An Improved Analytical Thermal Rating Method for Cable Joints
Abstract
:1. Introduction
2. Review of Traditional Electrothermal Analytic Method for Cable Joints
3. Thermal Finite Element Analysis of Cable Joint
3.1. Two-Dimensional (2D) Axisymmetric Simulation Model of Cable Joint
3.2. Determination of the Axial Length of the 2D Simulation Model
3.3. Analysis of the Results
4. An Improved Thermal Rating Method for Cable Joint
4.1. A Quasi-3D Axial Thermal Model of Cable Joint
4.2. Solution for the Quasi-3D Thermal Model of Cable Joint
5. Verification and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shabani, H.; Vahidi, B. A probabilistic approach for optimal power cable ampacity computation by considering uncertainty of parameters and economic constraints. Int. J. Electr. Power Energy Syst. 2019, 106, 432–443. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, G.; Zhao, Y.; Li, L.; Ohki, Y. Rejuvenation of Retired Power Cables by Heat Treatment. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 668–670. [Google Scholar] [CrossRef]
- Liu, S.; Kopsidas, K. Risk-Based Underground Cable Circuit Ratings for Flexible Wind Power Integration. IEEE Trans. Power Deliv. 2021, 36, 145–155. [Google Scholar] [CrossRef]
- Vollaro, R.d.L.; Fontana, L.; Vallati, A. Thermal analysis of underground electrical power cables buried in non-homogeneous soils. Appl. Therm. Eng. 2011, 31, 772–778. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Ma, H.; Liu, G.; Han, Z.-Z.; Guo, D.-M.; Xu, T.; Kang, L.-Y. Dynamic Thermal Analysis of High-Voltage Power Cable Insulation for Cable Dynamic Thermal Rating. IEEE Access 2019, 7, 56095–56106. [Google Scholar] [CrossRef]
- IEC 60287 Series; Electric Cables—Calculation of the Current Rating. International Electrotechnical Commission: Geneva, Switzerland, 2023.
- Nakamura, S.; Morooka, S.; Kawasaki, K. Conductor temperature monitoring system in underground power transmission XLPE cable joints. IEEE Trans. Power Deliv. 1992, 7, 1688–1697. [Google Scholar] [CrossRef]
- Gouda, O.; El, D.; Adel, Z. Electrothermal Analysis of Low- and Medium- voltage Cable Joints. Electr. Power Compon. Syst. 2016, 4, 110–121. [Google Scholar] [CrossRef]
- Liao, Y.; Bao, S.; Xie, Y.; Zhao, Y.; Wang, P.; Liu, G.; Hui, B.; Xu, Y. Breakdown failure analysis of 220 kV cable joint with large expanding rate under closing overvoltage. Eng. Fail. Anal. 2021, 120, 105086. [Google Scholar] [CrossRef]
- Bragatto, T.; Cerretti, A.; D’orazio, L.; Gatta, F.M.; Geri, A.; Maccioni, M. Thermal Effects of Ground Faults on MV Joints and Cables. Energies 2019, 12, 3496. [Google Scholar] [CrossRef]
- Yang, F.; Liu, K.; Cheng, P.; Wang, S.; Wang, X.; Gao, B.; Fang, Y.; Xia, R.; Ullah, I. The Coupling Fields Characteristics of Cable Joints and Application in the Evaluation of Crimping Process Defects. Energies 2016, 9, 932. [Google Scholar] [CrossRef]
- Gela, G.; Dai, J. Calculation of thermal fields of underground cables using the boundary element method. IEEE Trans. Power Deliv. 1988, 3, 1341–1347. [Google Scholar] [CrossRef]
- Wang, P.; Liu, G.; Ma, H.; Liu, Y.; Xu, T. Investigation of the Ampacity of a Prefabricated Straight-Through Joint of High Voltage Cable. Energies 2017, 10, 2050. [Google Scholar] [CrossRef]
- Quan, L.; Fu, C.; Si, W.; Yang, J. Numerical study of heat transfer in underground power cable system. In Proceedings of the 10th International Conference on Applied Energy (ICAE2018), Hong Kong, China, 22–25 August 2018; pp. 5317–5322. [Google Scholar]
- Pilgrim, J.A.; Swaffield, D.J.; Lewin, P.L.; Larsen, S.T.; Payne, D. Assessment of the Impact of Joint Bays on the Ampacity of High-Voltage Cable Circuits. IEEE Trans. Power Deliv. 2009, 24, 1029–1036. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, P.; Luo, H.; Yang, Y.; Liu, H.; Kang, K. 3-D thermal analysis and contact resistance evaluation of power cable joint. Appl. Therm. Eng. 2016, 93, 1183–1192. [Google Scholar] [CrossRef]
- Ruan, J.-J.; Liu, C.; Huang, D.-C.; Zhan, Q.-H.; Tang, L.-Z. Hot spot temperature inversion for the single-core power cable joint. Appl. Therm. Eng. 2016, 104, 146–152. [Google Scholar] [CrossRef]
- Aziz, M.M.A.; Riege, H. A New Method for Cable Joints Thermal Analysis. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 2386–2392. [Google Scholar] [CrossRef]
- Bragatto, T.; Cresta, M.; Gatta, F.; Geri, A.; Maccioni, M.; Paulucci, M. A 3-D nonlinear thermal circuit model of underground MV power cables and their joints. Electr. Power Syst. Res. 2019, 173, 112–121. [Google Scholar] [CrossRef]
- Bragatto, T.; Cresta, M.; Gatta, F.; Geri, A.; Maccioni, M.; Paulucci, M. Underground MV power cable joints: A nonlinear thermal circuit model and its experimental validation. Electr. Power Syst. Res. 2017, 149, 190–197. [Google Scholar] [CrossRef]
- Pilgrim, J.; Swaffleld, D.; Lewin, P.; Payne, D. An Investigation of Thermal Ratings for High Voltage Cable Joints through the use of 2D and 3D Finite Element Analysis. In Proceedings of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 543–546. [Google Scholar]
- Bustamante, S.; Mínguez, R.; Arroyo, A.; Manana, M.; Laso, A.; Castro, P.; Martinez, R. Thermal behaviour of medium-voltage underground cables under high-load operating conditions. Appl. Therm. Eng. 2019, 156, 444–452. [Google Scholar] [CrossRef]
- Holyk, C.; Liess, H.-D.; Grondel, S.; Kanbach, H.; Loos, F. Simulation and measurement of the steady-state temperature in multi-core cables. Electr. Power Syst. Res. 2014, 116, 54–66. [Google Scholar] [CrossRef]
- Degefa, M.Z.; Lehtonen, M.; Millar, R.J. Comparison of Air-Gap Thermal Models for MV Power Cables Inside Unfilled Conduit. IEEE Trans. Power Deliv. 2012, 27, 1662–1669. [Google Scholar] [CrossRef]
- Anders, G.J. Rating of Electric Power Cables in Unfavorable Thermal Environment; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chippendale, R.D.; Pilgrim, J.A.; Goddard, K.F.; Cangy, P. Analytical Thermal Rating Method for Cables Installed in J-Tubes. IEEE Trans. Power Deliv. 2016, 32, 1721–1729. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Z.; Ma, H.; Hao, Y.; Wang, P.; Wu, W.; Xie, Y.; Guo, D. An improved analytical thermal rating method for cables installed in short-conduits. Int. J. Electr. Power Energy Syst. 2020, 123, 106223. [Google Scholar] [CrossRef]
- Lemoine, C.; Besnier, P.; Drissi, M. Investigation of Reverberation Chamber Measurements Through High-Power Goodness-of-Fit Tests. IEEE Trans. Electromagn. Compat. 2007, 49, 745–755. [Google Scholar] [CrossRef]
Component | Material | Thermal Conductivity /W·m−1·K−1 | Thickness /mm |
---|---|---|---|
Conductor tube | Copper | 401 | 15 |
Air gap | Air | 0.023 | 3 |
Copper screen tube | Copper | 401 | 7.3 |
Joint main insulation | Silicone rubber | 0.25 | / |
PVC belt | Polyvinyl chloride | 0.1667 | 2 |
ab glue sealing | Epoxy resin | 0.2 | 18 |
Copper shell | Copper | 401 | 3.1 |
Component | Material | Thermal Conductivity /W·m−1·K−1 | Diameter /mm |
---|---|---|---|
Conductor | Copper | 401 | 30 |
Conductor shielding | Polyolefin | 0.32 | 33 |
XLPE insulation | Crosslinked polyethylene | 0.286 | 66 |
Insulation shielding | Polyolefin | 0.32 | 68 |
Buffer layer | Polyester fiber | 0.1667 | 75 |
Air gap | Air | 0.023 | 85.5 |
Aluminum sheath | Aluminum | 238 | 88.6 |
Outer sheath | High density polyethylene | 0.286 | 97.6 |
Load | Improved Method | TEA Method |
---|---|---|
1000 A | 0.969 | 0.854 |
1200 A | 0.971 | 0.809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Xie, Y.; Wang, P.; Wu, Z.; Bao, S.; Wang, W.; Xu, X.; Meng, X.; Liu, G. An Improved Analytical Thermal Rating Method for Cable Joints. Energies 2024, 17, 2040. https://doi.org/10.3390/en17092040
He F, Xie Y, Wang P, Wu Z, Bao S, Wang W, Xu X, Meng X, Liu G. An Improved Analytical Thermal Rating Method for Cable Joints. Energies. 2024; 17(9):2040. https://doi.org/10.3390/en17092040
Chicago/Turabian StyleHe, Fawu, Yue Xie, Pengyu Wang, Zhiheng Wu, Shuzhen Bao, Wei Wang, Xiaofeng Xu, Xiaokai Meng, and Gang Liu. 2024. "An Improved Analytical Thermal Rating Method for Cable Joints" Energies 17, no. 9: 2040. https://doi.org/10.3390/en17092040
APA StyleHe, F., Xie, Y., Wang, P., Wu, Z., Bao, S., Wang, W., Xu, X., Meng, X., & Liu, G. (2024). An Improved Analytical Thermal Rating Method for Cable Joints. Energies, 17(9), 2040. https://doi.org/10.3390/en17092040