Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Doping Methods
2.4. Measurements and Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D.H.; Zeng, J.; et al. Homogenizing Out-of-Plane Cation Composition in Perovskite Solar Cells. Nature 2023, 624, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Raga, S.R.; Jung, M.C.; Lee, M.V.; Leyden, M.R.; Kato, Y.; Qi, Y. Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells. Chem. Mater. 2015, 27, 1597–1603. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, S. On the Study of Influence of Molecular Arrangements and Dipole Moment on Exciton Binding Energy in Solid State. Int. J. Quantum Chem. 2021, 121, 9–13. [Google Scholar] [CrossRef]
- Hamada, M.; Rana, S.; Jokar, E.; Awasthi, K.; Diau, E.W.G.; Ohta, N. Temperature-Dependent Electroabsorption Spectra and Exciton Binding Energy in a Perovskite CH3NH3PbI3Nanocrystalline Film. ACS Appl. Energy Mater. 2020, 3, 11830–11840. [Google Scholar] [CrossRef]
- Yang, Z.; Surrente, A.; Galkowski, K.; Bruyant, N.; Maude, D.K.; Haghighirad, A.A.; Snaith, H.J.; Plochocka, P.; Nicholas, R.J. Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. J. Phys. Chem. Lett. 2017, 8, 1851–1855. [Google Scholar] [CrossRef] [PubMed]
- Kraner, S.; Scholz, R.; Koerner, C.; Leo, K. Design Proposals for Organic Materials Exhibiting a Low Exciton Binding Energy. J. Phys. Chem. C 2015, 119, 22820–22825. [Google Scholar] [CrossRef]
- Jacak, W.A.; Jacak, J.E. New Channel of Plasmon Photovoltaic Effect in Metalized Perovskite Solar Cells. J. Phys. Chem. C 2019, 123, 30633–30639. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of Solar Cells, Exciton Channel of Plasmon Photovoltaic Effect in Perovskite Cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Wu, R.; Yang, B.; Zhang, C.; Huang, Y.; Cui, Y.; Liu, P.; Zhou, C.; Hao, Y.; Gao, Y.; Yang, J. Prominent Efficiency Enhancement in Perovskite Solar Cells Employing Silica-Coated Gold Nanorods. J. Phys. Chem. C 2016, 120, 6996–7004. [Google Scholar] [CrossRef]
- Khan, J.I.; Isikgor, F.H.; Ugur, E.; Raja, W.; Harrison, G.T.; Yengel, E.; Anthopoulos, T.D.; De Wolf, S.; Laquai, F. Charge Carrier Recombination at Perovskite/Hole Transport Layer Interfaces Monitored by Time-Resolved Spectroscopy. ACS Energy Lett. 2021, 6, 4155–4164. [Google Scholar] [CrossRef]
- Haddad, J.; Krogmeier, B.; Klingebiel, B.; Krückemeier, L.; Melhem, S.; Liu, Z.; Hüpkes, J.; Mathur, S.; Kirchartz, T. Analyzing Interface Recombination in Lead-Halide Perovskite Solar Cells with Organic and Inorganic Hole-Transport Layers. Adv. Mater. Interfaces 2020, 7, 2000366. [Google Scholar] [CrossRef]
- Pan, Z.; Peng, D.; Zhao, X.; Xu, W.; Bao, Y.; Feng, Z.; Zou, Q.; Xu, B.; Wang, Y.; Gao, H.; et al. Side-Chain Functionalized Polymer Hole-Transporting Materials with Defect Passivation Effect for Highly Efficient Inverted Quasi-2D Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2304881. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J.A.; Vilches, A.B.M.; Kasparavicius, E.; Smith, J.A.; et al. Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction. Science 2020, 370, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.B.; Astridge, D.D.; Park, S.Y.; Zhang, F.; Yang, M.; Moore, D.T.; Harvey, S.P.; Zhu, K.; Sellinger, A. Polymer Hole Transport Material Functional Group Tuning for Improved Perovskite Solar Cell Performance. ACS Appl. Energy Mater. 2022, 5, 8601–8610. [Google Scholar] [CrossRef]
- De Rossi, F.; Renno, G.; Taheri, B.; Yaghoobi Nia, N.; Ilieva, V.; Fin, A.; Di Carlo, A.; Bonomo, M.; Barolo, C.; Brunetti, F. Modified P3HT Materials as Hole Transport Layers for Flexible Perovskite Solar Cells. J. Power Sources 2021, 494, 229735. [Google Scholar] [CrossRef]
- Xie, Y.; Yao, Q.; Xue, Q.; Zeng, Z.; Niu, T.; Zhou, Y.; Zhuo, M.; Tsang, S.; Yip, H.; Cao, Y. Subtle Side Chain Modification of Triphenylamine-based Polymer Hole-transport Layer Materials Produces Efficient and Stable Inverted Perovskite Solar Cells. Interdiscip. Mater. 2022, 1, 281–293. [Google Scholar] [CrossRef]
- Ali, R.; Zhu, Z.G.; Yan, Q.B.; Zheng, Q.R.; Su, G.; Laref, A.; Saraj, C.S.; Guo, C. Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Appl. Mater. Interfaces 2020, 12, 49636–49647. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, N.A.N.; Odunmbaku, G.O.; Guo, B.; Chen, S.; Lin, X.; Shumilova, T.; Sun, K. Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 34303–34327. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, J.; Wang, X.; Yang, Y.; Du, Y.; Li, Z.; Zhang, X.; Zhang, Z.; Pan, W.; Sun, W. Spiro-OMeTAD Doped with Cumene Hydroperoxide for Perovskite Solar Cells. Electrochem. Commun. 2021, 126, 107020. [Google Scholar] [CrossRef]
- Arivunithi, V.M.; Park, H.Y.; Reddy, S.S.; Do, Y.; Park, H.; Shin, E.S.; Noh, Y.Y.; Song, M.; Jin, S.H. Introducing an Organic Hole Transporting Material as a Bilayer to Improve the Efficiency and Stability of Perovskite Solar Cells. Macromol. Res. 2021, 29, 149–156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Liu, T.; Zeng, Q.; Cao, D.; Pan, H.; Xing, G. Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 3284–3292. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, M. Organic Hole-Transporting Materials for Efficient Perovskite Solar Cells. Mater. Today Energy 2018, 7, 208–220. [Google Scholar] [CrossRef]
- He, M.; Chen, S.; Wang, T.; Xu, G.; Liu, N.; Xu, F. Effects of Solvent Vapor Atmosphere on Photovoltaic Performance of Perovskite Solar Cells. Crystals 2023, 13, 549. [Google Scholar] [CrossRef]
- Wang, Q.; Bi, C.; Huang, J. Doped Hole Transport Layer for Efficiency Enhancement in Planar Heterojunction Organolead Trihalide Perovskite Solar Cells. Nano Energy 2015, 15, 275–280. [Google Scholar] [CrossRef]
- Seo, J.Y.; Akin, S.; Zalibera, M.; Preciado, M.A.R.; Kim, H.S.; Zakeeruddin, S.M.; Milić, J.V.; Grätzel, M. Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2102124. [Google Scholar] [CrossRef]
- Wang, C.; Su, Z.; Chen, L.; Zhang, H.; Hui, W.; Liang, D.; Zheng, G.; Zhang, L.; Tang, Z.; Wen, W.; et al. MoO3 Doped PTAA for High-Performance Inverted Perovskite Solar Cells. Appl. Surf. Sci. 2022, 571, 151301. [Google Scholar] [CrossRef]
- Matsushita, A.; Yanagida, M.; Shirai, Y.; Miyano, K. Degradation of Perovskite Solar Cells by the Doping Level Decrease of HTL Revealed by Capacitance Spectroscopy. Sol. Energy Mater. Sol. Cells 2021, 220, 110854. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Z.; Wang, X.; Li, Y.; Günther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y.S. Unveiling the Role of TBP-LiTFSI Complexes in Perovskite Solar Cells. J. Am. Chem. Soc. 2018, 140, 16720–16730. [Google Scholar] [CrossRef]
- Hatamvand, M.; Vivo, P.; Liu, M.; Tayyab, M.; Dastan, D.; Cai, X.; Chen, M.; Zhan, Y.; Chen, Y.; Huang, W. The Role of Different Dopants of Spiro-OMeTAD Hole Transport Material on the Stability of Perovskite Solar Cells: A Mini Review. Vacuum 2023, 214, 112076. [Google Scholar] [CrossRef]
- Wang, R.T.; Zhang, Y.; Wu, X.; Zhang, W.; Chi, L.; Xu, F. Stable FAPbI3 Hydrate Structure by Kinetics Negotiation for Solar Cells. Sustain. Energy Fuels 2023, 7, 1974–1980. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, J.; Chen, Q.; Zhang, J.; Huang, Z.; Cao, J.; Ji, W.; Zhang, L.; Wang, A.; Zhou, Y.; et al. Dopant-Free Polymer Hole Transport Materials for Highly Stable and Efficient CsPbI3 Perovskite Solar Cells. Small 2023, 19, 2206952. [Google Scholar] [CrossRef] [PubMed]
- Más-Montoya, M.; Gómez, P.; Wang, J.; Janssen, R.A.J.; Curiel, D. Small Molecule Dopant-Free Dual Hole Transporting Material for Conventional and Inverted Perovskite Solar Cells. Mater. Chem. Front. 2023, 7, 4019–4028. [Google Scholar] [CrossRef]
- Luo, W.; Wu, C.; Wang, D.; Zhang, Z.; Qi, X.; Guo, X.; Qu, B.; Xiao, L.; Chen, Z. Dopant-Free Spiro-OMeTAD as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Org. Electron. 2019, 74, 7–12. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, H.; Chen, W.; Ding, J.; Chen, Z.; Shen, Y.; Wu, X.; Wu, Y.; Li, Y.; Li, Y. Green Solvent Processable, Asymmetric Dopant-Free Hole Transport Layer Material for Efficient and Stable n-i-p Perovskite Solar Cells and Modules. Angew. Chem.-Int. Ed. 2023, 62, e202312231. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.B.; Kim, Y.J.; Kim, D.Y.; Jang, S.Y. A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromol. Res. 2022, 30, 391–396. [Google Scholar] [CrossRef]
- Zhu, H.; Shen, Z.; Pan, L.; Han, J.; Eickemeyer, F.T.; Ren, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X.; et al. Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Lett. 2021, 6, 208–215. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Grancini, G.; Alcocer, M.J.P.; Kandada, A.R.S.; Stranks, S.D.; Lee, M.M.; Lanzani, G.; Snaith, H.J.; Petrozza, A. Excitons versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nat. Commun. 2014, 5, 3586. [Google Scholar] [CrossRef] [PubMed]
- Umari, P.; Mosconi, E.; De Angelis, F. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. J. Phys. Chem. Lett. 2018, 9, 620–627. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, T.P.A.; Datta, K.; Wienk, M.M.; Janssen, R.A.J. The Intrinsic Photoluminescence Spectrum of Perovskite Films. Adv. Opt. Mater. 2022, 10, 2102557. [Google Scholar] [CrossRef]
- Dequilettes, D.W.; Koch, S.; Burke, S.; Paranji, R.K.; Shropshire, A.J.; Ziffer, M.E.; Ginger, D.S. Photoluminescence Lifetimes Exceeding 8 Μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation. ACS Energy Lett. 2016, 1, 438–444. [Google Scholar] [CrossRef]
- Skurlov, I.D.; Yin, W.; Ismagilov, A.O.; Tcypkin, A.N.; Hua, H.; Wang, H.; Zhang, X.; Litvin, A.P.; Zheng, W. Improved One-and Multiple-Photon Excited Photoluminescence from Cd2+-Doped Cspbbr3 Perovskite Ncs. Nanomaterials 2022, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Hawash, Z.; Ono, L.K.; Raga, S.R.; Lee, M.V.; Qi, Y. Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-Meotad Films. Chem. Mater. 2015, 27, 562–569. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Qin, C.; Matsushima, T.; Leyden, M.R.; Balijipalli, U.; Klotz, D.; Adachi, C. Understanding the Degradation of Spiro-OMeTAD-Based Perovskite Solar Cells at High Temperature. Sol. RRL 2020, 4, 2000305. [Google Scholar] [CrossRef]
- Luo, J.; Xia, J.; Yang, H.; Chen, L.; Wan, Z.; Han, F.; Malik, H.A.; Zhu, X.; Jia, C. Toward High-Efficiency, Hysteresis-Less, Stable Perovskite Solar Cells: Unusual Doping of a Hole-Transporting Material Using a Fluorine-Containing Hydrophobic Lewis Acid. Energy Environ. Sci. 2018, 11, 2035–2045. [Google Scholar] [CrossRef]
- Sidhik, S.; Wang, Y.; Li, W.; Zhang, H.; Zhong, X.; Agrawal, A.; Hadar, I.; Spanopoulos, I.; Mishra, A.; Traoré, B.; et al. High-Phase Purity Two-Dimensional Perovskites with 17.3% Efficiency Enabled by Interface Engineering of Hole Transport Layer. Cell Rep. Phys. Sci. 2021, 2, 100601. [Google Scholar] [CrossRef]
- Peán, E.V.; Dimitrov, S.; De Castro, C.S.; Davies, M.L. Interpreting Time-Resolved Photoluminescence of Perovskite Materials. Phys. Chem. Chem. Phys. 2020, 22, 28345–28358. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Maksudov, T.; Panagiotopoulos, A.; Serpetzoglou, E.; Konidakis, I.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Limitations of a Polymer-Based Hole Transporting Layer for Application in Planar Inverted Perovskite Solar Cells. Nanoscale Adv. 2019, 1, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, V.M.; Duijnstee, E.A.; El Tambouli, O.; Ball, J.M.; Snaith, H.J.; Lim, J.; Koster, L.J.A. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS Energy Lett. 2021, 6, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, W.; Irshad, Z.; Yun, S.; Han, H.; Adnan, M.; Chang, H.S.; Lim, J. Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films. Energies 2024, 17, 2062. https://doi.org/10.3390/en17092062
Kim S, Lee W, Irshad Z, Yun S, Han H, Adnan M, Chang HS, Lim J. Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films. Energies. 2024; 17(9):2062. https://doi.org/10.3390/en17092062
Chicago/Turabian StyleKim, Sunkyu, Wonjong Lee, Zobia Irshad, Siwon Yun, Hyeji Han, Muhammad Adnan, Hyo Sik Chang, and Jongchul Lim. 2024. "Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films" Energies 17, no. 9: 2062. https://doi.org/10.3390/en17092062
APA StyleKim, S., Lee, W., Irshad, Z., Yun, S., Han, H., Adnan, M., Chang, H. S., & Lim, J. (2024). Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films. Energies, 17(9), 2062. https://doi.org/10.3390/en17092062