Model-Based Algorithm for Flexible Power Point Tracking for Photovoltaic Participation in Primary Frequency Regulation
Abstract
:1. Introduction
2. Model-Based Algorithm for Flexible Power Point Tracking
2.1. Literature Review
2.2. Proposed Strategy
- Can assist both overfrequency and underfrequency events;
- Does not require the measurement of irradiation, or additional reference modules to perform FPPT;
- Can operate in variable weather and load condition;
- Is able to directly track a power point without oscillation between the MPPT and FPPT.
3. Numerical Verification
3.1. Microgrid
3.2. PV System
4. Results and Discussion
4.1. Maintaining a Constant Power Reserve
4.2. Primary Frequency Regulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Renewables 2022: Analysis and Forecast to 2027. 2023. Available online: https://iea.blob.core.windows.net/assets/ada7af90-e280-46c4-a577-df2e4fb44254/Renewables2022.pdf (accessed on 23 April 2024).
- Solar Power Europe. Global Market Outlook for Solar Power 2022–2026. 2022. Available online: https://api.solarpowereurope.org/uploads/Solar_Power_Europe_Global_Market_Outlook_report_2022_2022_V2_2_87bd2c1e44.pdf (accessed on 23 April 2024).
- Seidel, J.; Rauscher, F.; Engel, B. Enhanced contribution of photovoltaic power systems to frequency control in future Power Systems. IET Renew. Power Gener. 2021, 15, 2753–2765. [Google Scholar] [CrossRef]
- Energinet.dk. Technical Regulation 3.2.2 for PV Power Plants with a Power Output above 11 kW; Technical Repert No. 14/17997-39; Energinet.dk: Fredericia, Denmark, 2016. [Google Scholar]
- Sangwongwanich, A.; Yang, Y.; Blaabjerg, F.; Wang, H. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems. IEEE Trans. Ind. Appl. 2018, 54, 447–457. [Google Scholar] [CrossRef]
- Tafti, H.D.; Konstantinou, G.; Townsend, C.D.; Farivar, G.G.; Sangwongwanich, A.; Yang, Y.; Pou, J.; Blaabjerg, F. Extended Functionalities of Photovoltaic Systems with Flexible Power Point Tracking: Recent Advances. IEEE Trans. Power Electron. 2020, 35, 9342–9356. [Google Scholar] [CrossRef]
- Cristaldi, L.; Faifer, M.; Laurano, C.; Petkovski, E.; Toscani, S.; Ottoboni, R. An Innovative Model-Based Algorithm for Power Control Strategy of Photovoltaic Panels. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Cristaldi, L.; Faifer, M.; Laurano, C.; Ottoboni, R.; Petkovski, E.; Toscani, S. Reduced Power Model-Based Tracker for Photovoltaic Panels. In Proceedings of the IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Birmingham, UK, 29 June–1 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Cristaldi, L.; Faifer, M.; Laurano, C.; Ottoboni, R.; Petkovski, E.; Toscani, S. Power Generation Control Algorithm for the Participation of Photovoltaic Panels in Network Stability. IEEE Trans. Instrum. Meas. 2023, 72, 9000809. [Google Scholar] [CrossRef]
- Narang, A.; Farivar, G.G.; Tafti, H.D.; Pou, J. Power Reserve Control Methods for Grid-Connected Photovoltaic Power Plants: A Review. In Proceedings of the 2022 IEEE 7th Southern Power Electronics Conference (SPEC), Nadi, Fiji, 5–8 December 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Hill, C.; Such, M.C.; Chen, D.; Gonzalez, J.S.; Grady, W.M. Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Wu, X.; Hu, R.; Tang, F.; Zhang, W.; Han, X.; Ding, L. Optimal Allocation of Hybrid Energy Storage Systems for Smoothing Photovoltaic Power Fluctuations Considering the Active Power Curtailment of Photovoltaic. IEEE Access 2019, 7, 74787–74799. [Google Scholar] [CrossRef]
- Shivashankar, S.A.; Mekhilef, S.; Mokhlis, H.; Karimi, M. Mitigating Methods of Power Fluctuation of Photovoltaic (PV) Sources—A Review. Renew. Sustain. Energy Rev. 2016, 59, 1170–1184. [Google Scholar] [CrossRef]
- Rajan, R.; Fernandez, F.B.; Yang, Y. Primary Frequency Control Techniques for Large-Scale PV-Integrated Power Systems: A Review. Renew. Sustain. Energy Rev. 2021, 144, 110998. [Google Scholar] [CrossRef]
- Poliak, O.; Shmilovitz, D. Power Reserve from Photovoltaics for Improving Frequency Response in the Isolated System. Energies 2023, 16, 3595. [Google Scholar] [CrossRef]
- Tafti, H.D.; Konstantinou, G.; Fletcher, J.; Callegaro, L.; Farivar, G.G.; Pou, J. Control of Distributed Photovoltaic Inverters for Frequency Support and System Recovery. IEEE Trans. Power Electron. 2022, 37, 4742–4750. [Google Scholar] [CrossRef]
- Sharma, S.; Jately, V.; Kuchhal, P.; Kala, P.; Azzopardi, B. A Comprehensive Review of Flexible Power-Point-Tracking Algorithms for Grid-Connected Photovoltaic Systems. Energies 2023, 16, 5679. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Blaabjerg, F.; Sera, D. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters. IEEE Trans. Ind. Appl. 2017, 53, 3862–3870. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Blaabjerg, F. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems. In Proceedings of the 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 27–30 June 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Gomez, J.M.; Shanmugam, P.K. Flexible Power Point Tracking Using a Neural Network for Power Reserve Control in a Grid-Connected PV System. Energies 2022, 15, 8234. [Google Scholar] [CrossRef]
- Li, Q.; Baran, M. A Novel Frequency Support Control Method for PV Plants Using Tracking LQR. IEEE Trans. Sustain. Energy 2020, 11, 2263–2273. [Google Scholar] [CrossRef]
- Verma, P.; Kaur, T.; Kaur, R. Power Control Strategy of an Integrated PV System for Active Power Reserve under Dynamic Operating Conditions. Sustain. Energy Technol. Assess. 2021, 45, 101066. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, H.; Zhuo, F.; Lv, N.; Ma, Z.; Wang, F.; Zhou, W.; Liang, J.-F.; Fan, H. Active Power Control of Voltage-Controlled Photovoltaic Inverter in Supporting Islanded Microgrid without Other Energy Sources. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 424–435. [Google Scholar] [CrossRef]
- Batzelis, E.; Kampitsis, G.; Papathanassiou, S.A. Power Reserves Control for PV Systems with Real-Time MPP Estimation via Curve Fitting. IEEE Trans. Sustain. Energy 2017, 8, 1269–1280. [Google Scholar] [CrossRef]
- Batzelis, E.; Papathanassiou, S.A.; Pal, B.C. PV System Control to Provide Active Power Reserves under Partial Shading Conditions. IEEE Trans. Power Electron. 2018, 33, 9163–9175. [Google Scholar] [CrossRef]
- Cristaldi, L.; Faifer, M.; Laurano, C.; Ottoboni, R.; Toscani, S.; Zanoni, M. Model-based maximum power point tracking for photovoltaic panels: Parameters identification and training database collection. IET Renew. Power Gener. 2020, 14, 2876–2884. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Lu, X.; Chen, C.; Zhao, S. Networked Microgrids for Grid Resilience, Robustness, and Efficiency: A Review. IEEE Trans. Smart Grid 2021, 12, 18–32. [Google Scholar] [CrossRef]
- Al-Ismail, F.S. DC Microgrid Planning, Operation, and Control: A Comprehensive Review. IEEE Access 2021, 9, 36154–36172. [Google Scholar] [CrossRef]
- NERC Fast Frequency Response Concepts and Bulk Power System Reliability Needs; NERC Inverter-Based Resource Performance Task Force (IRPTF); NERC: Alanta, GA, USA, 2020; pp. 1–23. Available online: https://www.nerc.com/comm/PC/InverterBased%20Resource%20Performance%20Task%20Force%20IRPT/Fast_Frequency_Response_Concepts_and_BPS_Reliability_Needs_White_Paper.pdf (accessed on 23 April 2024).
Property | Value |
---|---|
Open-circuit voltage | 64.2 V |
Short-circuit current | 5.96 A |
Nominal power (G = 1000 W/m2; T = 25 °C) | 305.226 W |
Number of cells | 96 |
Ideality factor | 0.945 |
Temperature coefficient of VOC | −0.2727%/°C |
Temperature coefficient of ISC | 0.0617%/°C |
Scenario | PV Participation | Frequency Deviation |
---|---|---|
Load disconnection | No | +4.8% |
Yes | +3.2% | |
Load connection | No | −5% |
Yes | −3.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristaldi, L.; Faifer, M.; Laurano, C.; Petkovski, E.; Ponci, F.; Sowa, I.; Toscani, S. Model-Based Algorithm for Flexible Power Point Tracking for Photovoltaic Participation in Primary Frequency Regulation. Energies 2024, 17, 2049. https://doi.org/10.3390/en17092049
Cristaldi L, Faifer M, Laurano C, Petkovski E, Ponci F, Sowa I, Toscani S. Model-Based Algorithm for Flexible Power Point Tracking for Photovoltaic Participation in Primary Frequency Regulation. Energies. 2024; 17(9):2049. https://doi.org/10.3390/en17092049
Chicago/Turabian StyleCristaldi, Loredana, Marco Faifer, Christian Laurano, Emil Petkovski, Ferdinanda Ponci, Igor Sowa, and Sergio Toscani. 2024. "Model-Based Algorithm for Flexible Power Point Tracking for Photovoltaic Participation in Primary Frequency Regulation" Energies 17, no. 9: 2049. https://doi.org/10.3390/en17092049
APA StyleCristaldi, L., Faifer, M., Laurano, C., Petkovski, E., Ponci, F., Sowa, I., & Toscani, S. (2024). Model-Based Algorithm for Flexible Power Point Tracking for Photovoltaic Participation in Primary Frequency Regulation. Energies, 17(9), 2049. https://doi.org/10.3390/en17092049