Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm
Abstract
:1. Introduction
2. Literature Review
2.1. Current Status of Microgrid Optimal Scheduling Research
2.2. Current Status of Research on Multi-Objective Particle Swarm Algorithms
3. Microgrid System Operational Optimization Model
3.1. Distributed Power Sources and Energy Storage Generation Characteristics in Microgrids
3.1.1. Wind Turbine (WT) Model
3.1.2. Photovoltaic Power Generation (PV)
3.1.3. Diesel Generator (DG)
3.1.4. Micro Gas Turbine (MGT)
3.1.5. Energy Storage Battery
3.2. The Multi-Objective Optimization Model for Microgrids
3.2.1. The Objective Function
- The operational cost of the microgrid
- 2.
- The environmental protection costs of the microgrid
3.2.2. The Objective Function of the Microgrid Scheduling Model
3.2.3. Constraint Conditions
4. Model Solution
4.1. Traditional PSO Algorithm
4.2. Improved PSO
4.2.1. Basic Ideas for Improving PSO Algorithm
- (1)
- Particle Swarm Algorithm with Inertia Weight: The literature suggests that improved methods can incorporate inertia factors, as shown in Equation (19).
- (2)
- Particle Swarm Algorithm with Constriction Factor: The particle swarm algorithm considering the constriction factor for updating particle velocity is expressed as shown in Equation (21).
- (3)
- PSO Algorithm Improved with Acceleration Factors
4.2.2. Specific Implementation of the Algorithm
5. Case Results and Analysis
5.1. Case Parameters
5.2. Comparison and Analysis of Particle Swarm Algorithms
5.3. Comparative Analysis of Multi-Objective and Single-Objective Optimization Scheduling
5.3.1. Optimizing Scheduling with Operating Cost as the Sole Objective
5.3.2. Optimizing Scheduling with Environmental Cost as the Sole Objective
5.3.3. Optimizing Scheduling with Multi-Objective Criterion
5.3.4. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Zhu, Z.; Kong, X.; Ma, L.; Lee, K.Y. PV/Hydrogen DC microgrid control using distributed economic model predictive control. Renew. Energy 2023, 222, 119871. [Google Scholar]
- Rodriguez, M.; Arcos-Aviles, D.; Guinjoan, F. Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador. Appl. Energy 2024, 357, 122522. [Google Scholar] [CrossRef]
- Mewafy, A.; Ismael, I.; Kaddah, S.S.; Hu, W.; Chen, Z.; Abulanwar, S. Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia. Renew. Sustain. Energy Rev. 2024, 192, 114174. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Elkadeem, M.R.; Abido, M.A.; Atiya, E.G.; Lin, X.; Alzahrani, A.S.; Kotb, K.M. An integrated approach for cost-and emission optimal planning of coastal microgrid with demand-side management. Sustain. Cities Soc. 2023, 101, 105149. [Google Scholar] [CrossRef]
- Lou, J.; Cao, H.; Meng, X.; Wang, Y.; Wang, J.; Chen, L.; Sun, L.; Wang, M. Power load analysis and configuration optimization of solar thermal-PV hybrid microgrid based on building. Energy 2024, 289, 129963. [Google Scholar] [CrossRef]
- Shaillan, H.M.; Tohidi, S.; Hagh, M.T.; Tabar, V.S. Risk-aware two-stage stochastic short-term planning of a hybrid multi-microgrid integrated with an all-in-one vehicle station and end-user cooperation. J. Energy Storage 2024, 78, 110083. [Google Scholar] [CrossRef]
- Haque, A.; Mohammad, N.; Morsalin, S.; Das, N. Mitigation of transient effects due to partial shading in a grid-connected photovoltaic farm through controlled vehicle to grid operation. Clean. Energy Syst. 2024, 7, 100097. [Google Scholar] [CrossRef]
- Energy Research Institute Co., Ltd. China Energy and Electricity Development Outlook 2022; Energy Research Institute Co., Ltd.: Beijing, China, 2022. [Google Scholar]
- Lin, Y.; Wang, J.; Zhang, J.; Li, L. Microgrid Optimal Investment Design for Cotton Farms in Australia. Smart Grids Sustain. Energy 2023, 9, 5. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; He, Z.; Chen, Z.; Li, L.; Cui, J.; Cao, J. Electron Diffusion by Chorus Waves: Effects of Latitude-Dependent Wave Power Spectrum. Front. Astron. Space Sci. 2023, 10, 1333184. [Google Scholar] [CrossRef]
- Lai, W.; Zhen, Z.; Wang, F.; Fu, W.; Wang, J.; Zhang, X.; Ren, H. Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations. Energy 2024, 288, 129716. [Google Scholar] [CrossRef]
- Liao, Z.; Liao, X.; Khakichi, A. Optimum planning of energy hub with participation in electricity market and heat markets and application of integrated load response program with improved particle swarm algorithm. Energy 2024, 286, 129587. [Google Scholar] [CrossRef]
- Tianliang, W.; Hong, T. Thermodynamic and exergoeconomic analysis of an innovative cogeneration of power and freshwater based on gas turbine cycle. Energy 2023, 285, 129454. [Google Scholar] [CrossRef]
- Yue, Y.; Peng, Y.; Wang, D. Deep Learning Short Text Sentiment Analysis Based on Improved Particle Swarm Optimization. Electronics 2023, 12, 4119. [Google Scholar] [CrossRef]
- Rivera, M.M.; Guerrero-Mendez, C.; Lopez-Betancur, D.; Saucedo-Anaya, T. Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization. Mathematics 2023, 11, 4339. [Google Scholar] [CrossRef]
- Dellaly, M.; Skander-Mustapha, S.; Slama-Belkhodja, I. Optimization of a residential communityʼs curtailed PV power to meet distribution grid load profile requirements. Renew. Energy 2023, 218, 119342. [Google Scholar] [CrossRef]
- Kweon, J.; Jing, H.; Li, Y.; Monga, V. Small-signal stability enhancement of islanded microgrids via domain-enriched optimization. Appl. Energy 2024, 353, 122172. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, H.; Wang, Z. DP-EPSO: Differential privacy protection algorithm based on differential evolution and particle swarm optimization. Opt. Laser Technol. 2024, 173, 110541. [Google Scholar] [CrossRef]
- Sun, S.; Wang, C.; Wang, Y.; Zhu, X.; Lu, H. Multi-objective optimization dispatching of a micro-grid considering uncertainty in wind power forecasting. Energy Rep. 2022, 8, 2859–2874. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, K.; Yang, S. Multi-objective optimal dispatch of microgrid containing electric vehicles. J. Clean. Prod. 2017, 165, 1572–1581. [Google Scholar] [CrossRef]
- Gu, J.; Choe, C.; Haider, J.; Al-Abri, R.; Qyyum, M.A.; Ala’A, H.; Lim, H. Development and modification of large-scale hydrogen liquefaction process empowered by LNG cold energy: A feasibility study. Appl. Energy 2023, 351, 121893. [Google Scholar] [CrossRef]
- Cruz, M.A.; Yahyaoui, I.; Fiorotti, R.; Segatto, M.E.; Atieh, A.; Rocha, H.R. Sizing and energy optimization of wind/floating photovoltaic/hydro-storage system for Net Zero Carbon emissions in Brava Island. Renew. Energy Focus 2023, 47, 100486. [Google Scholar] [CrossRef]
- Hou, H.; Xue, M.; Xu, Y.; Xiao, Z.; Deng, X.; Xu, T.; Liu, P.; Cui, R. Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load. Appl. Energy 2020, 262, 114489. [Google Scholar] [CrossRef]
- Hu, S.; Li, K. Bayesian Network Demand-Forecasting Model Based on Modified Particle Swarm Optimization. Appl. Sci. 2023, 13, 10088. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, C.; Yu, H.; Fei, H.; Li, D. Path planning of unmanned vehicles based on adaptive particle swarm optimization algorithm. Comput. Commun. 2024, 216, 112–129. [Google Scholar] [CrossRef]
- Yang, L.; Gao, G. Microgrid optimal scheduling based on improved particle swarm optimization algorithm. J. Phys. Conf. Ser. 2022, 2354, 012003. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, L.; Yang, B. Research on Improved BBO Algorithm and Its Application in Optimal Scheduling of Micro-Grid. Mathematics 2022, 10, 2998. [Google Scholar] [CrossRef]
- Ma, X.; Mu, Y.; Zhang, Y.; Zang, C.; Li, S.; Jiang, X.; Cui, M. Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm. Glob. Energy Interconnect. 2022, 5, 154–167. [Google Scholar] [CrossRef]
- Li, C.; Zhai, R. A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization. Renew. Energy 2024, 222, 119891. [Google Scholar] [CrossRef]
- Du, W.; Ma, J.; Yin, W. Orderly charging strategy of electric vehicle based on improved PSO algorithm. Energy 2023, 271, 127088. [Google Scholar] [CrossRef]
- Refaat, A.; Elbaz, A.; Khalifa, A.; Elsakka, M.M.; Kalas, A.; Elfar, M.H. Performance evaluation of a novel self-tuning particle swarm optimization algorithm-based maximum power point tracker for porton exchange membrane fuel cells under different operating conditions. Energy Convers. Manag. 2024, 301, 118014. [Google Scholar] [CrossRef]
- Du, W.; Li, Y.; Shi, J.; Sun, B.; Wang, C.; Zhu, B. Applying an improved particle swarm optimization algorithm to ship energy saving. Energy 2023, 263, 126080. [Google Scholar] [CrossRef]
- Wang, K.; Hua, Y.; Huang, L.; Guo, X.; Liu, X.; Ma, Z.; Ma, R.; Jiang, X. A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data. Energy 2023, 282, 128910. [Google Scholar] [CrossRef]
- Davies, M.R.; Keller, N.; Brouwer, S.; Jespersen, M.G.; Cork, A.J.; Hayes, A.J.; Pitt, M.E.; De Oliveira, D.M.; Harbison-Price, N.; Bertolla, O.M. Detection of Streptococcus pyogenes M1UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat. Commun. 2023, 14, 1051. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qiu, H.; Gao, L.; Chen, L.; Liu, J. Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization. Inf. Sci. 2023, 639, 119016. [Google Scholar] [CrossRef]
- Cheraghi, R.; Jahangir, M.H. Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms. Energy Convers. Manag. 2023, 294, 117515. [Google Scholar] [CrossRef]
- Gao, L.; Gao, Z. An optimal management architecture based on digital twin for smart solar-based islands incorporating deep learning and modified particle swarm optimization. Sol. Energy 2023, 262, 111872. [Google Scholar] [CrossRef]
- Lacal-Arántegui, R. Materials use in electricity generators in wind turbines–state-of-the-art and future specifications. J. Clean. Prod. 2015, 87, 275–283. [Google Scholar] [CrossRef]
- Zaki, D.A.; Hasanien, H.M.; Alharbi, M.; Ullah, Z.; Sameh, M.A. Hybrid Driving Training and Particle Swarm Optimization Algorithm-Based Optimal Control for Performance Improvement of Microgrids. Energies 2023, 16, 4355. [Google Scholar] [CrossRef]
- Parvin, M.; Yousefi, H.; Noorollahi, Y. Techno-economic optimization of a renewable micro grid using multi-objective particle swarm optimization algorithm. Energy Convers. Manag. 2023, 277, 116639. [Google Scholar] [CrossRef]
- Chi, X.; Wu, Q.; Guo, T.; Lin, W.; Wu, C.; Luo, P.; Zeng, P.; Luo, Y. Optimization of configuration for home micro-grid cogeneration system based on Wind-PV/T-PEMFC. Energy Rep. 2022, 8, 1405–1414. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Squartini, S.; Zaman, F.; Guerrero, J.M. Energy scheduling of community microgrid with battery cost using particle swarm optimisation. Appl. Energy 2019, 254, 113723. [Google Scholar] [CrossRef]
- Basu, M. Modified particle swarm optimization for nonconvex economic dispatch problems. Int. J. Electr. Power 2015, 69, 304–312. [Google Scholar] [CrossRef]
- Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Clust. Comput. 2019, 22, 4745–4766. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, K. Research on civil aviation universal service standard based on tessellation model and particle swarm optimization. Int. J. Adv. Manuf. Technol. 2020, 106, 3381–3388. [Google Scholar] [CrossRef]
- Wu, T.; Shi, X.; Liao, L.; Zhou, C.; Zhou, H.; Su, Y. A capacity configuration control strategy to alleviate power fluctuation of hybrid energy storage system based on improved particle swarm optimization. Energies 2019, 12, 642. [Google Scholar] [CrossRef]
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-objective operation management of a renewable MG (micro-grid) with backup micro-turbine/fuel cell/battery hybrid power source. Energy 2011, 36, 6490–6507. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, K.; Yang, S.; Liu, H. Multi-objective optimal load dispatch of microgrid with stochastic access of electric vehicles. J. Clean. Prod. 2018, 195, 187–199. [Google Scholar] [CrossRef]
- Lu, N.; Liu, Y. On Predicted Research Methods of Supply Capacity of Micro-grid Based on Improved Particle Swarm Optimization. J. Comput. 2013, 8, 2706–2710. [Google Scholar] [CrossRef]
Type of Power Source | Rated Power (kW) | Fuel Cost (CNY/kWh) | Operating Cost (CNY/kWh) | Depreciation Period (Year) | Installation Cost (CNY ten Thousand/kWh) | Capacity Factor (%) |
---|---|---|---|---|---|---|
WT | 10 | 0 | 0.0450 | 10 | 2.375 | 22.13 |
PV | 10 | 0 | 0.0096 | 20 | 6.650 | 29.34 |
DG | 65 | 0.211 | 0.1280 | 10 | 1.306 | 54.99 |
MGT | 40 | 0.211 | 0.0293 | 10 | 4.275 | 36.73 |
Energy Storage Device | 50 | 0 | 0.0450 | 10 | 0.084 | 32.67 |
Type of Pollutant | Pollutant Abatement Cost (CNY/kg) | Pollutant Emission Coefficient (g/kWh) | ||||
---|---|---|---|---|---|---|
WT | PV | DG | MGT | Grid | ||
CO | 10.29 | 0 | 0 | 0.047 | 0 | 0.081 |
CO2 | 0.21 | 0 | 0 | 724 | 489 | 889 |
SO2 | 14.842 | 0 | 0 | 0.0036 | 0.003 | 0.8 |
NOx | 62.964 | 0 | 0 | 0.2 | 0.014 | 0.6 |
Parameter | WT | PV | DG | MGT | Grid |
---|---|---|---|---|---|
Power Upper Limit/kW | 100 | 50 | 30 | 30 | 30 |
Power Lower Limit/kW | 0 | 0 | 6 | 3 | −30 |
Ramp-Up Power Limit/(kW/min) | 0 | 0 | 1.5 | 1.5 | 0 |
Type | Parameter | Value | Parameter | Value |
---|---|---|---|---|
Battery | Maximum Capacity/(kW·h) | 150 | Initial Energy Storage Capacity/(kW·h) | 50 |
Minimum Capacity/(kW·h) | 5 | Maximum Output Power/kW | 30 | |
Maximum Input Power/kW | 30 | Charge–Discharge Rate | 0.9 |
Before Improvement | After Improvement: Max | After Improvement: Min | |
---|---|---|---|
Inertia Weight-w | 1 | 2.5 | 0.5 |
Learning Factor-c1 | 2 | 2.5 | 0.5 |
Learning Factor-c2 | 2 | 2.5 | 0.5 |
Traditional PSO | Improved PSO | |
---|---|---|
Number of Runs | 100 | 100 |
Runtime/seconds | 389 | 366 |
Fitness Value | 1750.44 | 1582.9 |
Average Fitness Value | 1762.3 | 1603.8 |
Multi-Objective Optimal Value | Single-Objective Optimal Value | |
---|---|---|
Operating Cost/CNY | 1407.7 | 1415.9 |
Environmental Cost/CNY | 121.7 | 87.4 |
Total Cost/CNY | 1529.4 | 1503.3 |
Algorithm Name | Advantages | Disadvantages |
---|---|---|
Particle Swarm Optimization | Fast search speed, easy parameter setting | Prone to getting trapped in local optima, prone to premature convergence |
Improved Particle Swarm Optimization | Fast search speed, easy parameter setting, addresses issues like premature convergence in traditional PSO | Prone to getting trapped in local optima |
Genetic Algorithm | Strong global search capability | Weaker local search capability, often only achieves suboptimal solutions instead of the best one |
Differential Evolution Algorithm | Stronger robustness, faster convergence speed | Insufficient global optimization search capability |
Ant Colony Algorithm | Performs well in solving complex optimization problems | Complex parameter setting, complex code writing |
Simulated Annealing Algorithm | Effectively avoids getting trapped in local minima and tends towards global optimum | Insufficient application in continuous variable spaces and combinatorial optimization problems with multiple peaks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Z.; Wang, H.; Li, Z.; Luo, X.; Yang, X.; Fang, J.; Zhao, Q. Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm. Energies 2024, 17, 1760. https://doi.org/10.3390/en17071760
Guan Z, Wang H, Li Z, Luo X, Yang X, Fang J, Zhao Q. Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm. Energies. 2024; 17(7):1760. https://doi.org/10.3390/en17071760
Chicago/Turabian StyleGuan, Zhong, Hui Wang, Zhi Li, Xiaohu Luo, Xi Yang, Jugang Fang, and Qiang Zhao. 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm" Energies 17, no. 7: 1760. https://doi.org/10.3390/en17071760
APA StyleGuan, Z., Wang, H., Li, Z., Luo, X., Yang, X., Fang, J., & Zhao, Q. (2024). Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm. Energies, 17(7), 1760. https://doi.org/10.3390/en17071760