Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.2. Data Analysis
2.3. Model Selection
2.4. Model Evaluation
2.5. Model Optimization and Hyperparameter Tuning
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helal, M.A.; Anderson, N.; Wei, Y.; Thompson, M. A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization. Energies 2023, 16, 1187. [Google Scholar] [CrossRef]
- Tshikovhi, A.; Motaung, T.E. Technologies and Innovations for Biomass Energy Production. Sustainability 2023, 15, 12121. [Google Scholar] [CrossRef]
- Jha, S.; Okolie, J.A.; Nanda, S.; Dalai, A.K. A Review of Biomass Resources and Thermochemical Conversion Technologies. Chem. Eng. Technol. 2022, 45, 791–799. [Google Scholar] [CrossRef]
- Basu, P. Biomass Characteristics, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; ISBN 9780123749888. [Google Scholar]
- Afolabi, I.C.; Epelle, E.I.; Gunes, B.; Güleç, F.; Okolie, J.A. Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes. Clean Technol. 2022, 4, 1227–1241. [Google Scholar] [CrossRef]
- Aghel, B.; Yahya, S.I.; Rezaei, A.; Alobaid, F. A Dynamic Recurrent Neural Network for Predicting Higher Heating Value of Biomass. Int. J. Mol. Sci. 2023, 24, 5780. [Google Scholar] [CrossRef] [PubMed]
- Velázquez Martí, B.; Gaibor-Chávez, J.; Franco Rodríguez, J.E.; López Cortés, I. Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas. Agronomy 2023, 13, 2347. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Tufail, S.; Riggs, H.; Tariq, M.; Sarwat, A.I. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics 2023, 12, 1789. [Google Scholar] [CrossRef]
- Calix, R.A.; Ugarte, O.; Okosun, T.; Wang, H. Machine Learning-Based Regression Models for Ironmaking Blast Furnace Automation. Dynamics 2023, 3, 636–655. [Google Scholar] [CrossRef]
- Ma, H.; Ding, F.; Wang, Y. A Novel Multi-Innovation Gradient Support Vector Machine Regression Method. ISA Trans. 2022, 130, 343–359. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Li, L.; Fritsche, S.; Endrigkeit, J.; Zhang, W.; Long, Y.; Jung, C.; Meng, J. Unraveling the Genetic Basis of Seed Tocopherol Content and Composition in Rapeseed (Brassica napus L.). PLoS ONE 2012, 7, e50038. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Niu, X.; Sha, S.; Yu, J. Prediction of Ground Surface Settlement by Shield Tunneling Using XGBoost and Bayesian Optimization. Eng. Appl. Artif. Intell. 2022, 114, 105020. [Google Scholar] [CrossRef]
- Mahmood, J.; Mustafa, G.-E.; Ali, M.A. Accurate Estimation of Tool Wear Levels during Milling, Drilling and Turning Operations by Designing Novel Hyperparameter Tuned Models Based on LightGBM and Stacking. Measurement 2022, 190, 110722. [Google Scholar] [CrossRef]
- Dutta, J.; Roy, S. OccupancySense: Context-Based Indoor Occupancy Detection & Prediction Using CatBoost Model. Appl. Soft Comput. 2022, 119, 108536. [Google Scholar] [CrossRef]
- Babatunde, D.E.; Anozie, A.; Omoleye, J. Artificial Neural Network and Its Applications in the Energy Sector—An Overview. Int. J. Energy Econ. Policy 2020, 10, 250–264. [Google Scholar] [CrossRef]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Wang, Y.; Qu, L. Predicting Higher Heating Value of Sewage Sludges via Artificial Neural Network Based on Proximate and Ultimate Analyses. Water 2023, 15, 674. [Google Scholar] [CrossRef]
- Jwo, D.J.; Biswal, A.; Mir, I.A. Artificial Neural Networks for Navigation Systems: A Review of Recent Research. Appl. Sci. 2023, 13, 4475. [Google Scholar] [CrossRef]
- Dudek, G. A Comprehensive Study of Random Forest for Short-Term Load Forecasting. Energies 2022, 15, 7547. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Tree-Based Ensemble Methods for Predicting PV Power Generation and Their Comparison with Support Vector Regression. Energy 2018, 164, 465–474. [Google Scholar] [CrossRef]
- Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry. Sustainability 2020, 12, 4776. [Google Scholar] [CrossRef]
- Cemiloglu, A.; Zhu, L.; Arslan, S.; Xu, J.; Yuan, X.; Azarafza, M.; Derakhshani, R. Support Vector Machine (SVM) Application for Uniaxial Compression Strength (UCS) Prediction: A Case Study for Maragheh Limestone. Appl. Sci. 2023, 13, 2217. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Amin, A.K. New Formulas and Connections Involving Euler Polynomials. Axioms 2022, 11, 743. [Google Scholar] [CrossRef]
- Khan, W.A.; Acikgoz, M.; Duran, U. Note on the Type 2 Degenerate Multi-Poly-Euler Polynomials. Symmetry 2020, 12, 1691. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M.; Napoli, A.; Kowalenko, V. New Formulas Involving Fibonacci and Certain Orthogonal Polynomials. Symmetry 2023, 15, 736. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Soto, A.M.; Chen, G. Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef]
- Matveeva, A.; Bychkov, A. How to Train an Artificial Neural Network to Predict Higher Heating Values of Biofuel. Energies 2022, 15, 7083. [Google Scholar] [CrossRef]
- ÖzyuǧUran, A.; Yaman, S. Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Espina, R.U.; Barroca, R.B.; Abundo, M.L.S. The Energy Yield of the Torrefied Coconut Shells. IOP Conf. Ser. Earth Environ. Sci. 2023, 1187. [Google Scholar] [CrossRef]
- Krishnan, R.; Hauchhum, L.; Gupta, R.; Pattanayak, S. Prediction of Equations for Higher Heating Values of Biomass Using Proximate and Ultimate Analysis. In Proceedings of the 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Pattanayak, S.; Hauchhum, L.; Loha, C.; Sailo, L. Selection Criteria of Appropriate Bamboo Based Biomass for Thermochemical Conversion Process. Biomass Convers. Biorefinery 2020, 10, 401–407. [Google Scholar] [CrossRef]
- Noushabadi, A.S.; Dashti, A.; Ahmadijokani, F.; Hu, J.; Mohammadi, A.H. Estimation of Higher Heating Values (HHVs) of Biomass Fuels Based on Ultimate Analysis Using Machine Learning Techniques and Improved Equation. Renew. Energy 2021, 179, 550–562. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Suhail Hussain, S.M.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Han, S.; Kim, H. Optimal Feature Set Size in Random Forest Regression. Appl. Sci. 2021, 11, 3428. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M.; Doukas, I.J.D. Comparing Machine Learning Models and Hybrid Geostatistical Methods Using Environmental and Soil Covariates for Soil PH Prediction. ISPRS Int. J. Geo-Inf. 2020, 9, 276. [Google Scholar] [CrossRef]
- Park, S.Y.; Oh, K.C.; Kim, S.J.; Cho, L.H.; Jeon, Y.K.; Kim, D.H. Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses. Energies 2023, 16, 5341. [Google Scholar] [CrossRef]
- Harun, N.Y.; Parvez, A.M.; Afzal, M.T. Process and Energy Analysis of Pelleting Agricultural and Woody Biomass Blends. Sustainability 2018, 10, 1770. [Google Scholar] [CrossRef]
- Villegas, J.M.; Avila, H. Quick-Scan Estimating Model of Higher Heating Value of Oil Palm Empty Fruit Bunches Based on Ash from Proximate Analysis Data. Ing. Investig. 2014, 34, 33–38. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition. Appl. Sci. 2020, 10, 1897. [Google Scholar] [CrossRef]
- Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef]
- Shanmugavel, A.B.; Ellappan, V.; Mahendran, A.; Subramanian, M.; Lakshmanan, R.; Mazzara, M. A Novel Ensemble Based Reduced Overfitting Model with Convolutional Neural Network for Traffic Sign Recognition System. Electronics 2023, 12, 926. [Google Scholar] [CrossRef]
- Guimarães, M.; Carneiro, D.; Palumbo, G.; Oliveira, F.; Oliveira, Ó.; Alves, V.; Novais, P. Predicting Model Training Time to Optimize Distributed Machine Learning Applications. Electronics 2023, 12, 871. [Google Scholar] [CrossRef]
- Brandić, I.; Pezo, L.; Bilandžija, N.; Peter, A.; Šurić, J.; Voća, N. Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass. Mathematics 2023, 11, 2098. [Google Scholar] [CrossRef]
- Šurić, J.; Voća, N.; Peter, A.; Bilandžija, N.; Brandić, I.; Pezo, L.; Leto, J. Use of Artificial Neural Networks to Model Biomass Properties of Miscanthus (Miscanthus × giganteus) and Virginia Mallow (Sida hermaphrodita L.) in View of Harvest Season. Energies 2023, 16, 4312. [Google Scholar] [CrossRef]
- Abdollahi, S.A.; Ranjbar, S.F.; Razeghi Jahromi, D. Applying Feature Selection and Machine Learning Techniques to Estimate the Biomass Higher Heating Value. Sci. Rep. 2023, 13, 1–13. [Google Scholar] [CrossRef]
Model Type | R2 | MSE | MAE |
---|---|---|---|
ANN | 0.92 | 1.33 | 0.77 |
RFR | 0.84 | 1.61 | 1.03 |
SVM | 0.81 | 1.75 | 1.25 |
Polynomial | 0.72 | 2.14 | 1.53 |
Model | Execution Time (s) |
---|---|
ANN | 222.33 |
SVM | 3.82 |
RFR | 0.13 |
Polynomial | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandić, I.; Pezo, L.; Voća, N.; Matin, A. Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models. Energies 2024, 17, 2137. https://doi.org/10.3390/en17092137
Brandić I, Pezo L, Voća N, Matin A. Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models. Energies. 2024; 17(9):2137. https://doi.org/10.3390/en17092137
Chicago/Turabian StyleBrandić, Ivan, Lato Pezo, Neven Voća, and Ana Matin. 2024. "Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models" Energies 17, no. 9: 2137. https://doi.org/10.3390/en17092137
APA StyleBrandić, I., Pezo, L., Voća, N., & Matin, A. (2024). Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models. Energies, 17(9), 2137. https://doi.org/10.3390/en17092137