A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement
Abstract
:1. Introduction
2. Modeling of the Asymmetric RHTPEH
3. Dynamical Analysis with Harmonic Balance Method
4. Dynamic Performance Analysis
5. Conclusions
- (1)
- Compared to the symmetric RHTPEH, the asymmetric state of the potential well of the asymmetric RHTPEH results in a significant increase in its steady-state output voltage magnitude in rotational motion.
- (2)
- Increasing the stiffness ratio of the rotation and vertical spring can significantly increase the range of rotational speeds for inter-well motion in the asymmetric RHTPEH system, while the peak values of steady-state displacement and output voltage only show a slight increase.
- (3)
- The steady-state output voltage magnitude of the asymmetric RHTPEH is very slightly affected by the radius of rotation at lower rotational speeds, whereas when the rotational speed exceeds 100 rpm, the steady-state output voltage magnitude of the asymmetric RHTPEH increases with the radius of rotation, but the range of rotational speeds generating the inter-well motion decreases with it.
- (4)
- The asymmetric RHTPEH is more likely to break through the potential barrier confinement into substantial periodic inter-well motion at lower rotational speeds (300 rpm), whereas the symmetric RHTPEH system is more likely to produce periodic inter-well motion at higher rotational speeds than 450 rpm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modeling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Moshen, S.; Henry, S.A.; Steven, A.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mater. Struct. 2019, 28, 113001. [Google Scholar] [CrossRef]
- Ferdous, R.M.; Reza, A.W.; Siddiqui, M.F. Renewable energy harvesting for wireless sensors using passive RFID tag technology: A review. Renew. Sustain. Energy Rev. 2016, 58, 1114–1128. [Google Scholar] [CrossRef]
- Gao, M.Y.; Wang, P.; Cao, Y.; Chen, R.; Liu, C. A rail-borne piezoelectric transducer for energy harvesting of railway vibration. J. Vibroeng. 2016, 18, 4647–4663. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 2008, 19, 1311–1325. [Google Scholar] [CrossRef]
- Zhang, Y.; Nakano, K.; Zheng, R.; Cartmell, M.P. Adjustable nonlinear mechanism system for wideband energy harvesting in rotational circumstances. J. Phys. Conf. Ser. 2016, 744, 12079. [Google Scholar] [CrossRef]
- Gu, L.; Livermore, C. Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 2010, 8, 081904. [Google Scholar] [CrossRef]
- Gu, L.; Livermore, C. Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 2011, 1, 015002. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 2017, 86, 29–39. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, B.; Inman, D.J. A novel nonlinear piezoelectric energy harvesting system based on linear-element coupling: Design, modeling and dynamic analysis. Sensors 2018, 18, 1492. [Google Scholar] [CrossRef]
- Deng, H.; Du, Y.; Wang, Z.; Ye, J.; Zhang, J.; Ma, M.; Zhong, X. Poly-stable energy harvesting based on synergetic multistable vibration. Commun. Phys. 2019, 1, 21. [Google Scholar] [CrossRef]
- Daqaq, M.F.; Masana, R.; ErturkX, A.; Quinn, D.D. On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Appl. Mech. Rev. 2014, 66, 040801. [Google Scholar] [CrossRef]
- Ferrari, M.; Ferrari, V.; Guizzetti, M.; Ando, B.; Baglio, S.; Trigona, C. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A Phys. 2010, 162, 425–431. [Google Scholar] [CrossRef]
- Ferrari, M.; Bau, M.; Guizzetti, M.; Ferrari, V. A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations. Sens. Actuators A Phys. 2011, 172, 287–292. [Google Scholar] [CrossRef]
- Stanton, S.C.; McGehee, C.C.; Mann, B.P. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Phys. D 2010, 239, 640–653. [Google Scholar] [CrossRef]
- Stanton, S.C.; Erturk, A.; Mann, B.P.; Inman, D.J. Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification. J. Appl. Phys. 2010, 108, 074903. [Google Scholar] [CrossRef]
- Kim, P.; Seok, J. Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 2015, 94, 41–63. [Google Scholar] [CrossRef]
- Kim, P.; Son, D.; Seok, J. Triple-well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester. Appl. Phys. Lett. 2016, 108, 243902. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, S.; Yurchenko, D.; Yang, T.; Liao, W.-H. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mech. Syst. Signal Process 2022, 166, 108419. [Google Scholar] [CrossRef]
- MElhadidi; Helal, M.; Nassar, O.; Arafa, M.; Zeyada, Y. Tunable bistable devices for harvesting energy from spinning wheels. In Active and Passive Smart Structures and Integrated Systems; SPIE: Bellingham, WA, USA, 2015; pp. 235–247. [Google Scholar] [CrossRef]
- Fang, S.; Fu, X.; Liao, W.H. Asymmetric plucking bistable energy harvester: Modeling and experimental validation. J. Sound Vib. 2019, 459, 114852. [Google Scholar] [CrossRef]
- Xie, Z.; Xiong, J.; Zhang, D.; Wang, T.; Shao, Y.; Huang, W. Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency up-conversion mechanisms. Appl. Sci. 2018, 8, 1418. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, W.; Li, W.; Wei, K.; Gao, Q.; Peng, Z.; Meng, G. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 2017, 148, 1391–1398. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, K.; Guo, J.; Wen, T.; Gao, L.; Zhou, S. A cantilever-driven rotor forefficient vibration energy harvesting. Energy 2021, 235, 121326. [Google Scholar] [CrossRef]
- Wang, Z.; He, L.; Gu, X.; Yang, S.; Wang, S.; Wang, P.; Cheng, G. Rotational energyharvesting systems using piezoelectric materials: A review. Rev. Sci. Instrum. 2021, 92, 041501. [Google Scholar] [CrossRef] [PubMed]
- Khameneifar, F.; Moallem, M.; Arzanpour, S. Modeling and analysis of a piezoelectric energy scavenger for rotary motion applications. J. Vib. Acoust. 2011, 133, 011005. [Google Scholar] [CrossRef]
- Khameneifar, F.; Arzanpour, S.; Moallem, M. A piezoelectric energy harvester for rotary motion applications: Design and experiments. IEEE/ASME Trans. Mechatron. 2013, 18, 1527–1534. [Google Scholar] [CrossRef]
- Guan, M.; Liao, W.H. Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 2016, 111, 239–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K. Study on tire-attached energy harvester for low-speed actual vehicle driving. J. Phys. Conf. Ser. 2015, 660, 012126. [Google Scholar] [CrossRef]
- Fu, H.; Yeatman, E.M. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy 2017, 125, 152–161. [Google Scholar] [CrossRef]
- Machado, S.P.; Febbo, M.; Ramírez, J.M.; Gatti, C.D. Rotational double-beam piezoelectric energy harvester impacting against a stop. J. Sound Vib. 2020, 469, 115141. [Google Scholar] [CrossRef]
- Mei, X.T.; Zhou, S.X.; Yang, Z.C.; Kaizuka, T.; Nakano, K. A tri-stable energy harvester in rotational motion: Modeling, theoretical analyses and experiments. J. Sound Vib. 2019, 469, 115142. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, R.; Nakano, K.; Cartmell, M.P. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Appl. Phys. Lett. 2018, 112, 143901. [Google Scholar] [CrossRef]
- Mei, X.T.; Zhou, S.X.; Yang, Z.C.; Kaizuka, T.; Nakano, K. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech. Syst. Signal Process. 2021, 148, 107167. [Google Scholar] [CrossRef]
- Ma, X.; Li, H.; Zhou, S.; Yang, Z.; Litak, G. Characterizing nonlinear characteristics of asymmetric tristable energy harvesters. Mech. Syst. Signal Process. 2022, 168, 108612. [Google Scholar] [CrossRef]
- Man, D.; Zhang, Y.; Xu, G.; Kuang, X.; Xu, H.; Tang, L.; Han, T. Improving energy harvesting from low-frequency excitations by a hybrid tri-stable piezoelectric energy harvester. Alex. Eng. J. 2023, 76, 153–165. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Mass of the tip magnet | mt | 15 g |
Mass of the beam’s fixed end | mf | 25 g |
Length of the piezoelectric beam | l | 90 mm |
Width of the piezoelectric beam | b | 22 mm |
Thickness of the substrate layer | hs | 0.2 mm |
Thickness of the piezoelectric layer | tp | 0.2 mm |
Young’s modulus of the substrate layer | Ys | 70 GPa |
Density of the substrate layer | 2700 kg/m3 | |
Density of the piezoelectric layer | 7750 kg/m3 | |
Volume of the magnetic | VA, VB, VC | 1.0 × 10−6 m−3 |
Damping ratio | 0.01 | |
Young’s modulus of the piezoelectric layer | Yp | 60.98 GPa |
Piezoelectric strain constant | d31 | −1.71 × 10−10 C/N |
Stiffness of the rotation spring | kr | 50,000 N/m |
Stiffness of the vertical spring | kf | 70,000 N/m |
Piezoelectric dielectric constant | −1.33 × 10−8 F/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, D.; Jiang, B.; Zhang, Y.; Tang, L.; Xu, Q.; Chen, D.; Han, T. A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement. Energies 2024, 17, 2134. https://doi.org/10.3390/en17092134
Man D, Jiang B, Zhang Y, Tang L, Xu Q, Chen D, Han T. A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement. Energies. 2024; 17(9):2134. https://doi.org/10.3390/en17092134
Chicago/Turabian StyleMan, Dawei, Bangdong Jiang, Yu Zhang, Liping Tang, Qinghu Xu, Dong Chen, and Tingting Han. 2024. "A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement" Energies 17, no. 9: 2134. https://doi.org/10.3390/en17092134
APA StyleMan, D., Jiang, B., Zhang, Y., Tang, L., Xu, Q., Chen, D., & Han, T. (2024). A Hybrid Tri-Stable Piezoelectric Energy Harvester with Asymmetric Potential Wells for Rotational Motion Energy Harvesting Enhancement. Energies, 17(9), 2134. https://doi.org/10.3390/en17092134