Wastewater Treatment. Bioresour. Technol. 2013, 142, 52–62. [Google Scholar] [CrossRef]
- Mehmood, C.T.; Waheed, H.; Tan, W.; Xiao, Y. Photocatalytic Quorum Quenching: A New Antifouling and in-Situ Membrane Cleaning Strategy for an External Membrane Bioreactor Coupled to UASB. J. Environ. Chem. Eng. 2021, 9, 105470. [Google Scholar] [CrossRef]
- Moya-Llamas, M.J.; Trapote, A.; Prats, D. Carbamazepine Removal from Low-Strength Municipal Wastewater Using a Combined UASB-MBR Treatment System. Water Sci. Technol. 2021, 83, 1920–1931. [Google Scholar] [CrossRef]
- Cavallini, G.S.; de Sousa Vidal, C.M.; de Souza, J.B.; de Campos, S.X. Post-Treatment of Anaerobic Reactor Effluent Using Coagulation/Oxidation Followed by Double Filtration. Environ. Sci. Pollut. Res. 2016, 23, 6244–6252. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.Q.; Ditchfield, C.; Tommaso, G.; Ribeiro, R. Use of Spray Nozzles to Recover Dissolved Methane from an Upflow Anaerobic Sludge Blanket (UASB) Reactor Effluent. Water Sci. Technol. 2022, 85, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Velasco, P.; Jegatheesan, V.; Othman, M. Recovery of Dissolved Methane from Anaerobic Membrane Bioreactor Using Degassing Membrane Contactors. Front. Environ. Sci. 2018, 6, 151. [Google Scholar] [CrossRef]
- Medeiros, D.L.; Dos Santos, C.M.Q.; Ribeiro, R.; Tommaso, G. The Dissolved Methane Recovery from Treated Sewage in Upflow Anaerobic Sludge Blanket (UASB) Reactors: The Energy Demand, Carbon Footprint and Financial Cost. J. Environ. Manag. 2023, 343, 118258. [Google Scholar] [CrossRef]
- Ahmad, A.; Senaidi, A.S. Sustainability for Wastewater Treatment: Bioelectricity Generation and Emission Reduction. Environ. Sci. Pollut. Res. 2023, 30, 48703–48720. [Google Scholar] [CrossRef]
Parameter | Reference | |||||||
---|---|---|---|---|---|---|---|---|
Type of Wastewater | pH (−) | COD (g-COD/L) | BOD5 (g-BOD5/L) | TP (g/L) | TKN (g/L) | TSS (g/L) | Operational Temperature (°C) | |
Industrial brewery wastewater | 3.3–6.3 | 8.24–20 | Nd | 16–124 | 0.0196–0.0336 | 2.901–3 | Nd | [27] |
Industrial brewery wastewater | 4.5–12 | 2–6 | 1.2–3.6 | 10–50 | 25–80 | 0.2–1 | 18–40 | [26] |
Brewery wastewater from regulating reservoir | 6.5 ± 0.2 | 2.25 ± 0.418 | 1.34 ± 0.335 | Nd | Nd | 0.48 ± 0.07 | 30–35 | [35] |
Raw brewery wastewater | 7.5–8 | 1.3–2.3 (1) 1–2 (2) | 0.65–0.97 | 3.2–4.3 | Nd | Nd | Nd | [36] |
Industrial brewery wastewater | 10 | 2.083 (1) 1.726 (2) | 1.375 | 0.0048 | 0.116 | 0.75 | Nd | [37] |
Industrial brewery wastewater | 4.25 | 115–125 | Nd | Nd | Nd | 1.4–1.6 | Nd | [31] |
Synthetic brewery wastewater | 5.2–6.2 | 8–14 | Nd | 0.02–0.09 | 0.08–0.28 (3) | 0.5–1.3 | 35 | [29] |
Industrial brewery wastewater | 6.3 | 6 | 2.35 | 0.0005 | 0.09 | Nd | 35 ± 1 | [28] |
Raw brewery wastewater | 3.5–4.5 | 80–90 | 65–80 | 0.09–0.1 (4) | 0.11–0.21 | 0.1–0.15 | 36 ± 1 | [32] |
Type of DW | Parameter | Reference | |||||
---|---|---|---|---|---|---|---|
pH (−) | COD (g-COD/L) | BOD5 (g-BOD5/L) | TP (g/L) | TKN (g/L) | TSS (g/L) | ||
Synthetic | 7.1 | 5 | 2.8 | Nd | 16.5 | Nd | [38] |
Mixed dairy | 4.11 | 0.5–10.4 | 0.24–5.9 | 0–0.06 | 0.03–0.7 | 0.06–5.8 | [12] |
Milk processing effluent | Nd | 2 | 1.5 | 0.003 | Nd | Nd | [40] |
Nd | 5.9–6.5 | 1.98–3.32 | 1.08–1.58 | 0.06–0.08 | Nd | 2.4–2.95 | [44] |
Mixture of final whey effluent, water used for cleaning, and sanitary wastewater | 7.75 ± 0.6 | 2.499 ± 0.812 | Nd | 0.0207 ± 0.0096 | 0.12 ± 0.01 | Nd | [45] |
Nd | 7.9 | 3.38 | 1.94 | 0.022 | 0.051 | 0.83 | [46] |
Substrate | Operational Temperature, (°C) | Influent COD, (g-COD/L) | COD Removal, (%) | OLR, (g-COD/L·d) | HRT, (h) | Digestion Duration, (d) | Seeding Sludge | Reference |
---|---|---|---|---|---|---|---|---|
Glutamate-rich wastewater | 35 | 2 | 90–95 | 16 | 2–48 | 180 | Granular sludge from a full-scale UASB that treats starch wastewater | [63] |
Recycled PMW | 37 ± 2 | 4.42–5.90 | 70–80.7 | 5.18 | 15.14 | 130 | Granular sludge from a full-scale UASB digester that treats industrial wastewater | [64] |
Municipal sewage sludge | 16.5 ± 2 | Nd | 62–75 | Nd | 16, 24, 36 | 120 | Inoculum sludge from a full-scale mesophilic anaerobic digester | [65] |
Municipal primary effluent | 19 ± 1 | 0.096–0.260 * | 58–70 (1) | Nd | 8, 10, 12 | 105 | Anaerobic digested sludge from WWTP operated at 35 °C and fed with municipal primary effluent and glucose | [66] |
Toilet wastewater | 35 | Nd | 75.6 ± 6.0 | 16 | 6 | 250 | Nd | [65] |
BW | 35 | 0.6–2.51 | 70–94 | Nd | Nd | 30 | Activated sludge | [67] |
DW | >25 | Nd | 75 (2)–94 (3) | 2.5, 4.5, 8.6, 11.4 | Nd | 154 | Nd | [68] |
Synthetic starch wastewater | 35 ± 1 | 1 | 75–95 | 0.5–8 | 3, 6, 8, 12, 24 and 48 | 280 | Granular sludge from a full-scale UASB reactor treating BW | [69] |
Chocolate wastewater | 15, 20, 25, and 30 | 6.2 * | 39–94 | 2–6 | 6 | 42–65 | Anaerobic sludge from the secondary lamella settler of a low-temperature pilot-scale UASB reactor | [70] |
BW | 20–30.5 | 1.096–8.926 | 78.97 | Nd | Nd | 15 | Nd | [71] |
Advantages | Limitations |
---|---|
Granular sludge beds provide high biomass content with active microorganisms; therefore, high OLR with high COD removal efficiency are supported. | Long start-up period, from 2 to 8 months, highly dependent on OLR and operational temperature. |
Support material is not required. | Sludge floatation, disintegration, and washout from a system can ensue. |
Shorter retention time and easy manipulation. | Nitrogen, phosphorus, and pathogen removal efficiency may be low, and post-effluent treatment may be required, especially when high-COD wastewaters are treated. |
No external mixing is required due to production of gas bubbles that provide natural turbulence. | Foul odour that can be attributed to hydrogen sulphide production, especially when wastewaters with high sulphur content are treated. |
Lower energy consumption compared to aerobic processes and reduced sludge production. | |
Technology is old, well developed, and popular (more than 1000 reactors have been installed worldwide) and provides satisfactory COD removal efficiencies for many types of high-strength wastewaters. | |
Good treatment efficiency in tropical regions. It is a very flexible technology that can be applied efficiently at both large and small scales. |
Advantages | Disadvantages |
---|---|
Microbial stability improvement | COD value increase in effluents |
Improvement in nutrient balance | Sometimes, pre-treatment and a hygienist are required. |
Reduction in greenhouse gas emissions | The requirement of proper mixing to produce a homogenous mixture |
Dilution of toxic compounds | An optimal mixture ratio is difficult to obtain |
Higher methane yield and OLR | Digestate, after the process, has restrictions in terms of its land application |
Feedstock | Substrate | Operational Temperature, (°C) | HRT, (h) | OLR, (g-COD/L·d) | Biogas/Methane Production | COD Removal, (%) | Reference |
---|---|---|---|---|---|---|---|
SS | Microalgae biomass | Nd | 7 | 0.65–0.71 | 309.4–375.1 (4) | 70 | [81] |
Landfill leachate | Acid mine drainage | 35 ± 1 | 8, 12, 20, 30, 46.8 | 1.08–4.2 | 1.589–1.805 * | 69–75 | [80] |
Gin spent wash | Swine wastewater | 36 ± 1 | 3.3 | 28.5 | 8.4 (1) | 97 | [84] |
SS and cow manure | Kitchen waste, yard waste, floral waste, DW | 36 ± 2 | 24 | Nd | 3–4.5 * | 76–86 | [76] |
Blackwater | Food waste | 35 ± 1 | 62.4 | 4.1, 5.1, 7, 10, 11.6 | 2.42 (2) | 82.4–83.6 | [85] |
Coal gasification wastewater | Glucose | Nd | Nd | Nd | 5 * | 50.85 | [86] |
Primary sludge | Fruit peel waste (melon, papaya, pineapple) | 35 | 24 | Nd | 650 ± 50 (3) | About 45 | [87] |
SS | Crude glycerol | 35 | Nd | Nd | 223.8–368.8 (4) | Nd | [88] |
Cheese whey | Liquid fraction of dairy manure | 35 | 2.2 | 19.4 | 6.4 (2) | 95 | [39] |
36–37 | 10–20 (5) | 10.107 | Close to 1.4 * | Nd | [89] | ||
Domestic wastewater | Food waste | 35 ± 1 | 10 (5) | 2–4.5 | 0.25 (2) | 61–80 | [90] |
BW | Swine manure | 37 ± 2 | 16–24 | 8.613 | 497.94 ± 10.01 (6) | 75.54 ± 0.19 | [91] |
Poultry manure | Rice straw, ground corncob, peanut shell, sawdust | 35 | Nd | Nd | 155.29–301.95 (4) | 32.20–93.25 | [92] |
Cardboard | Waste yeast | 35 | Nd | Nd | 125/71–228.91 (4) | Nd | [93] |
UASB–Aerobic System | UASB–Anaerobic System | Other |
---|---|---|
UASB–activated sludge (UASB-AS), 2001 | UASB–anaerobic sludge thickening and digestion (UASB-ASTD), 2004 | UASB–constructed wetland (UASB-CW), 2005 |
UASB–sequencing batch reactor (UASB-SBR), 2001 | UASB–anaerobic biofilm fluidized bed reactor (UASB-ABFBR), 1991 | UASB–double filtration (UASB-DF), 2016 |
UASB–stabilising pod (UASB-SP), 1999 | UASB–anaerobic hybrid process (UASB-AH), 1999 | UASB–microbial fuel/electrolysis cells (UASB-MFCs/MECs), 2009 |
UASB–rotating biological contactor (UASB-RBC), 1999 | UASB–anaerobic filter process (UASB-AF), 1997 | UASB–moving bed biofilm reactor (UASB-MBBR), 2010 |
UASB–integrated fixed-film activated sludge (UASB-IFAS), 2016 | Two-stage UASB process (UASB-UASB), 2000 | UASB–advanced oxidative process (UASB-AOP), 2002 |
UASB–aerated biofilter (UASB-BF), 1996 | UASB–expanded granular sludge bed reactor (UASB-EGSB), 2003 | |
UASB–membrane bioreactor (UASB-MBR), 2011–2013 | UASB–dissolved air floatation (UASB-DAF), 1999 |
Type of Wastewater | Influent COD, (g-COD/L) | Influent N-NH4+, (g/L) | COD Reduction (UASB-AS), (%) | Nutrient Removal (UASB-AS), (%) | HRTUASB, (h) | HRTAS, (h) | OLRUASB, (g-COD/L·d) | Operational Temperature of UASB, (°C) | Reference |
---|---|---|---|---|---|---|---|---|---|
Municipal wastewater | 0.156–2.001 | 0.0243–0.048 | 67–97 | 87–93 | 6 | 6.3 | Nd | 30 ± 1 | [104] |
Pipe effluent of Arab Dairy Factory | 3.383 ± 1.345 | 0.051 ± 0.0057 (1) | 97.5 | Nd | 24 | Nd | 1.9–4.4 | 20 | [46] |
Municipal wastewater | 2.5 | 0.095 | 89.1–91 | 69.4–96.2 | 13.9–56 | 9.84–24.24 | 1.1–3.8 | 25 | [105] |
Type of Wastewater | Influent COD, (g-COD/L) | Influent N-NH4+, (g/L) | COD Reduction (UASB-SBR), (%) | Nutrient Removal (UASB-SBR), (%) | HRTUASB, (h) | HRTSBR, (h) | OLRUASB, (g-COD/L·d) | Operational Temperature of UASB, (°C) | Operational Temperature of SBR, (°C) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
High-Concentration Garlic Processing Wastewater | 9.8 | Nd | 99 | 94.82 (1), 87.07 (2) and 94.87 (3) | 45 | 12 | Nd | 35 ± 2 | 25 | [58] |
Tannery | 8.3–9.25 | 0.285–330 | 98.9 | 93.8 (3) | 36–96 | 30 (4) | 2.23 ± 0.15 | 28 ± 3 | Nd | [107] |
Industrial and Domestic | Nd | Nd | 94 | 100 (5), 77 (3), 65 (1) | Nd | Nd | Nd | Nd | Nd | [106] |
Piggery | 1.5–6 | 0.55–0.85 (6) | 92 | 90 (2), 80 (1) | Nd | Nd | Nd | 24–26 | 24–26 | [108] |
Landfill Leachate | 7.856–22.5 | 0.738–1.287 | 96.7 | 99.7 | 1–1.5 | 1.5 | 1.63–11.95 | 30–35 | 10.9–20.7 | [109] |
Packing Media | Influent COD, (g-COD/L) | Influent N-NH4+, (g/L) | COD Reduction (UASB-BF), (%) | Nutrient Removal (UASB-BF), (%) | HRTUASB, (h) | OLRUASB, (g-COD/L·d) | Operational Temperature of UASB, (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Nd | Nd | Nd | 92 | 68–83 | 5, 8, 10, 12 | 1, 1.2, 1.5, 2 | Nd | [117] |
(a) TF–Rotosponge with a specific surface area of 132 m2/m3 (b) TF–Rotopack with a specific surface area of 29 m2/m3 | 0.2–0.7 | Nd | 85–90 | 80–95 | 9 | 1.2 | Nd | [118] |
DHS and final polishing unit (FPU) | 0.589 | Nd | 82.26 (1) 74.35 (2) | Nd | 8 | 1.52 | Nd | [120] |
Shredded waste plastic bottles | 0.263 (3) 0.067 (4) | 0.023 | 89.2–94.55 (3) 60.52–67.59 (4) | 12.9–78.1 (5) | 25 | Nd | 20 ± 3 | [121] |
Feedstock | Influent COD, (g-COD/L) | COD Reduction (UASB-MBR), (%) | Methane Yield | OLRUASB, (g-COD/L·d) | OLRMBR, (g-COD/L·d) | Operational Temperature of UASB, (°C) | Reference |
---|---|---|---|---|---|---|---|
Semi-synthetic wastewater composed of diluted skimmed milk | 1–2 | 99 | 182.6–299.3 (1) | 1.35–1.83 | 0.6–1.6 | Nd | [131] |
Berberine antibiotic wastewater | 3.509 ± 0.125 | 98.7 ± 0.2 | Nd | 1.97–3.55 | 0.52–2.34 | 37 ± 1 | [132] |
Synthetic wastewater | 1.054 ± 0.126 | 99 ± 2.1 | 0.30 ± 0.05 (2) | Nd | Nd | 37 ± 0.9 | [133] |
Pre-Treatment Approach | Advantages | Disadvantages |
---|---|---|
UASB–activated sludge (UASB-AS) | Excellent COD and nutrient removal efficiency (e.g., 67–97% COD reduction and 87–93% nutrient reduction) | Unsatisfactory total faecal coliform reduction; therefore, disinfection is required |
UASB–sequencing batch reactor (UASB-SBR) | (1) Aeration tank and secondary clarifier are replaced with singular tank that works in cycles, which can be adjusted to work in aerobic, anaerobic, and anoxic conditions (2) Excellent COD, TC, and TP removals (3) Possibility of additional modifications, e.g., integration with OPG process | Low pathogen removal; aeration increases operating costs of wastewater treatment |
UASB–biofilter (UASB-BF) | (1) Natural drought of air downstream provides aeration, and no excess sludge removal is necessary (2) Excellent COD and TN removal | Efficiency of nitrogen and phosphorus removal depends on wastewater; in some studies, efficiency was low |
Two-staged UASB system (UASB-UASB) | (1) High performance and stability (2) High biogas yield | Possibility of accumulation of ammonia, which has a toxic effect on microorganisms; disrupts syntrophic connections between consortiums of microorganisms |
UASB–Double Filtration (UASB-DF) | High filtration rate, better pathogen and faecal coliform removal efficiency, and after first filtration unit, effluent is treated in second one at start of filtration setting | Few publications, which makes it difficult to evaluate solution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smetana, G.; Grosser, A. The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review. Energies 2024, 17, 1504. https://doi.org/10.3390/en17061504
Smetana G, Grosser A. The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review. Energies. 2024; 17(6):1504. https://doi.org/10.3390/en17061504
Chicago/Turabian StyleSmetana, German, and Anna Grosser. 2024. "The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review" Energies 17, no. 6: 1504. https://doi.org/10.3390/en17061504
APA StyleSmetana, G., & Grosser, A. (2024). The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review. Energies, 17(6), 1504. https://doi.org/10.3390/en17061504