Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Separation of SRWC Shoots into Wood and Bark Fractions and Determination of Wood Yield
2.3. Laboratory Analyses
2.4. Energy Value of the Wood
2.5. Statistical Analysis
3. Results
3.1. SRWC Wood Yield and Its Energy Value
3.2. Thermophysical Characteristics of SRWC Wood
3.3. Elemental Composition of SRWC Wood
3.4. Lignocellulosic Composition of SRWC Wood
3.5. General Characteristics of SRWC Wood
4. Discussion
4.1. Wood Yield and Its Energy Value
4.2. SRWC Wood Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 2.90 ± 0.06 mn | 4.82 ± 0.38 hijklm | 3.86 ± 0.46 J |
P. nigra × P. maximowiczii Max-5 | 4.61 ± 0.33 ijklmn | 8.46 ± 0.60 cdefg | 6.53 ± 0.91 DEF |
P. max. × P. trich. Hybryda275 | 5.80 ± 0.14 ghijk | 11.15 ± 0.78 ab | 8.48 ± 1.25 B |
P. max. × P. trich. Androscoggin | 4.46 ± 0.04 jklmn | 9.13 ± 0.30 cd | 6.79 ± 1.05 DE |
P. balsamifera UWM2 | 3.15 ± 0.07 lmn | 7.01 ± 0.38 efghi | 5.08 ± 0.88 HIJ |
P. balsamifera UWM3 | 2.74 ± 0.04 n | 5.68 ± 0.39 ghijk | 4.21 ± 0.68 IJ |
S. alba UWM200 | 5.03 ± 0.32 hijkl | 6.29 ± 0.02 ghijk | 5.66 ± 0.32 EFG |
S. alba UWM095 | 6.53 ± 0.28 fghij | 10.21 ± 0.55 bc | 8.37 ± 0.87 B |
S. dasyclados UWM155 | 5.40 ± 0.35 hijk | 7.47 ± 0.29 defgh | 6.44 ± 0.51 DEF |
S. fragilis UWM195 | 6.74 ± 0.35 fghij | 9.62 ± 0.47 bc | 8.18 ± 0.69 BC |
S. pentandra UWM035 | 5.35 ± 0.42 hijk | 8.76 ± 0.17 cde | 7.06 ± 0.79 CD |
S. triandra UWM198 | 6.53 ± 0.14 fghij | 8.63 ± 0.33 cdef | 7.58 ± 0.50 BCD |
S. viminalis Żubr | 8.89 ± 0.45 cde | 12.42 ± 0.34 a | 10.65 ± 0.83 A |
S. viminalis × S. purpurea UWM033 | 4.98 ± 0.12 hijkl | 5.79 ± 0.43 ghijk | 5.38 ± 0.27 GHI |
Mean | 5.22 ± 0.26 Y | 8.25 ± 0.34 X | 6.73 ± 0.27 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 56.19 ± 1.25 no | 93.19 ± 7.31 jklmn | 74.69 ± 8.91 I |
P. nigra × P. maximowiczii Max-5 | 91.41 ± 6.50 klmno | 167.97 ± 11.87 cdef | 129.69 ± 18.16 DE |
P. max. × P. trich. Hybryda275 | 113.06 ± 2.71 hijkl | 216.05 ± 15.20 ab | 164.56 ± 24.04 B |
P. max. × P. trich. Androscoggin | 87.11 ± 0.79 lmno | 177.59 ± 5.88 bcd | 132.35 ± 20.41 DE |
P. balsamifera UWM2 | 61.54 ± 1.37 mno | 137.37 ± 7.47 efgh | 99.46 ± 17.29 GH |
P. balsamifera UWM3 | 53.38 ± 0.80 o | 112.33 ± 7.79 hijkl | 82.85 ± 13.64 HI |
S. alba UWM200 | 98.28 ± 6.29 jklm | 122.69 ± 0.34 hijkl | 110.49 ± 6.14 EFG |
S. alba UWM095 | 127.28 ± 5.52 hijk | 202.88 ± 11.03 bc | 165.08 ± 17.78 B |
S. dasyclados UWM155 | 104.75 ± 6.83 ijkl | 146.26 ± 5.74 defg | 125.51 ± 10.10 DEF |
S. fragilis UWM195 | 131.28 ± 6.84 ghji | 188.57 ± 9.26 bc | 159.92 ± 13.81 BC |
S. pentandra UWM035 | 106.32 ± 8.29 ijkl | 172.99 ± 3.39 cde | 139.65 ± 15.44 CD |
S. triandra UWM198 | 126.37 ± 2.71 hijk | 168.60 ± 6.45 cdef | 147.48 ± 9.95 BCD |
S. viminalis Żubr | 173.43 ± 8.82 cde | 244.34 ± 6.78 a | 208.88 ± 16.62 A |
S. viminalis × S. purpurea UWM033 | 96.22 ± 2.39 jklm | 113.89 ± 8.55 hijkl | 105.06 ± 5.6 FGH |
Mean | 101.9 ± 5.04 Y | 161.77 ± 6.78 X | 131.83 ± 5.33 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 2.25 ± 0.05 | 3.73 ± 0.29 | 2.99 ± 0.36 |
P. nigra × P. maximowiczii Max-5 | 3.66 ± 0.26 | 6.72 ± 0.47 | 5.19 ± 0.73 |
P. max. × P. trich. Hybryda275 | 4.52 ± 0.11 | 8.64 ± 0.61 | 6.58 ± 0.96 |
P. max. × P. trich. Androscoggin | 3.48 ± 0.03 | 7.10 ± 0.24 | 5.29 ± 0.82 |
P. balsamifera UWM2 | 2.46 ± 0.05 | 5.49 ± 0.30 | 3.98 ± 0.69 |
P. balsamifera UWM3 | 2.14 ± 0.03 | 4.49 ± 0.31 | 3.31 ± 0.55 |
S. alba UWM200 | 3.93 ± 0.25 | 4.91 ± 0.01 | 4.42 ± 0.25 |
S. alba UWM095 | 5.09 ± 0.22 | 8.12 ± 0.44 | 6.60 ± 0.71 |
S. dasyclados UWM155 | 4.19 ± 0.27 | 5.85 ± 0.23 | 5.02 ± 0.40 |
S. fragilis UWM195 | 5.25 ± 0.27 | 7.54 ± 0.37 | 6.40 ± 0.55 |
S. pentandra UWM035 | 4.25 ± 0.33 | 6.92 ± 0.14 | 5.59 ± 0.62 |
S. triandra UWM198 | 5.05 ± 0.11 | 6.74 ± 0.26 | 5.90 ± 0.40 |
S. viminalis Żubr | 6.94 ± 0.35 | 9.77 ± 0.27 | 8.36 ± 0.66 |
S. viminalis × S. purpurea UWM033 | 3.85 ± 0.10 | 4.56 ± 0.34 | 4.20 ± 0.22 |
Mean | 4.08 ± 0.2 | 6.47 ± 0.27 | 5.27 ± 0.21 |
Item | Dry Wood Yield | Dry Wood Energy Value | Coal Equivalent | Moisture | HHV | Ash | FC | VM | C | H | N | S | Cl | Cold Water Extracts | Hot Water Extracts | Other Soluble Substances | Hemicellulose | Cellulose | Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry wood yield | 1.00 | 1.00 * | 1.00 * | 0.03 | 0.20 | −0.57 * | −0.38 * | 0.41 * | 0.18 | −0.09 | −0.70 * | −0.55 * | 0.06 | −0.72 * | −0.61 * | −0.21 | −0.65 * | 0.70 * | 0.24 * |
Dry wood energy value | 1.00 | 1.00 * | 0.03 | 0.22 * | −0.57 * | −0.37 * | 0.41 * | 0.19 | −0.10 | −0.70 * | −0.55 * | 0.06 | −0.73 * | −0.61 * | −0.21 | −0.66 * | 0.71 * | 0.25 * | |
Coal equivalent | 1.00 | 0.03 | 0.22 * | −0.57 * | −0.37 * | 0.41 * | 0.19 | −0.10 | −0.70 * | −0.55 * | 0.06 | −0.73 * | −0.61 * | −0.21 | −0.66 * | 0.71 * | 0.25 * | ||
Moisture | 1.00 | 0.11 | 0.01 | −0.19 | 0.20 | −0.01 | 0.03 | −0.10 | −0.36 * | −0.03 | 0.13 | −0.05 | 0.07 | −0.05 | 0.04 | 0.00 | |||
HHV | 1.00 | −0.09 | 0.03 | 0.04 | 0.49 * | −0.13 | −0.26 * | −0.28 * | −0.24 * | −0.34 * | −0.26 * | −0.08 | −0.45 * | 0.32 * | 0.41 * | ||||
Ash | 1.00 | 0.33 * | −0.39 * | −0.24 * | −0.14 | 0.54 * | 0.51 * | 0.17 | 0.52 * | 0.48 * | 0.28 * | 0.52 * | −0.57 * | −0.26 * | |||||
FC | 1.00 | −0.96 * | 0.02 | −0.02 | 0.57 * | 0.22 * | 0.17 | 0.36 * | 0.38 * | 0.14 | 0.32 * | −0.53 * | 0.27 * | ||||||
VM | 1.00 | 0.00 | 0.05 | −0.55 * | −0.25 * | −0.24 * | −0.39 * | −0.39 * | −0.17 | −0.35 * | 0.54 * | −0.20 | |||||||
C | 1.00 | −0.05 | −0.43 * | −0.40 * | −0.20 | −0.28 * | −0.33 * | −0.20 | −0.48 * | 0.46 * | 0.23 * | ||||||||
H | 1.00 | 0.12 | 0.18 | 0.01 | 0.09 | 0.08 | −0.08 | 0.07 | −0.13 | 0.18 | |||||||||
N | 1.00 | 0.69 * | 0.05 | 0.78 * | 0.76 * | 0.35 * | 0.75 * | −0.91 * | −0.14 | ||||||||||
S | 1.00 | 0.05 | 0.55 * | 0.58 * | 0.29 * | 0.54 * | −0.62 * | −0.27 * | |||||||||||
Cl | 1.00 | −0.02 | 0.05 | 0.20 | −0.02 | −0.13 | 0.19 | ||||||||||||
Cold water extracts | 1.00 | 0.89 * | 0.48 * | 0.66 * | −0.85 * | −0.39 * | |||||||||||||
Hot water extracts | 1.00 | 0.59 * | 0.53 * | −0.85 * | −0.35 * | ||||||||||||||
Other soluble substances | 1.00 | 0.02 | −0.51 * | −0.08 | |||||||||||||||
Hemicellulose | 1.00 | −0.78 * | −0.50 * | ||||||||||||||||
Cellulose | 1.00 | 0.18 | |||||||||||||||||
Lignin | 1.00 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 20.01 ± 0.07 a | 19.91 ± 0.28 ab | 19.96 ± 0.13 A |
P. nigra × P. maximowiczii Max-5 | 19.92 ± 0.27 ab | 19.89 ± 0.03 ab | 19.90 ± 0.12 A |
P. max. × P. trich. Hybryda275 | 19.22 ± 0.17 abcde | 17.96 ± 0.15 fg | 18.59 ± 0.30 CDE |
P. max. × P. trich. Androscoggin | 19.13 ± 0.23 abcde | 18.54 ± 0.01 cdefg | 18.84 ± 0.17 BCDE |
P. balsamifera UWM2 | 18.98 ± 0.29 abcdef | 18.39 ± 0.05 defg | 18.68 ± 0.19 BCDE |
P. balsamifera UWM3 | 18.89 ± 0.15 bcdef | 18.48 ± 0.05 cdefg | 18.68 ± 0.12 BCDE |
S. alba UWM200 | 18.74 ± 0.08 cdefg | 19.14 ± 0.03 abcde | 18.94 ± 0.10 BCD |
S. alba UWM095 | 19.54 ± 0.38 abc | 19.02 ± 0.21 abcdef | 19.28 ± 0.23 AB |
S. dasyclados UWM155 | 19.38 ± 0.44 abcd | 18.34 ± 0.04 defg | 18.86 ± 0.30 BCDE |
S. fragilis UWM195 | 18.69 ± 0.23 cdefg | 18.22 ± 0.15 efg | 18.46 ± 0.16 DE |
S. pentandra UWM035 | 18.50 ± 0.37 cdefg | 19.17 ± 0.07 abcde | 18.84 ± 0.23 BCDE |
S. triandra UWM198 | 18.80 ± 0.21 cdef | 17.67 ± 0.02 g | 18.24 ± 0.27 D |
S. viminalis Żubr | 19.19 ± 0.11 abcde | 18.68 ± 0.03 cdefg | 18.94 ± 0.13 BCD |
S. viminalis × S. purpurea UWM033 | 19.49 ± 0.16 abc | 18.85 ± 0.08 bcdef | 19.17 ± 0.16 BC |
Mean | 19.18 ± 0.09 X | 18.73 ± 0.10 Y | 18.96 ± 0.07 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 79.22 ± 0.06 h | 79.52 ± 0.28 efgh | 79.37 ± 0.14 D |
P. nigra × P. maximowiczii Max-5 | 79.92 ± 0.52 defgh | 79.50 ± 0.01 gh | 79.71 ± 0.25 CD |
P. max. × P. trich. Hybryda275 | 80.16 ± 0.20 cdefgh | 81.55 ± 0.15 ab | 80.85 ± 0.33 AB |
P. max. × P. trich. Androscoggin | 80.23 ± 0.25 cdefgh | 80.95 ± 0.01 abcdef | 80.59 ± 0.20 AB |
P. balsamifera UWM2 | 80.37 ± 0.30 bcdefgh | 81.02 ± 0.05 abcde | 80.70 ± 0.20 AB |
P. balsamifera UWM3 | 80.46 ± 0.14 bcdefgh | 80.84 ± 0.06 abcdef | 80.65 ± 0.11 AB |
S. alba UWM200 | 80.65 ± 0.10 abcdefg | 80.28 ± 0.03 cdefgh | 80.47 ± 0.10 ABC |
S. alba UWM095 | 79.91 ± 0.38 defgh | 80.49 ± 0.21 abcdefg | 80.20 ± 0.23 BC |
S. dasyclados UWM155 | 80.06 ± 0.46 cdefgh | 81.14 ± 0.04 abcd | 80.60 ± 0.32 AB |
S. fragilis UWM195 | 80.67 ± 0.24 abcdefg | 81.21 ± 0.15 abc | 80.94 ± 0.18 AB |
S. pentandra UWM035 | 80.86 ± 0.39 abcdef | 80.35 ± 0.07 bcdefgh | 80.61 ± 0.21 AB |
S. triandra UWM198 | 80.50 ± 0.24 abcdefg | 81.70 ± 0.02 a | 81.10 ± 0.29 A |
S. viminalis Żubr | 80.17 ± 0.15 cdefgh | 80.74 ± 0.03 abcdefg | 80.45 ± 0.14 ABC |
S. viminalis × S. purpurea UWM033 | 79.80 ± 0.19 efgh | 80.55 ± 0.08 abcdefg | 80.17 ± 0.19 BC |
Mean | 80.21 ± 0.09 Y | 80.70 ± 0.10 X | 80.46 ± 0.07 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 6.42 ± 0.04 | 6.44 ± 0.01 | 6.43 ± 0.02 |
P. nigra × P. maximowiczii Max-5 | 6.37 ± 0.06 | 6.40 ± 0.02 | 6.39 ± 0.03 |
P. max. × P. trich. Hybryda275 | 6.41 ± 0.03 | 6.54 ± 0.02 | 6.48 ± 0.03 |
P. max. × P. trich. Androscoggin | 6.44 ± 0.04 | 6.51 ± 0.01 | 6.47 ± 0.02 |
P. balsamifera UWM2 | 6.47 ± 0.01 | 6.36 ± 0.01 | 6.41 ± 0.03 |
P. balsamifera UWM3 | 6.51 ± 0.10 | 6.34 ± 0.01 | 6.42 ± 0.06 |
S. alba UWM200 | 6.52 ± 0.10 | 6.49 ± 0.02 | 6.50 ± 0.04 |
S. alba UWM095 | 6.53 ± 0.03 | 6.52 ± 0.01 | 6.52 ± 0.01 |
S. dasyclados UWM155 | 6.52 ± 0.04 | 6.50 ± 0.02 | 6.51 ± 0.02 |
S. fragilis UWM195 | 6.41 ± 0.05 | 6.36 ± 0.02 | 6.38 ± 0.03 |
S. pentandra UWM035 | 6.57 ± 0.09 | 6.35 ± 0.03 | 6.46 ± 0.06 |
S. triandra UWM198 | 6.46 ± 0.04 | 6.34 ± 0.01 | 6.40 ± 0.03 |
S. viminalis Żubr | 6.47 ± 0.04 | 6.42 ± 0.02 | 6.45 ± 0.02 |
S. viminalis × S. purpurea UWM033 | 6.54 ± 0.09 | 6.43 ± 0.01 | 6.48 ± 0.05 |
Mean | 6.47 ± 0.02 X | 6.43 ± 0.01 Y | 6.45 ± 0.01 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 0.017 ± 0.003 abc | 0.016 ± 0.002 abc | 0.017 ± 0.001 ABC |
P. nigra × P. maximowiczii Max-5 | 0.015 ± 0.002 abc | 0.019 ± 0.001 ab | 0.017 ± 0.001 ABC |
P. max. × P. trich. Hybryda275 | 0.018 ± 0.001 abc | 0.016 ± 0.002 abc | 0.017 ± 0.001 ABC |
P. max. × P. trich. Androscoggin | 0.018 ± 0.001 abc | 0.014 ± 0.002 abc | 0.016 ± 0.001 ABC |
P. balsamifera UWM2 | 0.012 ± 0.001 c | 0.014 ± 0.001 abc | 0.013 ± 0.001 C |
P. balsamifera UWM3 | 0.015 ± 0.002 abc | 0.013 ± 0.001 bc | 0.014 ± 0.001 BC |
S. alba UWM200 | 0.018 ± 0.001 abc | 0.018 ± 0.001 abc | 0.018 ± 0.001 A |
S. alba UWM095 | 0.017 ± 0.002 abc | 0.015 ± 0.002 abc | 0.016 ± 0.002 ABC |
S. dasyclados UWM155 | 0.017 ± 0.001 abc | 0.014 ± 0.002 abc | 0.015 ± 0.001 ABC |
S. fragilis UWM195 | 0.019 ± 0.001 ab | 0.019 ± 0.001 abc | 0.019 ± 0.001 A |
S. pentandra UWM035 | 0.016 ± 0.001 abc | 0.017 ± 0.001 abc | 0.017 ± 0.001 ABC |
S. triandra UWM198 | 0.020 ± 0.001 a | 0.013 ± 0.002 bc | 0.017 ± 0.002 ABC |
S. viminalis Żubr | 0.018 ± 0.002 abc | 0.018 ± 0.001 abc | 0.018 ± 0.001 AB |
S. viminalis × S. purpurea UWM033 | 0.020 ± 0.001 a | 0.018 ± 0.001 abc | 0.019 ± 0.001 A |
Mean | 0.017 ± 0.001 X | 0.016 ± 0.001 Y | 0.017 ± 0.001 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 4.03 ± 0.24 cdef | 4.04 ± 0.11 cdef | 4.03 ± 0.12 B |
P. nigra × P. maximowiczii Max-5 | 4.78 ± 0.14 bc | 1.64 ± 0.07 mn | 3.21 ± 0.71 DE |
P. max. × P. trich. Hybryda275 | 3.79 ± 0.01 def | 1.94 ± 0.23 lmn | 2.86 ± 0.43 EF |
P. max. × P. trich. Androscoggin | 3.98 ± 0.01 cdef | 1.92 ± 0.02 lmn | 2.95 ± 0.46 EF |
P. balsamifera UWM2 | 5.28 ± 0.17 ab | 2.69 ± 0.17 ijkl | 3.99 ± 0.59 BC |
P. balsamifera UWM3 | 5.73 ± 0.05 a | 3.51 ± 0.02 efgh | 4.62 ± 0.50 A |
S. alba UWM200 | 2.50 ± 0.04 ijkl | 3.27 ± 0.01 fghi | 2.89 ± 0.17 EF |
S. alba UWM095 | 4.14 ± 0.13 cde | 2.50 ± 0.12 ijkl | 3.32 ± 0.38 DE |
S. dasyclados UWM155 | 4.11 ± 0.09 cde | 2.87 ± 0.07 hijk | 3.49 ± 0.28 CD |
S. fragilis UWM195 | 4.38 ± 0.04 cd | 2.31 ± 0.06 jklm | 3.34 ± 0.46 DE |
S. pentandra UWM035 | 3.08 ± 0.03 ghij | 2.00 ± 0.04 lmn | 2.54 ± 0.24 F |
S. triandra UWM198 | 4.77 ± 0.10 bc | 2.24 ± 0.09 klmn | 3.51 ± 0.57 CD |
S. viminalis Żubr | 3.81 ± 0.51 def | 1.44 ± 0.12 n | 2.62 ± 0.58 F |
S. viminalis × S. purpurea UWM033 | 3.91 ± 0.08 def | 1.98 ± 0.22 lmn | 2.94 ± 0.45 EF |
Mean | 4.16 ± 0.13 X | 2.45 ± 0.12 Y | 3.31 ± 0.13 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 8.32 ± 0.22 bc | 7.29 ± 0.06 de | 7.80 ± 0.25 A |
P. nigra × P. maximowiczii Max-5 | 8.04 ± 0.16 cd | 4.11 ± 0.02 no | 6.08 ± 0.88 DE |
P. max. × P. trich. Hybryda275 | 5.46 ± 0.03 ijk | 4.38 ± 0.05 mno | 4.92 ± 0.24 GH |
P. max. × P. trich. Androscoggin | 5.78 ± 0.13 hij | 3.69 ± 0.04 o | 4.73 ± 0.47 H |
P. balsamifera UWM2 | 9.04 ± 0.16 ab | 5.38 ± 0.02 ijk | 7.21 ± 0.82 B |
P. balsamifera UWM3 | 9.42 ± 0.21 a | 5.21 ± 0.11 klm | 7.31 ± 0.95 AB |
S. alba UWM200 | 4.93 ± 0.04 lmn | 6.15 ± 0.21 ghi | 5.54 ± 0.29 EF |
S. alba UWM095 | 7.27 ± 0.12 def | 6.43 ± 0.06 fgh | 6.85 ± 0.20 BC |
S. dasyclados UWM155 | 6.72 ± 0.34 efg | 4.69 ± 0.44 lmn | 5.70 ± 0.52 EF |
S. fragilis UWM195 | 8.16 ± 0.09 c | 5.02 ± 0.02 klm | 6.59 ± 0.70 CD |
S. pentandra UWM035 | 5.80 ± 0.08 hij | 5.10 ± 0.17 klm | 5.45 ± 0.18 FG |
S. triandra UWM198 | 9.49 ± 0.11 a | 4.62 ± 0.15 lmn | 7.06 ± 1.09 BC |
S. viminalis Żubr | 6.65 ± 0.16 efg | 4.11 ± 0.03 no | 5.38 ± 0.57 FG |
S. viminalis × S. purpurea UWM033 | 6.32 ± 0.01 gh | 4.78 ± 0.05 lmn | 5.55 ± 0.35 EF |
Mean | 7.24 ± 0.23 X | 5.07 ± 0.15 Y | 6.16 ± 0.18 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 5.44 ± 0.12 cd | 3.88 ± 0.02 ijklm | 4.66 ± 0.35 C |
P. nigra × P. maximowiczii Max-5 | 4.79 ± 0.01 efg | 4.43 ± 0.05 gh | 4.61 ± 0.08 C |
P. max. × P. trich. Hybryda275 | 4.14 ± 0.10 hijk | 3.47 ± 0.11 lmn | 3.81 ± 0.17 EF |
P. max. × P. trich. Androscoggin | 4.38 ± 0.08 ghi | 3.90 ± 0.02 ijklm | 4.14 ± 0.11 D |
P. balsamifera UWM2 | 4.52 ± 0.05 fgh | 3.39 ± 0.02 mn | 3.96 ± 0.25 DE |
P. balsamifera UWM3 | 5.01 ± 0.11 def | 5.39 ± 0.08 cd | 5.20 ± 0.11 B |
S. alba UWM200 | 3.76 ± 0.06 jklmn | 4.06 ± 0.11 hijkl | 3.91 ± 0.09 DE |
S. alba UWM095 | 5.84 ± 0.16 c | 5.07 ± 0.06 de | 5.45 ± 0.19 B |
S. dasyclados UWM155 | 4.41 ± 0.13 gh | 3.84 ± 0.04 jklmn | 4.12 ± 0.14 DE |
S. fragilis UWM195 | 7.48 ± 0.01 a | 5.30 ± 0.05 d | 6.39 ± 0.49 A |
S. pentandra UWM035 | 4.03 ± 0.03 hijkl | 4.38 ± 0.10 ghi | 4.21 ± 0.09 D |
S. triandra UWM198 | 6.61 ± 0.19 b | 3.71 ± 0.19 jklmn | 5.16 ± 0.66 B |
S. viminalis Żubr | 3.35 ± 0.02 n | 3.72 ± 0.09 jklmn | 3.53 ± 0.09 F |
S. viminalis × S. purpurea UWM033 | 4.33 ± 0.02 hgij | 3.62 ± 0.11 klmn | 3.98 ± 0.17 DE |
Mean | 4.86 ± 0.17 X | 4.15 ± 0.10 Y | 4.51 ± 0.11 |
References
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Akincza, M. Bioenergy Technologies and Biomass Potential Vary in Northern European Countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Ceotto, E.; Castelli, F.; Moschella, A.; Diozzi, M.; Di Candilo, M. Cattle Slurry Fertilization to Giant Reed (Arundo donax L.): Biomass Yield and Nitrogen Use Efficiency. Bioenergy Res. 2015, 8, 1252–1262. [Google Scholar] [CrossRef]
- Ceotto, E.; Castelli, F.; Moschella, A.; Diozzi, M.; Di Candilo, M. Poplar Short Rotation Coppice Is Not a First Choice Crop for Cattle Slurry Fertilization: Biomass Yield and Nitrogen-Use Efficiency. Ind. Crops Prod. 2016, 85, 167–173. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass Yield and Energy Balance of Virginia Fanpetals in Different Production Technologies in North-Eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Kozak, M. Sewage Sludge and the Energy Balance of Jerusalem Artichoke Production—A Case Study in North-Eastern Poland. Energy 2021, 236, 121545. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards Identifying Industrial Crop Types and Associated Agronomies to Improve Biomass Production from Marginal Lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Dillen, S.Y.; Djomo, S.N.; Al Afas, N.; Vanbeveren, S.; Ceulemans, R. Biomass Yield and Energy Balance of a Short-Rotation Poplar Coppice with Multiple Clones on Degraded Land during 16 Years. Biomass Bioenergy 2013, 56, 157–165. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Stachowicz, P. Black Locust, Poplar or Willow? Yield and Energy Value in Three Consecutive Four-Year Harvest Rotations. Ind. Crops Prod. 2023, 193, 116197. [Google Scholar] [CrossRef]
- Monti, A.; Zanetti, F.; Scordia, D.; Testa, G.; Cosentino, S.L. What to Harvest When? Autumn, Winter, Annual and Biennial Harvesting of Giant Reed, Miscanthus and Switchgrass in Northern and Southern Mediterranean Area. Ind. Crops Prod. 2015, 75, 129–134. [Google Scholar] [CrossRef]
- Amaducci, S.; Facciotto, G.; Bergante, S.; Perego, A.; Serra, P.; Ferrarini, A.; Chimento, C. Biomass Production and Energy Balance of Herbaceous and Woody Crops on Marginal Soils in the Po Valley. GCB Bioenergy 2017, 9, 31–45. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Radzikowski, P.; Matyka, M.; Berbeć, A.K. Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland. Agriculture 2020, 10, 636. [Google Scholar] [CrossRef]
- Parajuli, R.; Knudsen, M.T.; Dalgaard, T. Multi-criteria Assessment of Yellow, Green, and Woody Biomasses: Pre-screening of Potential Biomasses as Feedstocks for Biorefineries. Biofuels Bioprod. Biorefining 2015, 9, 545–566. [Google Scholar] [CrossRef]
- Parajuli, R.; Dalgaard, T.; Jørgensen, U.; Adamsen, A.P.S.; Knudsen, M.T.; Birkved, M.; Gylling, M.; Schjørring, J.K. Biorefining in the Prevailing Energy and Materials Crisis: A Review of Sustainable Pathways for Biorefinery Value Chains and Sustainability Assessment Methodologies. Renew. Sustain. Energy Rev. 2015, 43, 244–263. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Oleszek, W. Phytochemicals in Bioenergy Crops. Phytochem. Rev. 2019, 18, 893–927. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Tyśkiewicz, K.; Olba-Zięty, E.; Graban, Ł.; Lajszner, W.; Załuski, D.; Wiejak, R.; Kamiński, P.; et al. How Does Extraction of Biologically Active Substances with Supercritical Carbon Dioxide Affect Lignocellulosic Biomass Properties? Wood Sci. Technol. 2020, 54, 519–546. [Google Scholar] [CrossRef]
- Walter, M.; Brzozowski, B.; Adamczak, M. Effect of Supercritical Extract from Black Poplar and Basket Willow on the Quality of Natural and Probiotic Drinkable Yogurt. Animals 2021, 11, 2997. [Google Scholar] [CrossRef] [PubMed]
- Sulima, P.; Przyborowski, J.A. Purple Willow (Salix purpurea L.) and Its Potential Uses for the Treatment of Arthritis and Rheumatism. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 535–551. [Google Scholar]
- Valette, N.; Perrot, T.; Sormani, R.; Gelhaye, E.; Morel-Rouhier, M. Antifungal Activities of Wood Extractives. Fungal Biol. Rev. 2017, 31, 113–123. [Google Scholar] [CrossRef]
- Montinari, M.R.; Minelli, S.; De Caterina, R. The First 3500 years of Aspirin History from Its Roots—A Concise Summary. Vasc. Pharmacol. 2019, 113, 1–8. [Google Scholar] [CrossRef]
- Sulima, P.; Krauze-Baranowska, M.; Przyborowski, J.A. Variations in the Chemical Composition and Content of Salicylic Glycosides in the Bark of Salix Purpurea from Natural Locations and Their Significance for Breeding. Fitoterapia 2017, 118, 118–125. [Google Scholar] [CrossRef]
- Ostolski, M.; Adamczak, M.; Brzozowski, B.; Wiczkowski, W. Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar. Molecules 2021, 26, 545. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra, G.A.; Heinrich, E.U.; Kelber, O.; Weiser, D.; Metz, J.; Kinscherf, R. Anti-Inflammatory Effects of the Willow Bark Extract STW 33-I (Proaktiv®) in LPS-Activated Human Monocytes and Differentiated Macrophages. Phytomedicine 2010, 17, 1106–1113. [Google Scholar] [CrossRef]
- Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-Sulfate: A New Salicinoid from Willow and Implications for Herbal Medicine. Fitoterapia 2018, 127, 166–172. [Google Scholar] [CrossRef]
- Gil, Ł. Short Rotation Dendromass Bioactive Compound Contents, Thermophysical Properties and Elementary Composition. Ph.D. Thesis, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2021; p. 223. [Google Scholar]
- Stolarski, M.J.; Gil, Ł.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E. Short Rotation Woody Crops as a Source of Bioactive Compounds Depending on Genotype and Harvest Cycle. Ind. Crops Prod. 2022, 180, 114770. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-2; Solid Biofuels–Determination of Moisture Content–Dryer Method–Part 2: Total Moisture–Simplified Method. Polish Standardization Committee: Warsaw, Poland, 2014.
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Standardization Committee: Warsaw, Poland, 2017.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 18123:2016-01; Solid Biofuels—Determination of Volatile Matter Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Standardization Committee: Warsaw, Poland, 2015.
- PN-EN ISO 16994:2016-10; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-ISO 587:2000; Solid Fuels—Determination of Chlorine Using Eschka Mixture. Polish Standardization Committee: Warsaw, Poland, 2000.
- PN-EN ISO 16472:2007; Determination of Amylase-Treated Neutral Detergent Fibre Content (ANDF). Polish Standardization Committee: Warsaw, Poland, 2007.
- PN-EN ISO 13906:2009; Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. Polish Standardization Committee: Warsaw, Poland, 2009.
- Warmiński, K.; Stolarski, M.J.; Gil, Ł.; Krzyżaniak, M. Willow Bark and Wood as a Source of Bioactive Compounds and Bioenergy Feedstock. Ind. Crops Prod. 2021, 171, 113976. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow Biomass and Cuttings’ Production Potential over Ten Successive Annual Harvests. Biomass Bioenergy 2017, 105, 230–247. [Google Scholar] [CrossRef]
- Bullard, M.J.; Mustill, S.J.; McMillan, S.D.; Nixon, P.M.I.; Carver, P.; Britt, C.P. Yield Improvements through Modification of Planting Density and Harvest Frequency in Short Rotation Coppice Salix Spp.—1. Yield Response in Two Morphologically Diverse Varieties. Biomass Bioenergy 2002, 22, 15–25. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef]
- Sabatti, M.; Fabbrini, F.; Harfouche, A.; Beritognolo, I.; Mareschi, L.; Carlini, M.; Paris, P.; Scarascia-Mugnozza, G. Evaluation of Biomass Production Potential and Heating Value of Hybrid Poplar Genotypes in a Short-Rotation Culture in Italy. Ind. Crops Prod. 2014, 61, 62–73. [Google Scholar] [CrossRef]
- Guidi, W.; Tozzini, C.; Bonari, E. Estimation of Chemical Traits in Poplar Short-Rotation Coppice at Stand Level. Biomass Bioenergy 2009, 33, 1703–1709. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I. Field Performance and Biomass Production of 12 Willow and Poplar Clones in Short-Rotation Coppice in Southern Quebec (Canada). Biomass Bioenergy 2005, 29, 1–9. [Google Scholar] [CrossRef]
- Bergante, S.; Facciotto, G. Nine Years Measurements in Italian SRC Trial in 14 Poplar and 6 Willow Clones. In Proceedings of the 19th European Biomass Conference and Exhibition, Berlin, Germany, 6–10 June 2011; pp. 6–10. [Google Scholar]
- Labrecque, M.; Teodorescu, T.I. High Biomass Yield Achieved by Salix Clones in SRIC Following Two 3-Year Coppice Rotations on Abandoned Farmland in Southern Quebec, Canada. Biomass Bioenergy 2003, 25, 135–146. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Cameron, K.D.; Stipanovic, A.J.; Abrahamson, L.P.; Volk, T.A.; Smart, L.B. Yield and Woody Biomass Traits of Novel Shrub Willow Hybrids at Two Contrasting Sites. Bioenergy Res. 2013, 6, 533–546. [Google Scholar] [CrossRef]
- Sleight, N.J.; Volk, T.A.; Johnson, G.A.; Eisenbies, M.H.; Shi, S.; Fabio, E.S.; Pooler, P.S. Change in Yield Between First and Second Rotations in Willow (Salix Spp.) Biomass Crops Is Strongly Related to the Level of First Rotation Yield. Bioenergy Res. 2016, 9, 270–287. [Google Scholar] [CrossRef]
- Aronsson, P.; Rosenqvist, H.; Dimitriou, I. Impact of Nitrogen Fertilization to Short-Rotation Willow Coppice Plantations Grown in Sweden on Yield and Economy. Bioenergy Res. 2014, 7, 993–1001. [Google Scholar] [CrossRef]
- Nord-Larsen, T.; Sevel, L.; Raulund-Rasmussen, K. Commercially Grown Short Rotation Coppice Willow in Denmark: Biomass Production and Factors Affecting Production. Bioenergy Res. 2015, 8, 325–339. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow Production during 12 Consecutive Years—The Effects of Harvest Rotation, Planting Density and Cultivar on Biomass Yield. GCB Bioenergy 2019, 11, 635–656. [Google Scholar] [CrossRef]
- Geyer, W. Biomass Production in the Central Great Plains USA under Various Coppice Regimes. Biomass Bioenergy 2006, 30, 778–783. [Google Scholar] [CrossRef]
- Grünewald, H.; Böhm, C.; Quinkenstein, A.; Grundmann, P.; Eberts, J.; von Wühlisch, G. Robinia pseudoacacia L.: A Lesser Known Tree Species for Biomass Production. Bioenergy Res. 2009, 2, 123–133. [Google Scholar] [CrossRef]
- Gruenewald, H.; Brandt, B.K.V.; Schneider, B.U.; Bens, O.; Kendzia, G.; Hüttl, R.F. Agroforestry Systems for the Production of Woody Biomass for Energy Transformation Purposes. Ecol. Eng. 2007, 29, 319–328. [Google Scholar] [CrossRef]
- Rédei, K.; Veperdi, I. The Role of Black Locust (Robinia pseudoacacia L.) in Establishment of Short-Rotation Energy Plantations in Hungary. Int. J. Hortic. Sci. 2009, 15, 41–44. [Google Scholar] [CrossRef]
- Vande Walle, I.; Van Camp, N.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-Rotation Forestry of Birch, Maple, Poplar and Willow in Flanders (Belgium) II. Energy Production and CO2 Emission Reduction Potential. Biomass Bioenergy 2007, 31, 276–283. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and Economic Evaluation of a Poplar Plantation for Woodchips Production in Italy. Biomass Bioenergy 2014, 60, 164–170. [Google Scholar] [CrossRef]
- Manzone, M.; Calvo, A. Energy and CO2 Analysis of Poplar and Maize Crops for Biomass Production in North Italy. Renew. Energy 2016, 86, 675–681. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and Economic Sustainability of Woodchip Production by Black Locust (Robinia pseudoacacia L.) Plantations in Italy. Fuel 2015, 140, 555–560. [Google Scholar] [CrossRef]
- Stachowicz, P.; Stolarski, M.J. Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass. Energies 2022, 16, 305. [Google Scholar] [CrossRef]
- Gasol, C.M.; Brun, F.; Mosso, A.; Rieradevall, J.; Gabarrell, X. Economic Assessment and Comparison of Acacia Energy Crop with Annual Traditional Crops in Southern Europe. Energy Policy 2010, 38, 592–597. [Google Scholar] [CrossRef]
- Mitsui, Y.; Seto, S.; Nishio, M.; Minato, K.; Ishizawa, K.; Satoh, S. Willow Clones with High Biomass Yield in Short Rotation Coppice in the Southern Region of Tohoku District (Japan). Biomass Bioenergy 2010, 34, 467–473. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy Feedstock Characteristics of Willow and Hybrid Poplar Clones at Harvest Age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Monedero, E.; Hernández, J.; Collado, R. Combustion-Related Properties of Poplar, Willow and Black Locust to Be Used as Fuels in Power Plants. Energies 2017, 10, 997. [Google Scholar] [CrossRef]
- Gendek, A.; Malatak, J.; Velebil, J. Effect of Harvest Method and Composition of Wood Chips on Their Caloric Value and Ash Content. Sylwan 2018, 162, 248–257. [Google Scholar]
- Fabio, E.S.; Volk, T.A.; Miller, R.O.; Serapiglia, M.J.; Kemanian, A.R.; Montes, F.; Kuzovkina, Y.A.; Kling, G.J.; Smart, L.B. Contributions of Environment and Genotype to Variation in Shrub Willow Biomass Composition. Ind. Crops Prod. 2017, 108, 149–161. [Google Scholar] [CrossRef]
- Bajcar, M.; Zaguła, G.; Saletnik, B.; Tarapatskyy, M.; Puchalski, C. Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass. Energies 2018, 11, 2919. [Google Scholar] [CrossRef]
- Straker, K.C.; Quinn, L.D.; Voigt, T.B.; Lee, D.K.; Kling, G.J. Black Locust as a Bioenergy Feedstock: A Review. Bioenergy Res. 2015, 8, 1117–1135. [Google Scholar] [CrossRef]
- Jagustyn, B.; Patyna, I.; Skawińska, A. Evaluation of Physicochemical Properties of Palm Kernel Shell as Agro Biomass Used in the Energy Industry. Chemik 2013, 67, 552–559. [Google Scholar]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, Ł.; Lajszner, W. Short Rotation Coppices, Grasses and Other Herbaceous Crops: Biomass Properties versus 26 Genotypes and Harvest Time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Waliszewska, B.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Śnieg, M. Willow Biomass as Feedstock for an Integrated Multi-Product Biorefinery. Ind. Crops Prod. 2014, 58, 230–237. [Google Scholar] [CrossRef]
- Przybysz, K.; Małachowska, E.; Martyniak, D.; Boruszewski, P.; Iłowska, J.; Kalinowska, H.; Przybysz, P. Yield of Pulp, Dimensional Properties of Fibers, and Properties of Paper Produced from Fast Growing Trees and Grasses. Bioresources 2018, 13, 1372–1387. [Google Scholar] [CrossRef]
- Baker, P.; Charlton, A.; Johnston, C.; Leahy, J.J.; Lindegaard, K.; Pisano, I.; Prendergast, J.; Preskett, D.; Skinner, C. A Review of Willow (Salix spp.) as an Integrated Biorefinery Feedstock. Ind. Crops Prod. 2022, 189, 115823. [Google Scholar] [CrossRef]
- Gao, J.; Jebrane, M.; Terziev, N.; Daniel, G. Evaluation of Wood Quality Traits in Salix Viminalis Useful for Biofuels: Characterization and Method Development. Forests 2021, 12, 1048. [Google Scholar] [CrossRef]
- Jerbi, A.; Kalwahali-Muissa, M.; Krygier, R.; Johnston, C.; Blank, M.; Sarrazin, M.; Barnabé, S.; Laur, J.; Labrecque, M.; Brereton, N.J.B.; et al. Comparative Wood Anatomy, Composition and Saccharification Yields of Wastewater Irrigated Willow Cultivars at Three Plantations in Canada and Northern Ireland. Biomass Bioenergy 2023, 170, 106683. [Google Scholar] [CrossRef]
Source of Variation | Degrees of Freedom | Dry Wood Yield | MC | VM | H | S | Cl | For the Rest Features 1 |
---|---|---|---|---|---|---|---|---|
Genotype | 13 | <0.001 * | <0.001 * | <0.001 * | 0.058 | <0.001 * | <0.001 * | <0.001 * |
Harvest cycle | 1 | <0.001 * | <0.001 * | <0.001 * | 0.007 * | <0.001 * | 0.008 * | <0.001 * |
Genotype × Harvest cycle | 13 | <0.001 * | <0.001 * | 0.001 * | 0.056 | 0.078 | 0.010 * | <0.001 * |
Error | 56 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 32.61 ± 1.13 m | 30.6 ± 0.16 m | 31.61 ± 0.68 H |
P. nigra × P. maximowiczii Max-5 | 54.71 ± 0.39 abc | 57.31 ± 0.11 a | 56.01 ± 0.61 A |
P. max. × P. trich. Hybryda275 | 53.67 ± 1.56 bc | 53.37 ± 0.18 cd | 53.52 ± 0.71 BC |
P. max. × P. trich. Androscoggin | 55.13 ± 1.25 abc | 53.22 ± 0.30 cde | 54.17 ± 0.72 AB |
P. balsamifera UWM2 | 56.97 ± 0.99 ab | 54.72 ± 0.08 abc | 55.84 ± 0.67 A |
P. balsamifera UWM3 | 54.58 ± 0.53 abc | 55.43 ± 0.94 abc | 55.00 ± 0.52 AB |
S. alba UWM200 | 49.08 ± 0.29 ghi | 49.41 ± 0.42 fghi | 49.24 ± 0.24 DEF |
S. alba UWM095 | 48.57 ± 0.60 hi | 46.37 ± 0.13 ijk | 47.47 ± 0.57 F |
S. dasyclados UWM155 | 53.07 ± 0.36 cde | 49.75 ± 0.37 efghi | 51.41 ± 0.78 CD |
S. fragilis UWM195 | 52.48 ± 0.39 cdefg | 49.58 ± 0.48 fghi | 51.03 ± 0.71 D |
S. pentandra UWM035 | 44.04 ± 0.51 jkl | 42.60 ± 0.16 l | 43.32 ± 0.40 G |
S. triandra UWM198 | 52.66 ± 0.79 cdef | 43.87 ± 0.52 kl | 48.27 ± 2.01 F |
S. viminalis Żubr | 49.99 ± 0.78 defgh | 47.46 ± 0.03 hij | 48.73 ± 0.66 EF |
S. viminalis × S. purpurea UWM033 | 53.86 ± 0.54 abc | 47.93 ± 0.19 hi | 50.89 ± 1.35 DE |
Mean | 50.82 ± 0.95 X | 48.69 ± 1.02 Y | 49.75 ± 0.70 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 19.38 ± 0.08 fg | 19.33 ± 0.01 g | 19.36 ± 0.04 F |
P. nigra × P. maximowiczii Max-5 | 19.84 ± 0.06 abc | 19.86 ± 0.05 a | 19.85 ± 0.04 A |
P. max. × P. trich. Hybryda275 | 19.48 ± 0.05 defg | 19.37 ± 0.02 fg | 19.43 ± 0.03 EF |
P. max. × P. trich. Androscoggin | 19.55 ± 0.04 cdefg | 19.46 ± 0.02 defg | 19.50 ± 0.03 CDEF |
P. balsamifera UWM2 | 19.54 ± 0.10 cdefg | 19.60 ± 0.01 abcdef | 19.57 ± 0.05 CDE |
P. balsamifera UWM3 | 19.50 ± 0.08 defg | 19.78 ± 0.02 abcd | 19.64 ± 0.07 BCD |
S. alba UWM200 | 19.55 ± 0.09 bcdef | 19.50 ± 0.03 defg | 19.53 ± 0.04 CDE |
S. alba UWM095 | 19.51 ± 0.06 defg | 19.87 ± 0.01 a | 19.69 ± 0.09 ABC |
S. dasyclados UWM155 | 19.38 ± 0.08 fg | 19.58 ± 0.01 abcdef | 19.48 ± 0.06 DEF |
S. fragilis UWM195 | 19.47 ± 0.04 defg | 19.61 ± 0.01 abcdef | 19.54 ± 0.04 CDE |
S. pentandra UWM035 | 19.87 ± 0.06 a | 19.75 ± 0.02 abcde | 19.81 ± 0.04 AB |
S. triandra UWM198 | 19.35 ± 0.04 g | 19.53 ± 0.01 defg | 19.44 ± 0.04 EF |
S. viminalis Żubr | 19.52 ± 0.07 defg | 19.67 ± 0.02 abcdef | 19.59 ± 0.05 CDE |
S. viminalis × S. purpurea UWM033 | 19.34 ± 0.16 g | 19.67 ± 0.01 abcdef | 19.50 ± 0.10 CDEF |
Mean | 19.52 ± 0.03 Y | 19.61 ± 0.03 X | 19.57 ± 0.02 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 0.81 ± 0.04 a | 0.57 ± 0.01 efghijk | 0.69 ± 0.06 A |
P. nigra × P. maximowiczii Max-5 | 0.73 ± 0.02 ab | 0.61 ± 0.02 cdefghi | 0.67 ± 0.03 AB |
P. max. × P. trich. Hybryda275 | 0.62 ± 0.03 bcdefg | 0.49 ± 0.01 ijk | 0.56 ± 0.03 CDE |
P. max. × P. trich. Androscoggin | 0.64 ± 0.02 bcdefg | 0.51 ± 0.02 hijk | 0.57 ± 0.03 CDE |
P. balsamifera UWM2 | 0.65 ± 0.02 bcdef | 0.59 ± 0.01 defghij | 0.62 ± 0.02 ABC |
P. balsamifera UWM3 | 0.65 ± 0.02 bcdef | 0.69 ± 0.01 bcde | 0.67 ± 0.01 AB |
S. alba UWM200 | 0.64 ± 0.02 bcdefg | 0.58 ± 0.01 efghijk | 0.61 ± 0.02 BCD |
S. alba UWM095 | 0.55 ± 0.01 fghijk | 0.49 ± 0.01 jk | 0.52 ± 0.01 E |
S. dasyclados UWM155 | 0.56 ± 0.02 fghijk | 0.52 ± 0.01 ghijk | 0.54 ± 0.01 DE |
S. fragilis UWM195 | 0.63 ± 0.03 bcdefg | 0.57 ± 0.01 fghijk | 0.60 ± 0.02 BCD |
S. pentandra UWM035 | 0.64 ± 0.02 bcdefg | 0.48 ± 0.01 k | 0.56 ± 0.04 CDE |
S. triandra UWM198 | 0.70 ± 0.03 abcd | 0.63 ± 0.02 bcdefg | 0.67 ± 0.02 AB |
S. viminalis Żubr | 0.64 ± 0.04 bcdefg | 0.58 ± 0.01 efghijk | 0.61 ± 0.02 BCD |
S. viminalis × S. purpurea UWM033 | 0.71 ± 0.05 abc | 0.60 ± 0.02 cdefghi | 0.66 ± 0.03 AB |
Mean | 0.65 ± 0.01 X | 0.56 ± 0.01 Y | 0.61 ± 0.01 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 54.36 ± 0.21 g | 56.10 ± 0.09 abcd | 55.23 ± 0.40 AB |
P. nigra × P. maximowiczii Max-5 | 55.56 ± 0.09 abcdef | 56.26 ± 0.09 ab | 55.91 ± 0.17 A |
P. max. × P. trich. Hybryda275 | 55.11 ± 0.12 cdefg | 55.37 ± 0.05 bcdefg | 55.24 ± 0.08 AB |
P. max. × P. trich. Androscoggin | 55.42 ± 0.23 bcdefg | 54.65 ± 0.01 fg | 55.03 ± 0.20 B |
P. balsamifera UWM2 | 54.84 ± 0.30 efg | 56.14 ± 0.05 ab | 55.49 ± 0.32 AB |
P. balsamifera UWM3 | 55.28 ± 0.38 cdefg | 56.65 ± 0.13 a | 55.96 ± 0.35 A |
S. alba UWM200 | 55.22 ± 0.13 cdefg | 56.55 ± 0.09 ab | 55.88 ± 0.31 A |
S. alba UWM095 | 55.59 ± 0.22 abcdef | 56.25 ± 0.12 ab | 55.92 ± 0.18 A |
S. dasyclados UWM155 | 55.37 ± 0.29 bcdefg | 56.16 ± 0.15 ab | 55.76 ± 0.23 AB |
S. fragilis UWM195 | 54.87 ± 0.45 efg | 55.54 ± 0.23 abcdefg | 55.20 ± 0.27 AB |
S. pentandra UWM035 | 55.91 ± 0.19 abcde | 55.61 ± 0.06 abcdef | 55.76 ± 0.11 AB |
S. triandra UWM198 | 54.76 ± 0.40 efg | 55.46 ± 0.12 abcdefg | 55.11 ± 0.24 B |
S. viminalis Żubr | 54.89 ± 0.18 defg | 55.59 ± 0.14 abcdef | 55.24 ± 0.19 AB |
S. viminalis × S. purpurea UWM033 | 55.05 ± 0.45 cdefg | 55.69 ± 0.22 abcdef | 55.37 ± 0.27 AB |
Mean | 55.16 ± 0.09 Y | 55.86 ± 0.09 X | 55.51 ± 0.07 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 0.45 ± 0.01 a | 0.31 ± 0.01 cd | 0.38 ± 0.03 A |
P. nigra × P. maximowiczii Max-5 | 0.43 ± 0.01 ab | 0.16 ± 0.02 ijk | 0.29 ± 0.06 B |
P. max. × P. trich. Hybryda275 | 0.29 ± 0.02 de | 0.17 ± 0.01 hijk | 0.23 ± 0.03 CDE |
P. max. × P. trich. Androscoggin | 0.29 ± 0.03 de | 0.18 ± 0.01 hijk | 0.24 ± 0.03 CDE |
P. balsamifera UWM2 | 0.32 ± 0.01 cd | 0.13 ± 0,01 jk | 0.23 ± 0.04 CDE |
P. balsamifera UWM3 | 0.38 ± 0.02 bc | 0.16 ± 0.02 ijk | 0.27 ± 0.05 BC |
S. alba UWM200 | 0.24 ± 0.01 efgh | 0.19 ± 0.02 ghij | 0.21 ± 0.01 DEF |
S. alba UWM095 | 0.31 ± 0.01 cd | 0.20 ± 0.02 fghi | 0.26 ± 0.03 BCD |
S. dasyclados UWM155 | 0.29 ± 0.02 de | 0.16 ± 0.01 ijk | 0.23 ± 0.03 CDE |
S. fragilis UWM195 | 0.26 ± 0.03 def | 0.14 ± 0.02 ijk | 0.20 ± 0.03 EFG |
S. pentandra UWM035 | 0.21 ± 0.01 fghi | 0.12 ± 0.02 k | 0.17 ± 0.02 G |
S. triandra UWM198 | 0.26 ± 0.03 def | 0.12 ± 0.01 k | 0.19 ± 0.03 EFG |
S. viminalis Żubr | 0.23 ± 0.01 efgh | 0.12 ± 0.01 k | 0.18 ± 0.03 FG |
S. viminalis × S. purpurea UWM033 | 0.26 ± 0.01 def | 0.13 ± 0.01 jk | 0.19 ± 0.03 EFG |
Mean | 0.30 ± 0.01 X | 0.16 ± 0.01 Y | 0.23 ± 0.01 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 0.038 ± 0.002 | 0.029 ± 0.001 | 0.033 ± 0.002 A |
P. nigra × P. maximowiczii Max-5 | 0.026 ± 0.001 | 0.013 ± 0.001 | 0.020 ± 0.003 D |
P. max. × P. trich. Hybryda275 | 0.024 ± 0.002 | 0.016 ± 0.002 | 0.020 ± 0.002 D |
P. max. × P. trich. Androscoggin | 0.023 ± 0.001 | 0.017 ± 0.001 | 0.020 ± 0.001 D |
P. balsamifera UWM2 | 0.025 ± 0.001 | 0.017 ± 0.001 | 0.021 ± 0.002 CD |
P. balsamifera UWM3 | 0.029 ± 0.002 | 0.025 ± 0.001 | 0.027 ± 0.001 B |
S. alba UWM200 | 0.029 ± 0.001 | 0.023 ± 0.001 | 0.026 ± 0.002 BC |
S. alba UWM095 | 0.026 ± 0.001 | 0.024 ± 0.002 | 0.025 ± 0.001 BCD |
S. dasyclados UWM155 | 0.026 ± 0.001 | 0.023 ± 0.001 | 0.024 ± 0.001 BCD |
S. fragilis UWM195 | 0.025 ± 0.003 | 0.021 ± 0.002 | 0.023 ± 0.002 BCD |
S. pentandra UWM035 | 0.025 ± 0.004 | 0.015 ± 0.001 | 0.020 ± 0.003 D |
S. triandra UWM198 | 0.028 ± 0.006 | 0.024 ± 0.001 | 0.026 ± 0.003 BC |
S. viminalis Żubr | 0.026 ± 0.002 | 0.024 ± 0.001 | 0.025 ± 0.001 BCD |
S. viminalis × S. purpurea UWM033 | 0.027 ± 0.003 | 0.020 ± 0.001 | 0.024 ± 0.002 BCD |
Mean | 0.027 ± 0.001 X | 0.021 ± 0.001 Y | 0.024 ± 0.001 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 28.32 ± 0.20 a | 26.27 ± 0.09 cd | 27.30 ± 0.47 A |
P. nigra × P. maximowiczii Max-5 | 24.62 ± 0.29 ef | 19.80 ± 0.05 l | 22.21 ± 1.09 G |
P. max. × P. trich. Hybryda275 | 27.10 ± 0.05 bc | 22.48 ± 0.11 hi | 24.79 ± 1.03 C |
P. max. × P. trich. Androscoggin | 26.90 ± 0.24 bc | 21.47 ± 0.21 jk | 24.18 ± 1.22 D |
P. balsamifera UWM2 | 27.36 ± 0.09 b | 23.94 ± 0.01 fg | 25.65 ± 0.76 B |
P. balsamifera UWM3 | 25.43 ± 0.08 de | 20.94 ± 0.14 k | 23.18 ± 1.01 E |
S. alba UWM200 | 23.71 ± 0.26 fg | 19.29 ± 0.13 lm | 21.50 ± 1.01 H |
S. alba UWM095 | 21.88 ± 0.13 ij | 19.07 ± 0.14 lm | 20.47 ± 0.63 I |
S. dasyclados UWM155 | 24.51 ± 0.07 ef | 22.07 ± 0.40 ij | 23.29 ± 0.57 E |
S. fragilis UWM195 | 23.42 ± 0.02 g | 19.01 ± 0.14 lm | 21.21 ± 0.99 H |
S. pentandra UWM035 | 22.41 ± 0.13 hi | 18.45 ± 0.26 m | 20.43 ± 0.90 I |
S. triandra UWM198 | 23.20 ± 0.06 gh | 21.23 ± 0.12 jk | 22.22 ± 0.44 G |
S. viminalis Żubr | 24.11 ± 0.04 fg | 21.69 ± 0.14 ijk | 22.90 ± 0.54 EF |
S. viminalis × S. purpurea UWM033 | 23.88 ± 0.19 fg | 20.85 ± 0.20 k | 22.36 ± 0.69 FG |
Mean | 24.77 ± 0.30 X | 21.18 ± 0.32 Y | 22.98 ± 0.29 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 43.69 ± 0.03 l | 46.83 ± 0.06 j | 45.26 ± 0.7 G |
P. nigra × P. maximowiczii Max-5 | 45.16 ± 0.22 k | 53.32 ± 0.02 ef | 49.24 ± 1.83 F |
P. max. × P. trich. Hybryda275 | 48.08 ± 0.20 i | 53.62 ± 0.18 de | 50.85 ± 1.24 E |
P. max. × P. trich. Androscoggin | 47.74 ± 0.19 i | 53.53 ± 0.10 de | 50.63 ± 1.30 E |
P. balsamifera UWM2 | 45.23 ± 0.16 k | 54.25 ± 0.09 cd | 49.74 ± 2.02 F |
P. balsamifera UWM3 | 46.38 ± 0.01 j | 52.96 ± 0.15 ef | 49.67 ± 1.47 F |
S. alba UWM200 | 50.58 ± 0.13 g | 53.27 ± 0.21 ef | 51.93 ± 0.61 CD |
S. alba UWM095 | 48.51 ± 0.12 i | 52.64 ± 0.21 f | 50.58 ± 0.93 E |
S. dasyclados UWM155 | 49.76 ± 0.14 gh | 54.80 ± 0.15 bc | 52.28 ± 1.13 ABC |
S. fragilis UWM195 | 46.00 ± 0.21 jk | 54.64 ± 0.27 bc | 50.32 ± 1.94 E |
S. pentandra UWM035 | 50.60 ± 0.03 g | 55.03 ± 0.17 bc | 52.81 ± 0.99 A |
S. triandra UWM198 | 46.01 ± 0.14 jk | 56.97 ± 0.09 a | 51.49 ± 2.45 D |
S. viminalis Żubr | 50.18 ± 0.15 gh | 55.26 ± 0.01 b | 52.72 ± 1.14 AB |
S. viminalis × S. purpurea UWM033 | 49.57 ± 0.05 h | 54.80 ± 0.3 bc | 52.18 ± 1.18 BC |
Mean | 47.68 ± 0.34 Y | 53.71 ± 0.35 X | 50.69 ± 0.41 |
Genotype | Harvest Cycle | Mean | |
---|---|---|---|
Annual | Quadrennial | ||
R. pseudoacacia | 14.23 ± 0.13 klmn | 15.73 ± 0.07 efg | 14.98 ± 0.34 FG |
P. nigra × P. maximowiczii Max-5 | 17.39 ± 0.25 b | 18.33 ± 0.13 a | 17.86 ± 0.24 A |
P. max. × P. trich. Hybryda275 | 15.22 ± 0.02 ghij | 16.05 ± 0.13 def | 15.64 ± 0.20 E |
P. max. × P. trich. Androscoggin | 15.20 ± 0.10 ghij | 17.42 ± 0.09 b | 16.31 ± 0.50 CD |
P. balsamifera UWM2 | 13.84 ± 0.14 lmno | 13.04 ± 0.12 o | 13.44 ± 0.20 I |
P. balsamifera UWM3 | 13.77 ± 0.01 mno | 15.50 ± 0.10 ghi | 14.64 ± 0.39 G |
S. alba UWM200 | 17.02 ± 0.16 bc | 17.21 ± 0.24 bc | 17.12 ± 0.14 B |
S. alba UWM095 | 16.50 ± 0.29 cde | 16.79 ± 0.07 bcd | 16.64 ± 0.15 BC |
S. dasyclados UWM155 | 14.60 ± 0.15 jklm | 14.60 ± 0.15 jklm | 14.60 ± 0.09 GH |
S. fragilis UWM195 | 14.95 ± 0.12 hijk | 16.02 ± 0.19 def | 15.49 ± 0.26 EF |
S. pentandra UWM035 | 17.17 ± 0.11 bc | 17.04 ± 0.17 bc | 17.10 ± 0.10 B |
S. triandra UWM198 | 14.69 ± 0.10 ijkl | 13.46 ± 0.13 no | 14.07 ± 0.28 H |
S. viminalis Żubr | 15.71 ± 0.29 efg | 15.21 ± 0.07 ghij | 15.46 ± 0.17 EF |
S. viminalis × S. purpurea UWM033 | 15.90 ± 0.15 ef | 15.95 ± 0.25 def | 15.93 ± 0.13 DE |
Mean | 15.44 ± 0.19 Y | 15.88 ± 0.23 X | 15.66 ± 0.15 |
Feature | Mean | Minimum Value | Maximum Value | Lower Quartile | Upper Quartile | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|
Dry wood yield (Mg ha−1 y−1 DM) | 6.73 | 2.69 | 13.06 | 4.93 | 8.54 | 2.48 | 36.89 |
Dry wood energy value (GJ ha−1 y−1) | 131.83 | 52.52 | 256.85 | 97.57 | 166.92 | 48.87 | 37.07 |
Coal equivalent (Mg ha−1 y−1) | 5.27 | 2.10 | 10.27 | 3.90 | 6.68 | 1.95 | 37.07 |
Moisture content (%) | 49.75 | 30.43 | 58.77 | 47.53 | 54.05 | 6.45 | 12.96 |
Higher heating value (MJ kg−1 DM) | 19.57 | 19.08 | 19.97 | 19.44 | 19.69 | 0.18 | 0.94 |
Ash content (% DM) | 0.61 | 0.47 | 0.86 | 0.57 | 0.65 | 0.08 | 13.52 |
Fixed carbon (% DM) | 18.96 | 17.63 | 20.39 | 18.50 | 19.33 | 0.65 | 3.43 |
Volatile matter (% DM) | 80.46 | 79.04 | 81.81 | 80.06 | 80.94 | 0.67 | 0.83 |
C (% DM) | 55.51 | 53.98 | 56.87 | 55.16 | 56.00 | 0.66 | 1.19 |
H (% DM) | 6.45 | 6.30 | 6.70 | 6.37 | 6.50 | 0.09 | 1.41 |
N (% DM) | 0.23 | 0.11 | 0.47 | 0.16 | 0.31 | 0.09 | 40.29 |
S (% DM) | 0.024 | 0.012 | 0.041 | 0.020 | 0.027 | 0.006 | 23.68 |
Cl (% DM) | 0.017 | 0.010 | 0.023 | 0.014 | 0.019 | 0.003 | 17.35 |
Cold water extracts (% DM) | 3.31 | 1.25 | 5.82 | 2.33 | 4.13 | 1.17 | 35.33 |
Hot water extracts (% DM) | 6.16 | 3.62 | 9.76 | 4.87 | 7.30 | 1.67 | 27.10 |
Other soluble substances (% DM) | 4.51 | 3.27 | 7.50 | 3.86 | 5.03 | 0.98 | 21.73 |
Hemicellulose (% DM) | 22.98 | 17.98 | 28.67 | 21.14 | 24.55 | 2.69 | 11.72 |
Cellulose (% DM) | 50.69 | 43.64 | 57.12 | 47.17 | 54.01 | 3.76 | 7.42 |
Lignin (% DM) | 15.66 | 12.82 | 18.54 | 14.71 | 16.78 | 1.35 | 8.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarski, M.J.; Gil, Ł.; Krzyżaniak, M.; Olba-Zięty, E.; Wu, A.-M. Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes. Energies 2024, 17, 1535. https://doi.org/10.3390/en17071535
Stolarski MJ, Gil Ł, Krzyżaniak M, Olba-Zięty E, Wu A-M. Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes. Energies. 2024; 17(7):1535. https://doi.org/10.3390/en17071535
Chicago/Turabian StyleStolarski, Mariusz Jerzy, Łukasz Gil, Michał Krzyżaniak, Ewelina Olba-Zięty, and Ai-Min Wu. 2024. "Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes" Energies 17, no. 7: 1535. https://doi.org/10.3390/en17071535
APA StyleStolarski, M. J., Gil, Ł., Krzyżaniak, M., Olba-Zięty, E., & Wu, A. -M. (2024). Willow, Poplar, and Black Locust Debarked Wood as Feedstock for Energy and Other Purposes. Energies, 17(7), 1535. https://doi.org/10.3390/en17071535