Experimental Study on Ultra-Low Concentration Methane Regenerative Thermal Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device
2.2. General Experiment Information
3. Results and Discussion
3.1. Experiment on Concentration Range
3.2. The Impact of Initial Methane Concentration
3.3. The Impact of Low-Temperature Flue Gas Proportion
3.4. The Impact of Operational Load
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, S.; Beath, A.; Guo, H. An assessment of mine methane mitigation and utilisation technologies. Prog. Energy Combust. Sci. 2005, 31, 123–170. [Google Scholar] [CrossRef]
- Su, S.; Chen, H.; Teakle, P. Characteristics of coal mine ventilation air flows. J. Environ. Manag. 2008, 86, 44–62. [Google Scholar] [CrossRef]
- Niu, G. Prospect and utilization status of Low concentration gas in vitiated air at mines. Ind. Saf. Environ. Prot. 2002, 28, 3–5. [Google Scholar]
- Gao, P. Status and Prospect of Ventilation Air Methane Concentrating and Utilization Technology. Min. Saf. Environ. Prot. 2017, 44, 95–99. [Google Scholar]
- Zhang, Z.; Huo, C. Research progress of CBM utilization technology in mining areas. Min. Saf. Environ. Prot. 2022, 49, 59–64. [Google Scholar]
- Gosiewski, K.; Warmuzinski, K. Effect of the mode of heat withdrawal on the asymmetry of temperature profiles in reverse flow reactors. Chem. Eng. Sci. 2007, 62, 2679–2689. [Google Scholar] [CrossRef]
- Gao, P.; Sun, D.; Huo, C. Study progress on thermal oxidized utilization technology of ultra low concentration gas. Coal Sci. Technol. 2018, 46, 67–73. [Google Scholar]
- Jones, A.R.; Lloyd, S.A.; Weinberg, F.J. Combustion in heat exchanger. Proc. R. Soc. Lond. A 1978, 360, 97–115. [Google Scholar]
- Ronney, P.D. Analysis of non-adiabatic heat-recirculating combustors. Combust. Flame 2003, 135, 421–439. [Google Scholar] [CrossRef]
- Kotani, Y.; Behbahani, H.F.; Takeno, T. An excess enthalpy flame combustor for extended flow ranges. Symp. (Int.) Combust. 1985, 20, 2025–2033. [Google Scholar] [CrossRef]
- Shinoda, M.; Tanaka, R.; Arai, N. Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion. Energy Conv. Manag. 2002, 43, 1491–1497. [Google Scholar] [CrossRef]
- Hoffmann, J.G.; Echigo, R.; Yoshida, H.; Tada, S. Experimental study on combustion in porous media with a reciprocating flow system. Combust. Flame 1997, 111, 32–46. [Google Scholar] [CrossRef]
- Shen, B.; Liu, J.; Lei, Y. Present status prospects of coalbed methane development and utilization technology of coal mine area in China. Coal Sci. Technol. 2015, 43, 1–4. [Google Scholar]
- Zhang, Q. Strategic thinking on coal mine methane development in China. China Coalbed Methane 2007, 4, 3–5. [Google Scholar]
- Liu, J.; Shen, C.; Lei, Y. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China. J. China Coal Soc. 2017, 42, 1221–1229. [Google Scholar]
- Hu, Q. Discussion on potential and development mode of CMM in China. China Coalbed Methane 2004, 1, 29–31. [Google Scholar]
- Liu, J.; Sun, H.; Lei, Y. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. J. China Coal Soc. 2020, 45, 258–267. [Google Scholar]
- Wang, Y.; Liu, Y.; Che, D. Study on characteristics of ventilation air methane processing system. J. Eng. Thermophys. 2011, 32, 169–172. [Google Scholar]
- Jia, J. Application of ventilation air methane oxidization and waste heat utilization technology in Shanxi Lu’an Gaohe Coal Mine. Min. Saf. Environ. Prot. 2014, 41, 68–72. [Google Scholar]
- Lü, Y.; Jiang, F.; Xiao, Y. Experimental study of coal mine ventilation air methane. J. China Coal Soc. 2011, 36, 973–977. [Google Scholar]
- Wang, J.; Feng, L.; Davidsson, S. Chinese coal supply and future production outlooks. Energy 2013, 60, 204–214. [Google Scholar] [CrossRef]
- Shine, K.; Fuglestvedt, J.; Hailemariam, K. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Chang. 2005, 68, 281–302. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Wang, L. Thermodynamic stability conditions, methane enrichment, and gas uptake of ionic clathrate hydrates of mine ventilation air. Chem. Eng. J. 2015, 273, 75–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Doroodchi, E.; Moghtaderi, B. Utilization of ventilation air methane as an oxidizing agent in chemical looping combustion. Energy Convers. Manag. 2014, 85, 839–847. [Google Scholar] [CrossRef]
- Feng, T.; Wang, P.; Hao, X. Experimental study on thermal flow-reversal oxidation of coal mine ventilation air low concentration methane. China Saf. Sci. J. 2012, 22, 88–93. [Google Scholar]
- Qi, X.; Liu, Y.; Meng, J. Mathematical model and experiment of thermal reversal oxidation of VAM in coal mine. J. China Coal Soc. 2013, 38, 1621–1626. [Google Scholar]
Name | Unit | Value | Remark |
---|---|---|---|
Initial Methane Concentration | % | 0.28~2.5 | The remaining components are air |
Low-Temperature Flue Gas Proportion | % | 0~100 | / |
Operational Load | kW | 5~15 | 100% load is 10 kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, L.; Zhang, J.; Fan, X.; Li, S.; Zhang, L.; Zhang, W. Experimental Study on Ultra-Low Concentration Methane Regenerative Thermal Oxidation. Energies 2024, 17, 2109. https://doi.org/10.3390/en17092109
Yang J, Yang L, Zhang J, Fan X, Li S, Zhang L, Zhang W. Experimental Study on Ultra-Low Concentration Methane Regenerative Thermal Oxidation. Energies. 2024; 17(9):2109. https://doi.org/10.3390/en17092109
Chicago/Turabian StyleYang, Junhui, Liguo Yang, Jida Zhang, Xiaoxu Fan, Sheng Li, Luyao Zhang, and Weijie Zhang. 2024. "Experimental Study on Ultra-Low Concentration Methane Regenerative Thermal Oxidation" Energies 17, no. 9: 2109. https://doi.org/10.3390/en17092109
APA StyleYang, J., Yang, L., Zhang, J., Fan, X., Li, S., Zhang, L., & Zhang, W. (2024). Experimental Study on Ultra-Low Concentration Methane Regenerative Thermal Oxidation. Energies, 17(9), 2109. https://doi.org/10.3390/en17092109